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Abstract 

Fundus angiography, including fundus fluorescein angiography (FFA) and indocyanine green 

angiography (ICGA), are essential examination tools for visualizing lesions and changes in retinal 

and choroidal vasculature. However, the interpretation of angiography images is labor-intensive 

and time-consuming. In response to this, we are organizing the third APTOS competition for 

automated and interpretable angiographic report generation. For this purpose, we have released the 

first angiographic dataset, which includes over 50,000 images labeled by retinal specialists. This 

dataset covers 24 conditions and provides detailed descriptions of the type, location, shape, size 

and pattern of abnormal fluorescence to enhance interpretability and accessibility. Additionally, we 

have implemented two baseline methods that achieve an overall score of 7.966 and 7.947 using 

the classification method and language generation method in the test set, respectively. We 

anticipate that this initiative will expedite the application of artificial intelligence in automatic 

report generation, thereby reducing the workload of clinicians and benefiting patients on a broader 

scale. 

Keywords: FFA, ICGA, medical report generation, retinal dataset 

 

Introduction 

Fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) are prevalent 

and essential diagnostic imaging tests in clinical ophthalmology. They are particularly useful in 

identifying abnormal changes in the retinal and choroidal vasculature, thereby facilitating the 

diagnosis and monitoring of eye diseases such as retinal vascular occlusion, diabetic retinopathy, 

and central serous chorioretinopathy through the dynamic changes of injected dyes.[1-3] Given 

that a patient's angiographic images can range from tens to hundreds, their interpretation can be 

labor-intensive and prone to errors. 

The advent of artificial intelligence (AI) has sparked a trend towards the automatic interpretation 

of medical reports.[4-6] The automatic generation of ophthalmic angiography reports could 

significantly alleviate the workload of ophthalmologists.[7] Furthermore, these generated reports 

could potentially reduce the oversight of abnormalities and enhance the accuracy of retinal 

diagnoses.[8] Researchers have proposed cutting-edge methods that combine computer vision, 

natural language processing, and clinical knowledge to generate reliable medical reports.[9] Li et 

al. introduced a Cross-modal clinical Graph Transformer for generating FFA reports.[8] Chen et al. 

combined a vision transformer with a large language model for FFA report generation and 

question answering.[10] However, while medical report generation requires substantial and 

interpretable real-world data for training[11], there is a lack of publicly available FFA and ICGA 

datasets for report generation.[12] 

To address these challenges, we have curated a large angiographic dataset that includes both FFA 

and ICGA images with interpretable labels and proposed baseline methods for angiographic report 

generation. The APTOS big data competition was organized to promote the development of 
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medical report generation algorithms in the field of ophthalmic angiography. We anticipate that 

our approach will significantly expedite the application of AI in ophthalmology. 

Methods 

Dataset:  

We retrospectively collected 58,520 angiographic images from 1,711 patients (3,405 eyes) from 

the Department of Ophthalmology, Rajavithi Hospital, Bangkok, Thailand. One ophthalmologist 

(P.C.) with more than five years of clinical experience reviewed the images for each patient and 

labeled the images in regards to the impression of disease, and abnormal fluorescence pattern: the 

fluorescence type (hyper or hypo fluorescence), the location of fluorescence ( in depth direction 

[retinal/subretinal], in x-direction [at the macula, disc or other], the size of abnormal fluorescence, 

the special pattern of fluorescence (polyps, ink dot) and vascular abnormality due to diabetic 

retinopathy. Blurry mages that could not reach a diagnosis will be excluded. The time of the 

angiographic images was recognized by Optical Character Recognition (OCR)[13], and phases 

were categorized based on time. Where time < 25 seconds was categorized into arterial venous 

phase, time >=25 seconds and <5 minutes was categorized into venous phase, and time >=5 

minutes was categorized into late phase. The characteristics of the dataset are illustrated in Table 

1. 

The angiographic images were divided into train, validation, and test set at subject-level by 6:2:2, 

there was no patient overlap among different splits. Figure 1 shows the workflow of the study. 

Figure 2 shows the examples of images in different shapes. 

The images were de-identified and the retrospective study was approved by the institutional 

review board of Rajavithi Hospital.  

Baseline solutions:  

We employed both the classification and language-generation methods to investigate and compare 

their performances in our report-generation task comprehensively. The demonstration of different 

methods is shown in Figure 3. 

Classification-based: We used the multi-label classification method incorporating class-specific 

residual attention [14], with ResNet101[15] as the backbone. This method proves particularly 

effective for the intricate task of multi-label image recognition. Leveraging its simplicity and 

efficiency, class-specific residual attention captures distinct spatial regions occupied by objects 

from angiographic lesion different categories. During training, we randomly selected 1-12 

angiographic images from each case for model input, leveraging pretrained weights from 

ImageNet. The angiography images were resized to 384×384, and we employed the Adam 

optimizer[16] during the fine-tuning process. The initial learning rate was set at 0.01, 

accompanied by a weight decay of 0.0001 and a batch size of 4. The model with the highest mean 

average precision on the validation set was selected for testing.  

Language-generation based: We utilized the Bootstrapping Language-Image Pre-training (BLIP) 
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framework[17] for our approach. This framework allows for vision-language pre-training and 

subsequent fine-tuning of the model on report generation tasks. The framework incorporates a 

vision transformer[18] as the image encoder(BERT)[19] as the language encoder and decoder, and 

a captioner to filter out noisy training data. After extensive pre-training on a large corpus of 

language and image data, BLIP has demonstrated impressive generalization capabilities in image 

captioning, effectively bridging the language and vision modalities.[17] For our angiographic 

report generation task, we fine-tuned the pre-trained model using FFA and/or ICGA images along 

with structured reports. During training, consistent with the classification method, we randomly 

selected 1-12 images from each case for model input. The images were resized to 384×384, and 

the AdamW optimizer[16] was used during the fine-tuning process. The initial learning rate was 

set at 0.00002, with a weight decay of 0.05, a batch size of 4, and a cosine learning rate schedule. 

Model selection for testing was based on achieving the highest Bilingual Evaluation Understudy 

(BLEU1)[20] score on the validation set. BLEU assesses position-independent sequential 

matching by comparing the n-gram candidates with the n-gram references, which assesses the 

precision of n-grams (up to 4-grams) in the generated text relative to the reference text, providing 

a refined evaluation in the context of angiographic report generation. 

Model training for both classification and language generation methods was conducted for 30 

epochs using an NVIDIA Tesla V100 GPU.  

Evaluation: 

We conducted a comprehensive assessment of our report-generation solutions using both 

classification and language-generation method metrics. 

Classification metric: The evaluation was based on the F1 score, chosen for its resilience against 

imbalances in data distribution across 14 different classification tasks targeting various features 

and lesions. Firstly, we determine the overall impression of each eye. For hyperfluorescence 

assessment, we identify the hyperfluorescence type (HyperF_Type) and measure the 

hyperfluorescence area (HyperF_Area) in disc areas (DA). The lesion can be classified as -4 if it is 

4 or smaller than 4 disc areas, or as -5 if larger than 4 disc areas. We also identify 

hyperfluorescence in the fovea (HyperF_Fovea), outside the fovea (HyperF_ExtraFovea), and at 

the Y location (HyperF_Y). Similarly, for the hyperfluorescence tasks, we determine the type 

(HypoF_Type), area (HypoF_Area) in disc areas, in the fovea (HypoF_Fovea), outside the fovea 

(HypoF_ExtraFovea), and at the Y location (HypoF_Y). Furthermore, we detect choroidal 

neovascularization (CNV) and vascular abnormalities related to diabetic retinopathy (DR). Finally, 

we analyze the pattern of the observed abnormalities. 

For each subtask, the evaluation was based on the average F1 score according to the following 

formula: 

Score� � 0.5 � �micro-average F1 � 10� 	 0.5 � �macro-average F1 � 10� 
1. Micro-average F1 Score 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.26.23299021doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.26.23299021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

- Precision and Recall were calculated for each class. 

- The micro-average F1 score, representing an aggregate measure across all classes, was calculated 

using the formula: 

Micro-average F1 � 2 � ∑ P��
�

���
� R�

∑ P��

���
	 ∑ R���

���

, 

where N� is the total number of classes in subtask �.  

2. Macro-average F1 Score 

- Precision and Recall were calculated for each class.  

- The F1 score for each class was computed using the formula: 

F1� � 2 � P� � R�P� 	 R�, 

The macro-average F1 score, representing an average across all classes, was calculated as: : 

Macro-average F1 � 1
N��F1�

�
�

���

, 

where N� is the total number of classes in subtask �. 

In each subtask, where samples may belong to different categories or have multiple labels, the 

final subtask score combined micro and macro F1 scores, scaled by a factor of 10 for clarity. This 

approach provides a holistic evaluation of model performance, addressing sensitivity to class 

distribution and offering insights into specific class performance, which is well-suited to our 

clinical scenario. 

Language generation metric: To ensure that the classification results align with ground truth at the 

semantic level, we generated textual descriptions of the reports in the format of "Class name 1: 

Answer 1, Class name 2: Answer 2...". We used BERTscore[21], a widely used measurement 

standard in natural language processing. BERTscore evaluates the semantic similarity between 

generated and reference sentences using context embedding, providing a refined assessment 

compared to traditional indicators such as BLEU. Consistent with the classification task, the 

BERTscore was also magnified by a factor of 10. 

Results 

Dataset 

After excluding 226 eyes with media opacity that prevented fundus visualization for diagnosis, the 

dataset consisted of 55361 images from 1691 patients (3179 eyes). The majority (81.8%) of these 

eyes were examined in both FA and ICGA modes. Venous phase was the most common (52.4%), 

followed by late phase (44.4%) and arterial venous phase (3.2%). Each eye has a median of 28 
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angiographic images, with an interquartile range of 32. The minimum number of images for an 

eye is 1, while the maximum is 286. The most prevalent image shape was (868, 1536) (90.6%), 

followed by (1636, 1536) (6.2%), (868, 768) (2.6%), (612, 1024) (0.5%), and (1124, 1024) (0.0%). 

Figure 2 illustrates each image type. 

The 3179 eyes were evenly distributed between left (50%) and right (50%) eyes. A total of 24 

conditions were identified. Macular neovascularization was the most common, found in 32.5% of 

the eyes. Unremarkable changes were noted in 21.8% of the eyes. Dry age-related macular 

degeneration was present in 10.2% of the eyes, while central serous chorioretinopathy was found 

in 9.0%. Uveitis and chorioretinal scar were each found in 4.6% of the eyes. Diabetic retinopathy 

was observed in 3.2% of the eyes, retinal pigment epithelial detachment in 2.8%, polypoidal 

choroidal vasculopathy in 2.4%, and pachy choroid pigment epitheliopathy in 2.1%. Less common 

conditions included chorioretinal atrophy (1.0%), myopia (0.8%), proliferative diabetic 

retinopathy (0.8%), cystoid macular edema (0.7%), and choroidal mass (0.7%). Other conditions, 

including epiretinal membrane, retinal vein occlusion, and others, were noted in 0.5% of the eyes. 

The least common conditions were retinal arterial macroaneurysm (0.3%), branch retinal vein 

occlusion (0.2%), central retinal vein occlusion (0.2%), retinal dystrophy (0.2%), diabetic macular 

edema (0.2%), and central retinal artery occlusion (0.1%). 

Hyperfluorescence manifested in various forms, with leakage being the most common type 

(39.5%), followed by staining (19.9%), no hyperfluorescence (24.4%), pooling (9.8%), and 

window defect (6.4%). The hyperfluorescence area was most commonly 4 disc areas (61.2%), 

with 14.4% having 5 disc areas and 24.4% showing no hyperfluorescence. Hyperfluorescence was 

absent in the fovea in 51.2% of cases, while it was present in 48.8% of cases. Hypofluorescence 

was observed as a blockage in 24.3% of cases, capillary non-perfusion in 3.8% of cases, and was 

absent in 71.9% of cases. The hypofluorescence area was 4 disc areas in 20.6% of cases, 5 disc 

areas in 7.5% of cases, and was absent in 71.8% of cases. Hypofluorescence was absent in the 

fovea in 80% of cases, while it was present in 20% of cases. Choroidal neovascularization (CNV) 

was present in 34.4% of cases. Other multilabel manifestations of fluorescence are presented in 

Supplementary Table 1. 

Baseline Performance 

The performance of our baseline models is presented in Table 2. The classification method 

achieved an average score of 7.966, which is a composite of the overall F1 score (5.977) and a 

BERT score (9.955). For the F1 score of lesion/impression/pattern recognition tasks, the model 

achieved an impression score of 3.795, a CNV score of 8.164, a vascular abnormality (DR) score 

of 5.684, and a pattern score of 5.673. For hyperfluorescence metrics, the model achieved a type 

score of 4.731, an area (DA) score of 7.627, a fovea score of 7.683, an extra fovea score of 3.261, 

and an Y direction score of 6.639. For hypofluorescence metrics, the classification method 

achieved a type score of 6.559, an area (DA) score of 6.294, a fovea score of 7.236, an extra fovea 

score of 4.468, and an Y direction score of 5.857.  

The language generation method demonstrated comparable performance with an average score of 
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7.947, which is a composite of the overall F1 score of 5.939 and a BERT score of 9.956. For the 

F1 score of lesion/impression/pattern recognition tasks, the language generation method achieved 

an impression score of 4.505, a CNV score of 7.781, a vascular abnormality (DR) score of 5.676, 

and a pattern score of 5.878. For hyperfluorescence metrics, the method achieved a type score of 

5.317, an area (DA) score of 6.963, a fovea score of 7.656, an extra fovea score of 3.498, and an 

y-direction score of 6.458. For hypofluorescence metrics, it achieved a type score of 6.529, an area 

(DA) score of 5.79, a fovea score of 7.116, an extra fovea score of 4.361, and a y score of 5.614. 

Both methods exhibit very similar overall performance, with the classification method having a 

slightly higher average score. The classification method outperforms in CNV recognition, while 

the language generation method performs better in impression recognition. For hyperfluorescence 

tasks, the classification method performs better in hyperfluorescence type and area recognition, 

while the language generation method excels in fovea recognition. Both methods show 

comparable performance in hypofluorescence metrics, with similar scores across the different 

tasks. In summary, the classification method and the language generation method exhibit 

comparable overall performance, with each method showing strengths in specific recognition 

tasks.  

Discussion 

The automatic interpretation of angiographic reports is crucial for aiding medical decision-making. 

In this study, we have released the largest multimodal angiographic dataset to date and provided 

two baseline solutions for reference. 

The rapid advancement of digital health and artificial intelligence (AI) applications offers an 

opportunity to revolutionize eye health. This can be achieved by facilitating access to eye care and 

supporting clinical decision-making through an objective, data-driven approach. While several 

studies have explored the use of FFA images for automatic report generation[8, 10, 22], it has been 

reported only 52% of the 204 reported ophthalmic databases are available online.[23] Furthermore, 

there are no publicly available large angiographic datasets for research purposes. Our study 

addresses this gap by proposing a large, well-curated angiographic dataset with detailed labels. 

We have considered the granularity and logic of the label from a clinical perspective, ranging from 

the overall impression to delicate fluorescein changes, as well as the location and depth of these 

changes. This level of detail has not been achieved in previous studies. Competitors can utilize 

these medically meaningful labels through multi-label classification, report generation methods, or 

hierarchical image classification to generate a structured report.  

However, the dataset presents a significant challenge as it was collected from a real clinic without 

biased selection. Therefore, the conditions in the dataset are diverse and skewed, with a majority 

of common conditions and some rare cases. Therefore, we provided two baseline methods: one 

purely for classification and another for language generation. We used a single model for all tasks, 

assuming that the tasks would complement each other. Competitors are free to divide the 14 tasks 

and optimize each one individually. Additionally, class weight could be added to improve the 
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performance of the metric for specific tasks. 

Conclusion 

We have curated the largest multimodal angiographic data with detailed labels for report 

generation. Both classification and report generation methods can achieve acceptable performance. 

We hope our approach will significantly accelerate the application of AI in ophthalmology. 
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Figure legends 

Figure 1. Workflow of the study. 

Figure 2. Examples of angiographic images in different sizes. 

Figure 3. Demonstration of classification and generation methods. 
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Table 1. Dataset characteristics. 

A          

 Total (n = 3179) 

eye, n (%) 

  L 1590 (50) 

  R 1589 (50) 

Hyperfluorescence Type, n (%) 

  leakage 1255 (39.5) 

  no 775 (24.4) 

  pooling 312 (9.8) 

  staining 632 (19.9) 

  window defect 205 (6.4) 

Hyperfluorescence Area(Disc Area), n (%) 

4 1946 (61.2) 

5 458 (14.4) 

  no 775 (24.4) 

Hyperfluorescence Fovea, n (%) 

  no 1627 (51.2) 

  yes 1552 (48.8) 

Hypofluorescence Type, n (%) 

  blockage 772 (24.3) 

  capillary non-perfusion 120 (3.8) 

  no 2287 (71.9) 

Hypofluorescence Area(Disc Area), n (%) 

4 656 (20.6) 

5 239 (7.5) 

  no 2284 (71.8) 

Hypofluorescence Fovea, n (%) 

  no 2543 (80) 

  yes 636 (20) 

CNV, n (%) 

  no 2086 (65.6) 

  yes 1093 (34.4) 

Angiographic Images (n = 55361) 

Examination mode, n (%) 

 FA&&ICGA 45273 (81.8) 

 FA 5702 (10.3) 

 ICGA 4386 (7.9) 

Phase, n (%) 
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  Venous 28987 (52.4) 

  Late 24579 (44.4) 

  Arterial venous 1786 (3.2) 

Image shape, n (%) 

 (868, 1536) 50157 (90.6) 

 (1636, 1536) 3444 (6.2) 

 (868, 768) 1465 (2.6) 

 (612, 1024) 285 (0.5) 

 (1124, 1024) 10 (0.0) 

B 

Impression Count (Freq) 

macular neovascularization 1077 (32.5%) 

unremarkable changes 720 (21.8%) 

dry age-related macular degeneration 339 (10.2%) 

central serous chorioretinopathy 299 (9.0%) 

uveitis 153 (4.6%) 

chorioretinal scar 151 (4.6%) 

diabetic retinopathy 106 (3.2%) 

retinal pigment epithelial detachment 93 (2.8%) 

polypoidal choroidal vasculopathy 81 (2.4%) 

pachychoroid pigment epitheliopathy 70 (2.1%) 

chorioretinal atrophy 34 (1.0%) 

myopia 26 (0.8%) 

proliferative diabetic retinopathy 26 (0.8%) 

cystoid macular edema 23 (0.7%) 

choroidal mass 23 (0.7%) 

other 18 (0.5%) 

epiretinal membrane 16 (0.5%) 

retinal vein occlusion 15 (0.5%) 

retinal arterial macroaneurysm 9 (0.3%) 

branch retinal vein occlusion 8 (0.2%) 

central retinal vein occlusion 7 (0.2%) 

retinal dystrophy 6 (0.2%) 

diabetic macular edema 5 (0.2%) 

central retinal artery occlusion 4 (0.1%) 
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Table 2. Model performance on the test set  

 Overage 

score 

F1score BERT score Impression 

score 

Hyperfluoresce

nce type score 

Hyperfluoresce

nce area (DA) 

score 

Hyperfluoresce

nce fovea score 

Hyperfluoresce

nce extra fovea 

score 

Hyperfluoresce

nce (y) score 

Classificati

on method 

7.966 5.977 9.955 3.795 4.731 7.627 7.683 3.261 6.639 

Language 

generation 

method 

7.947 5.939 9.956 4.505 5.317 6.963 7.656 3.498 6.458 

  Hypofluore

scence type 

score 

Hypofluoresce

nce area (DA) 

score 

Hypofluoresce

nce fovea score 

Hypofluorescen

ce extra fovea 

score 

Hypofluorescen

ce (y) score 

CNV score Vascular 

abnormality 

(DR) score 

Pattern score 

Classificati

on method 

 6.559 6.294 7.236 4.468 5.857 8.164 5.684 5.673 

Language 

generation 

method 

 6.529 5.79 7.116 4.361 5.614 7.781 5.676 5.878 
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