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Abstract:

Dementia probably due to Alzheimer’s disease (AD) is a progressive condition that

manifests in cognitive decline and impairs patients’ daily life. Affected patients show

great heterogeneity in their symptomatic progression, which hampers the

identification of efficacious treatments in clinical trials. Using artificial intelligence

approaches to enable clinical enrichment trials serves a promising avenue to identify

treatments.

In this work, we used a deep learning method to cluster the multivariate disease

trajectories of 283 early dementia patients along cognitive and functional scores.

Two distinct subgroups were identified that separated patients into ‘slow’ and ‘fast’

progressing individuals. These subgroups were externally validated and

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.23299015doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.25.23299015
http://creativecommons.org/licenses/by/4.0/


independently replicated in a dementia cohort comprising 2779 patients. We trained

a machine learning model to predict the progression subgroup of a patient from

cross-sectional data at their time of dementia diagnosis. The classifier achieved a

prediction performance of 0.70 ± 0.01 AUC in external validation.

By emulating a hypothetical clinical trial conducting patient enrichment using the

proposed classifier, we estimate its potential to decrease the required sample size.

Furthermore, we balance the achieved enrichment of the trial cohort against the

accompanied demand for increased patient screening. Our results show that

enrichment trials targeting cognitive outcomes offer improved chances of trial

success and are more than 13% cheaper compared to conventional clinical trials.

The resources saved could be redirected to accelerate drug development and

expand the search for remedies for cognitive impairment.

Introduction:

Dementia is a debilitating, progressive condition that is primarily described by

cognitive decline. With increasing symptom severity, patients become impaired in

their daily life and require full time care, which poses a great burden to patients,

caregivers, and society. Seventy five percent of dementia cases are caused by

Alzheimer’s disease (AD)1. With the recent regulatory approvals of aducanumab2,

donanemab3, and lecanumab4 being the only successes in the past 20 years, most

clinical trials aiming to identify treatments against cognitive decline in AD have

failed5,6.
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The low success rate of clinical trials aimed at improving cognitive outcomes can be

attributed, in part, to the significant variability in how patients' symptoms progress,

even during the earliest stages of the disease6,7. This variability poses a statistical

challenge and can impede the identification of significant treatment effects. One

potential solution to this issue is to increase the sample size of clinical trials to

enhance statistical power. However, this approach is costly as it requires more

treated patients.

Alternatively, clinical trials can aim for a targeted recruitment of patients that will

likely exhibit a faster disease progression and change in cognitive outcomes8. This

enrichment of patients from a subgroup experiencing a more homogeneous, fast

symptomatic progression represents a so-called enrichment trial9 and promises

several advantages over traditional clinical trials: It can unmask treatments that are

only efficacious in specific patient subgroups but fail in the average population10, and

recruited trial cohorts can be smaller due to the reduced heterogeneity and increase

in effect size11. The advantages of enrichment trials have also been recognized and

promoted by the US Food and Drug Administration (FDA) in 2019. To enable

enrichment trials, however, robust patient subgroups with distinct symptom

progression patterns must be identified and validated12. Furthermore, it must be

possible to predict the subgroup membership of an individual from cross-sectional

data already available during patient screening. Also, in the light of the recent

approvals of three monoclonal antibodies targeting the AD-characteristic amyloid

beta pathology2–4, the timely prognosis of patients' likely course of cognitive decline

would help to optimize the correct timing and intensity of treatment. Prognostic
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models designed for this task would also be of immense value from a patient

perspective, because they would allow them to better plan their future.

One family of approaches that allows for identifying patient subgroups based on

multimodal patient-level cohort data are clustering methods. In the context of AD,

such approaches were predominantly applied to cross-sectional data of patients13–15.

However, cross-sectional clusterings fall short in capturing the longitudinal dynamics

of AD dementia, and resulting subgroups can be biased by the disease stages in

which patients resided at the time of data collection. Recent studies that take

progressive signals into account focussed mainly on exploring the pathology of the

disease in the form of imaging biomarkers16 rather than the cognitive outcomes

directly relevant for clinical trials.

In this work, we apply an artificial intelligence (AI) approach for clustering

multivariate clinical disease trajectories of demented AD patients. The resulting

subgroups are then externally validated and independently replicated in another

cohort study. We construct and validate a machine learning classifier to accurately

predict the future progression type of individuals from cross-sectional data only.

Finally, we demonstrate the value our classifier could provide to enrichment trials for

treatments of cognitive decline by enabling cheaper trials with smaller cohort sizes.

Materials and methods:

Cohort datasets and patient selection

Two independent cohort datasets were used in this study: the Alzheimer's Disease

Neuroimaging Initiative (ADNI)17 and the National Alzheimer's Coordinating Center
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(NACC)18. Both cohort studies adhered to the declaration of Helsinki and got

approval from their institutional review boards. We only included patients that

developed dementia probably due to AD during the runtime of their respective cohort

study. Further, patients must have had at least one follow-up assessment after their

dementia diagnosis and visits prior to it were excluded. This led to 283 analyzable

patients for ADNI and 2779 for NACC, with a median of two years follow-up

respectively. Three years after diagnosis, 70 patients were available in ADNI and

1080 patients in NACC.

Multivariate patient trajectory clustering

To cluster patients into symptom progression subgroups, we used our previously

published VaDER approach that was specifically designed with longitudinal clinical

data in mind19. VaDER is a deep learning approach that clusters multivariate

time-series data and imputes missing values implicitly during model training.

Hyperparameters were optimized following the procedure described in de Jong et

al.19: We evaluated several possible models using different configurations of

hyperparameters (including the number of sought after subgroups) and selected the

hyperparameters of the best performing model. Model performance was measured

by comparing the prediction strength of the clustering induced by the trained model

against a random clustering of the same data20. To determine the optimal number of

clusters, we selected the smallest number that showed a significant difference from

random clustering (Figure S1). Selected hyperparameters are presented in Table

S1.
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We clustered patients based on their trajectories of three major clinical scores

measuring symptom progression: the Mini Mental State Examination (MMSE),

Clinical Dementia Rating Sub of Boxes (CDRSB), and Functional Activities

Questionnaire (FAQ). Patient trajectories were aligned on their dementia diagnosis to

avoid biases introduced through patients being in different clinical disease stages at

their study baseline. Considering the average length of currently ongoing phase 3

trials for cognitive treatments enrolling early AD patients (approximately 24 months,

Table S2) and the longitudinal follow-up of ADNI and NACC, we clustered

trajectories spanning up to 3 years. Each clustering was repeated 40 times and the

final subgroup assignments of patients were based on a consensus clustering across

the repeats.

Cluster validation and replication in external data

To evaluate the robustness and validity of our identified patient subgroups, we

conducted an external validation of ADNI-derived subgroups in NACC and,

additionally, performed a replication of the analysis starting with NACC data. For the

external validation, we applied the ADNI-trained clustering model to NACC to

determine whether resulting subgroups of NACC patients resembled those identified

in ADNI. Furthermore, we aimed to replicate the results by starting with a new,

independent clustering of NACC to see if we would get an optimal clustering that

was similar to the one achieved under the ADNI-trained model. We further externally

validated this NACC-derived clustering in ADNI. Finally, we assessed the

concordance between patient assignments within each dataset under both clustering

models.
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Building a machine learning classifier for cluster prediction

We built machine learning classifiers aiming to predict the progression cluster

membership of individuals based on their cross-sectional data at the time of

dementia diagnosis. For this, we used the XGBoost algorithm which is based on an

ensemble of decision trees and can handle missing values21. The classifiers were

trained and evaluated in a 10 times repeated nested 8-fold cross-validation with

hyperparameter optimization in the inner 8-fold cross-validation and model

evaluation in the outer one (details in the Supplementary Material).

As more data modalities were available in ADNI than in NACC22, we built two

separate classifiers: a multimodal classifier based on the ADNI data, and another

classifier using only features common between ADNI and NACC (in the latter

referred to as ‘common predictor’ classifier). The ‘common predictor’ version of the

classifier allowed for an external validation.

The multimodal classifier incorporated demographic information (7 features), clinical

assessments and their subscores (11 assessments amounting to 66 features in

total), biomarkers (62 magnetic resonance imaging (MRI) derived brain region

volumes, 3 positron emission tomography, 4 cerebrospinal fluid), and genetic

variables (APOE ε4 status, 75 disease pathway perturbation scores; see

Supplementary Material for details on pathway score calculation and the

Supplementary Spreadsheet for a list of all predictors). Individual MMSE questions

were summed into subscores as described in the Supplementary Material. Due to

the increased requirements on the available data compared to the initial clustering,

the sample size of ADNI reduced to 230 patients for this analysis.
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For the ‘common predictor’ version of the classifier the number of available features

decreased to 28, now comprising only APOE ε4 status, clinical, and demographic

features (1, 22, and 5 features, respectively). The clinical features are the Trail

Making B score, Montreal Cognitive Assessment score, Digit Span score, and

summary scores and subscores of the MMSE, Clinical Dementia Rating, and FAQ. A

detailed list is provided in the Supplementary Spreadsheet. This classifier was

trained on the larger NACC dataset and externally validated on ADNI.

Simulating the impact of patient enrichment on clinical trial design

We estimated a potential reduction in trial cohort sample size enabled through an

enrichment of patients with ‘fast’ symptom progression while maintaining adequate

statistical power. This analysis was performed by applying the NACC-trained

‘common predictor’ classifier to ADNI to mirror a scenario with classifier-independent

data. Stratified patient recruitment was simulated by only including patients into our

hypothetical trial cohort whose predicted probability of belonging to the ‘fast’

progressing cluster exceeded a threshold. The specifications of the hypothetical trial

were adapted from recent clinical trials for early to mild AD dementia (Table S2): As

a primary outcome, we used the change from baseline in CDRSB since dementia

diagnosis and considered a trial runtime of up to 24 months. The treatment arm was

simulated using an effect size of 27%, a value that was observed for the recently

approved lecanemab24. Effect size was calculated as Cohen’s d. Conservatively, we

did not simulate the effect size dependent on the progression rate, but uniform over

all patients. Effects were only emulated in patients who actually experienced a

worsening of the outcome during the 24 months. Outcomes for patient’s showing
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improvement or no change remained unaltered. The theoretical control arm

consisted of the same patients without simulated treatment effects. For a power

analysis, we considered a two-sided t-test. Following the lecanemab trial, the

required statistical power was considered 90% at an alpha level (type I error) of

0.054.

We approximated the impact of reducing the trial sample size through patient

enrichment in terms of adverse events and monetary expenses using the ‘Clarity AD’

trial for lecanemab as guidance4. We ignored patient drop-out in our estimations.

Annual treatment costs of lecanemab amount to $26,500 per patient25. As exact

information about the costs of patient screening in the lecanemab trial was missing,

we assumed the same costs that were previously estimated for the aducanumab trial

with $6957 per screened patient26.

Adverse events were simulated based on their frequencies of occurrence observed

in the original lecanemab trial4. Amyloid-related imaging abnormality (ARIA)

diagnosis and monitoring incurrences were assumed to involve an additional

physician visit ($128) and monthly MRIs ($353 per scan)26 for a mean duration of 4

months until resolvement4.

Results:

Identification, validation, and replication of two AD dementia progression

subtypes

When clustering the ADNI patients’ trajectories, we identified two distinct symptom

progression subgroups that separated patients into ‘slow’, and ‘fast’ progressors
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(Figure 1A, Figure S1A). One 177 of the 283 patients (63%) were assigned to the

‘fast’ progressing cluster, 106 (37%) to the ‘slow’ progressors. Over the 36 month

period, ‘fast’ progressing patients experienced symptom worsening of 6.38 (95% CI:

[5.32, 7.45]) for CDRSB, -9.24 (95% CI: [-7.23, -11.25]) for MMSE, and 13.19 (95%

CI: [11.22, 15.17]) for FAQ. In contrast, on average, ‘slow’ progressing patients

showed significantly reduced worsening with 1.85 (95% CI: [1.30, 2.40]), 1.83 (95%

CI: [0.87, 2.78]), and 5.59 (95% CI: [4.17, 7.01]), for CDRSB, MMSE, and FAQ,

respectively.

When externally validating the clustering achieved in ADNI by applying the

ADNI-trained model to patient trajectories from NACC, we obtained two subgroups of

NACC patients that were highly similar to those identified in ADNI (Figure 1B).

Matching the proportions in ADNI closely, about 61% (1709) of the NACC patients

exhibited a ‘faster’ progression, while 39% (1070) experienced ‘slower’ symptom

progression. Also the observed empirical average trajectories of NACC subgroups

were similar to those identified in ADNI. On average, the ‘fast’ progressors showed

symptom worsening of 6.93 (95% CI: [6.63, 7.22]) for CDRSB, -8.20 (95% CI: [-7.46,

-8.94]) for MMSE, and 13.64 (95% CI: [13.04, 14.25]) for FAQ over 36 months. ‘Slow’

progressing patients symptoms increased by 1.55 (95% CI: [1.35, 1.75]), -1.84 (95%

CI: [-1.43, -2.25]), and 4.22 (95% CI: [3.59, 4.86]), for CDRSB, MMSE, and FAQ,

respectively.
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Figure 1: Average symptom progression trajectories of subgroups identified in ADNI and NACC

under the ADNI-trained clustering model. For each clinical assessment, the severity of the symptom

increases along the y-axis from bottom to top.

Beyond externally validating the ADNI clustering in NACC, we investigated whether

the clustering of NACC under the ADNI-trained model would be concordant with an

independent clustering achieved by training a new model on NACC. Indeed, a

two-subgroup partition provided the best clustering solution for NACC, again splitting

patients into ‘fast’ and ‘slow’ progressors (Figure S1B). Comparing the subgroup

assignment of NACC patients into ‘fast’ or ‘slow’ progressors under the

NACC-trained model and ADNI-trained model showed an agreement of 88%. We

additionally applied the NACC-trained model on ADNI for external validation. Again,

a highly similar clustering was found with 82% of the ADNI patients assigned to the
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same subgroup using the independent ADNI-trained and NACC-trained models,

respectively.

Characterization of symptom progression subgroups

We compared demographic variables (age, education, biological sex) between ‘slow’

and ‘fast’-progressors and found no statistically or clinically significant differences at

the time of dementia diagnosis in ADNI (Table 1). In NACC, a statistically significant

difference was identified for patient age, however, of insignificant clinical relevance

(1.01 years, 95% CI: [0.31, 1.70]). Further, in ADNI, we observed a statistically

significant but small difference at patient’s dementia diagnosis for the CDRSB score

(0.49, 95% CI: [0.05, 0.94]). In NACC, FAQ and MMSE scores at diagnosis differed

statistically significantly across subgroups (-1.11 [-1.49, -0.73]; and 1.86 [0.99, 2.72],

respectively), but once again with small effect sizes. A further significant difference

was found in the distribution of APOE ε4 carriers across NACC subgroups, with

9.33% [13.1%, 5.53%] more ε4 carriers being assigned to the ‘fast’ progressing

group.

Comparison of cerebrospinal fluid biomarkers of AD pathology, namely amyloid beta

42, phosphorylated tau, and total tau, did not reveal any significant differences

between the two clusters in neither ADNI or NACC (Mann-Whitney U-test p > 0.05

for all biomarkers in both cohorts). Also regarding amyloid PET, no significant

difference was identified (p > 0.05).

N MMSE FAQ CDRSB Age
(Years)

Education
(Years)

APOE ε4
positive (%)

Female
(%)

ADNI Clusters

12
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Slow 106 24.21 ±
2.71

11.46 ±
5.9

3.98 ±
1.36

75.32 ±
6.95

15.91 ±
2.73

67.92 25.47

Fast 177 23.55 ±
3.33

12.79 ±
5.62

4.48 ±
1.81

75.53 ±
7.04

15.9 ±
2.88

76.84 36.16

Differen
ce [95%
CI]

-0.66
[-1.5,
0.17]

1.33
[-0.22,
2.88]

0.49
[0.05,
0.94]

0.2
[-1.68,
2.09]

0.0 [-0.76,
0.75]

-8.91 [-19.84,
1.65]

10.69
[-0.58,
21.04]

NACC Clusters (predicted using the ADNI-trained model)

Slow 1078 25.02 ±
4.12

14.57 ±
12.44

3.75 ±
3.19

77.68 ±
9.12

15.64 ±
3.22

48.42 51.58

Fast 1716 23.91 ±
4.2

16.43 ±
10.31

3.88 ±
2.29

78.68 ±
9.18

15.64 ±
3.14

57.75 52.39

Differen
ce [95%
CI]

-1.11
[-1.49,
-0.73]

1.86
[0.99,
2.72]

0.14
[-0.07,
0.34]

1.01
[0.31,
1.70]

0.0 [-0.24,
0.24]

-9.33 [-13.1,
-5.53]

0.81
[-2.99,
4.61]

Table 1: Summary statistics describing the empirical distribution of clinical and demographic variables
in symptom progression subtypes identified in ADNI and NACC at time of patient’s dementia
diagnosis. Numerical variables: mean ± standard deviation; the difference between subtypes is
quantified as the difference in means and its 95% confidence interval. Categorical variables:
Proportion of APOE e4 carriers and female patients, respectively; differences across subtypes are
quantified as the difference in proportions and its 95% confidence interval.

Predicting symptom progression subtype from cross-sectional data at time of

diagnosis

The multimodal machine learning classifier trained on ADNI was able to differentiate

between ‘slow’ and ‘fast’ progressing patients with an average area under the

receiver operating characteristic (AUC) of 0.69 ± 0.02 estimated via a 15 times

repeated cross-validation (Figure 2) and an area under the precision-recall curve

(AUC-PR) of 0.60 ± 0.03.

To externally validate our classifier, we developed a second version that only

incorporated features present in both ADNI and NACC. Since NACC holds a

substantially larger sample size, we used this dataset to train and internally validate

the classifier and used ADNI for external validation. In internal validation on NACC,
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the classifier achieved 0.67 ± 0.003 AUC (Figure 2) and an AUC-PR of 0.58 ± 0.003.

External validation in ADNI demonstrated a performance of 0.70 ± 0.01 AUC and

0.56 ± 0.01 AUC-PR, which was similar to both the multimodal classifier’s

performance in ADNI and the model’s internal validation scores on NACC (Figure 2),

and thereby indicated the model’s generalizability. Feature importance is shown in

Figure S3.

Figure 2: Performance of machine learning classifiers differentiating between ‘fast’ and ‘slow’
progressors at dementia diagnosis, averaged across 15 repeats. The dataset on which the respective
performance was evaluated is shown in parenthesis on the x-axis. The application of the common
classifier to ADNI represents an external validation.

AI-based stratification to enrich cohorts with specific symptom progression

subtypes

We emulated an enrichment of a hypothetical clinical trial cohort with patients

experiencing ‘fast’ symptom progression by applying our ‘common predictor’

classifier to ADNI. The predicted probability for each patient to belong to the ‘fast’

14
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progressing subgroup was used as an exclusion criterion and patients with

predictions below a selected threshold were excluded from the trial.

Without stratification, at their time of dementia diagnosis, 144 of the 230 (62.6%)

analyzed ADNI patients belonged to the ‘fast’ progressing subgroup. Expectedly,

increasing the classifier threshold required for patient inclusion caused a decrease in

the number of patients remaining in the hypothetical trial cohort (Figure 3B).

Simultaneously, however, the proportion of ‘fast’-progressors among the remaining

patients rose consistently (Figure 3A). After stratifying ADNI using the classifier at a

threshold of 0.65, 51.7% of patients (95% CI: [49.9%, 53.6%]) remained in the

cohort. The resulting stratified cohort contained 73.4% ‘fast’ progressors (95% CI:

[67.5, 79.2]).

Figure 3: The impact of patient enrichment using ADNI as a hypothetical trial cohort. Mean
trajectories and CIs were calculated across 15 repeats, each with a newly trained model. A)
Enrichment of ‘fast’ progressors with higher classifier thresholds. B) Decrease in sample size with
higher classifier thresholds.
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Reducing the required trial cohort sample size through patient enrichment

To estimate a possible reduction in trial cohort sample size achieved through patient

enrichment with our ‘common predictor’ classifier, we performed a statistical power

analysis. The parameters for this analysis were taken from recent trials with cognitive

endpoints targeting early AD (Table S2), primarily the ‘Clarity AD’ trial evaluating

lecanemab which identified an effect size of 27%4.

As previously discussed, increasing the required prediction threshold for patient

inclusion led to a more homogeneous, faster progressing trial cohort on average

(Fig. 3A). This can lead to measuring greater effect sizes which opens the

opportunity to reduce the cohort sample size while maintaining appropriate statistical

power (here, 90%). The relationship between the classifier prediction required for

patient enrollment and the resulting potential for sample size reduction is presented

in Figure 4. Assuming a threshold of 0.65, for example, the classifier enabled a

sample size reduction of 36.8% (CI: [34.0%, 39.5%]).
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Figure 4: Possible reduction in trial cohort size while maintaining statistical power at 90% in relation
to classifier threshold employed for patient enrichment. The line displays the mean trajectory
calculated across 15 repeats. The shade represents the 95% CI. Larger confidence intervals at higher
thresholds are due to lower abundance of individuals with higher scores.

Estimating the impact of patient enrichment on economical expenses and

patient harm

We approximated the economical impact of patient enrichment with our proposed

classifier on trials by counterbalancing the possible sample size reduction with the

additional expenses of increased patient screening (Table 2). We assumed a

hypothetical clinical trial similar to the successful ‘Clarity AD’ trial for lecanemab4 with

24 months runtime and CDRSB as primary outcome. The externally validated

‘common predictor’ classifier was used for patient enrichment. As a classifier

prediction threshold for patient recruitment 0.65 was selected.
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In ‘Clarity AD’, 1795 patients were enrolled from 5967 screened individuals4.

Applying our classifier during patient recruitment could reduce the sample size by

36.8% (661 patients) while maintaining 90% statistical power (Fig. 4). This would

enable an enrichment trial of the same power by enrolling 1135 participants.

Recruiting the enriched trial cohort would require screening 867 additional patients,

increasing the trial costs by $6,031,719. The 24 months treatment costs for the

lecanemab group (50% of the cohort) would amount to approximately $47,594,000

for the conventional trial and $30,077,500 for the enrichment trial.

During the original lecanemab trial, 593 participants experienced adverse events4

while only 375 patients would be affected in an enrichment trial (218 patients

reduction). In the enrichment trial, we would further assume 83 fewer serious

adverse events than in the conventional trial (144 versus 227). With respect to ARIA,

102 less cases would occur in an enrichment trial, reducing the monitoring costs for

ARIA by $157,080 (from $428,120 to $271,040).

The estimated expenses for a conventional lecanemab trial sum up to approximately

$89,534,539 while the enrichment trial would cost $77,892,678, thus saving 13%

($11,641,861) of the total costs. Notably, this estimate represents a lower bound

neglecting the expenses for treating heterogeneous adverse events and longitudinal

monitoring procedures, such as regular neuroimaging.

Discussion:

In this work, we utilized deep learning to identify two distinct AD dementia patient

subgroups exhibiting ‘slow’ and ‘fast’ symptom progression, respectively. The
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subgroups were robustly discovered in two independent datasets and externally

validated. Using a machine learning classifier, we were able to predict the

longitudinal progression subtype of an individual patient with good performance

relying only on cross-sectional data collected at the time of their dementia diagnosis.

By emulating a clinical trial employing prognostic patient enrichment using this

classifier, we demonstrated the statistical, economical, and patient health related

benefits enrichment trials hold over conventional clinical trials in clinical AD

dementia.

Instead of relying solely on cross-sectional data, as is commonly done for clustering

AD dementia patients13–15, we utilized a longitudinal approach that clusters the

multivariate progression of patient trajectories19. For clustering variables, we

deliberately focussed on clinical outcomes of high relevance to clinical trials. Such

outcomes could be biased by differences in the pathological disease stage of

patients. However, we could not find any significant differences in key biomarkers of

AD pathology between the two subgroups.

Enriching clinical trial cohorts with specific symptom progression subtypes

We developed two classifiers that predicted the cognitive symptom progression

subtype of an individual with good prediction performance. We could not observe a

significant improvement in performance when using the proposed multimodal

classifier over the feature-reduced ‘common predictor’ classifier. The reasons for this

could lie in the relatively limited number of patients for which the additional biomarker

measurements were available and the high complexity of this data which could

warrant greater sample sizes to fully exploit using machine learning approaches. In

19

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.23299015doi: medRxiv preprint 

https://www.zotero.org/google-docs/?JbBDaP
https://www.zotero.org/google-docs/?Ok4CaY
https://doi.org/10.1101/2023.11.25.23299015
http://creativecommons.org/licenses/by/4.0/


theory, however, additional predictors could improve the sensitivity and specificity of

a classifier. Especially for borderline cases, the continuous nature of biomarker

values could allow for more nuanced predictions compared to the mainly categorical

features used in the ‘common predictor’ classifier.

Our developed machine learning classifiers were not designed for decision support

in a clinical care setting and we do not believe that their performance is sufficient for

this task. Instead, we deliberately aimed at building classifiers for patient screening

in clinical enrichment trials. In such a setting, the patient enrichment using a machine

learning classifier gains its power through an application across a substantial number

of potential trial participants. While any classifier that performs above chance-level

will lead to an enrichment of a sought-after patient subgroup given that enough

patients are screened, better performing classifiers are more cost effective as fewer

patients need to be screened to achieve the required cohort size and homogeneity.

Similar conditions apply to the threshold placed on classifier predictions, which

represents an arbitrary decision that weights the expanse of patient screening

against the achieved homogeneity of the resulting trial cohort.

Here, we focussed on prognostic enrichment, however, another promising route

would be predictive enrichment based on disease subtypes27. The discrimination of

patients on a mechanistic-level could enable novel clinical trial designs such as

umbrella trials28 for AD, but would not guarantee an increased homogeneity in the

outcome of interest.
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Implications of enrichment trials targeting cognitive decline

Our results indicate that the inter-patient heterogeneity in cognitive symptom

progression could hamper clinical trials especially when their duration is shorter than

two years. During this period, the identified ‘slow’ progression subgroup experienced

only minute cognitive decline and even highly efficacious treatments would show

small effect sizes. Previously, the solution to this statistical challenge was often

considered to involve increasing sample sizes29,30, however, we argue that

enrichment trials present a promising alternative with additional benefits.

In our simulated hypothetical enrichment trial, we found that an enrichment trial

aiming at a cognitive outcome could be conducted with significantly smaller cohort

sizes as compared to currently ongoing and previously successful trials.

Simultaneously, this would lead to cheaper clinical trials and less participant harm

caused.

Limitations

Our presented approximations of monetary expenses in the context of conventional

clinical trials and enrichment trials are limited in many ways and the final amounts

represent only rough estimates. Additional costs, such as follow-up care and

treatments for non-ARIA side-effects have been neglected, and no additional

expenses for applying the classifier and accordingly prolonged screening phases

were considered.
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Data availability

The used datasets are publicly available at https://adni.loni.usc.edu/ and

https://naccdata.org/.
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