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Abstract

Language models (LMs) such as BERT and GPT have revolutionized natural language

processing (NLP). However, the medical field faces challenges in training LMs due to

limited data access and privacy constraints imposed by regulations like the Health

Insurance Portability and Accountability Act (HIPPA) and the General Data Protection

Regulation (GDPR). Federated learning (FL) offers a decentralized solution that enables

collaborative learning while ensuring data privacy. In this study, we evaluated FL on 2

biomedical NLP tasks encompassing 8 corpora using 6 LMs. Our results show that: 1)

FL models consistently outperformed models trained on individual clients' data and

sometimes performed comparably with models trained with polled data; 2) with the

fixed number of total data, FL models training with more clients produced inferior

performance but pre-trained transformer-based models exhibited great resilience. 3) FL

models significantly outperformed large language models using zero-/one-shot

learning and offered lightning inference speed.

Introduction

The recent advances in deep learning have sparked the widespread adoption of

language models (LMs), including prominent examples of BERT 1 and GPT2, in the field

of natural language processing (NLP). These LMs are trained on massive amounts of

public text data, comprising billions of words, and have emerged as the dominant

technology for various linguistic tasks, including text classification3,4, text generation5,6,

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.24.23299002doi: medRxiv preprint 

https://www.zotero.org/google-docs/?uZR5k3
https://www.zotero.org/google-docs/?VucN9b
https://www.zotero.org/google-docs/?LVXlNQ
https://www.zotero.org/google-docs/?9BYBjM
https://doi.org/10.1101/2023.11.24.23299002
http://creativecommons.org/licenses/by-nc-nd/4.0/


information extraction 7–9, and question answering10,11. The success of LMs can be largely

attributed to their ability to leverage large volumes of training data. However, in

privacy-sensitive domains like medicine, data are often naturally distributed making it

difficult to construct large corpora to train LMs. To tackle the challenge, the most

common approach thus far has been to fine-tune pre-trained LMs for downstream tasks,

using limited annotated data12,13. Nevertheless, pre-trained LMs are typically trained on

text data collected from the general domain, which exhibits divergent patterns from that

in the biomedical domain, resulting in a phenomenon known as domain shift.

Compared to general text, biomedical texts can be highly specialized, containing

domain-specific terminologies and abbreviations14. For example, medical records and

drug descriptions often include specific terms that may not be present in general

language corpora, and the terms often vary among different clinical institutes. Also,

biomedical data lacks uniformity and standardization across sources, making it

challenging to develop NLP models that can effectively handle different formats and

structures. Electronic Health Records (EHRs) from different healthcare institutions, for

instance, can have varying templates and coding systems15. So, direct transfer learning

from LMs pre-trained on the general domain usually suffers a drop in performance and

generalizability when applied to the medical domain as is also demonstrated in the

literature16. Therefore, developing LMs that are specifically designed for the medical

domain, using large volumes of domain-specific training data, is essential. Another vein

of research explores pre-training the LM on biomedical data, e.g., BlueBERT12, and
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PubMedBERT17. These LMs were either pre-trained on mixed-domain data (first

pre-train on the general text and then keep pre-train on biomedical text) or directly

pre-trained on domain-specific public medical datasets, e.g., PubMed literature and the

Medical Information Mart for Intensive Care (MIMIC III)18 and have shown improved

performances compared to classical methods such as conditional random field (CRF)19

and recurrent neural network (RNN) (e.g., long-short-term memory (LSTM)20) in many

biomedical text mining tasks8,9,12,16,21. Nonetheless, it is important to highlight that the

efficacy of these pre-trained medical LMs heavily relies on the availability of large

volumes of task-relevant public data, which may not always be readily accessible.

All these mentioned above represent the classical centralized learning regime which

involves aggregating data from distributed data sites and training a model in a single

environment. However, this approach poses significant challenges in medicine, where

data privacy is crucial, and data access is restricted due to regulatory concerns. Thus, in

practice, people can only perform training with local datasets – single-client training. The

drawback comes when the local dataset is small and often gives poor performance

when evaluating an external dataset – poor generalization. To take advantage of the

massively distributed data as well as improve the model generalizability, federated

learning (FL) was initialized in 2016 22 as a novel learning scheme to empower training

with a decentralized environment and achieve many successes in critical domains with

data privacy restrictions23–25. In an FL training loop, clients jointly train a shared global

model by sharing the model weights or gradients while keeping their data stored
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locally. By bringing the model to the data, FL strictly ensures data privacy while

achieving competitive levels of performance compared to a model trained with pooled

data. While there is a rise of research showing great promise of applying FL in general

NLP26,27, applications of FL in biomedical NLP are still under-explored. Existing works

in FL on biomedical NLP are either focused on optimizing one task28,29 or trying to

improve communication efficiency28. The current literature lacks a comprehensive

comparison of FL on varied biomedical NLP tasks with real-world perturbations. To

close this gap, we conducted an in-depth study of two representative NLP tasks, i.e.,

named entity recognition (NER) and relation extraction (RE), to evaluate the feasibility

of adopting FL (e.g., FedAvg30 and FedProx31) with LMs (e.g., Transformer-based

models) in biomedical NLP. Our study aims to provide an in-depth investigation of FL

in biomedical NLP by studying several FL variants on multiple practical learning

scenarios including varied federation scales, different model architectures, data

heterogeneities, and comparison with large language models (LLMs) on multiple

benchmark datasets. Our major findings include:

1) When data were independent and identically distributed (IID), models trained using

FL, especially pre-trained BERT-based models, performed comparable to centralized

learning, a significant boost to single-client learning. Even when data were non-IID

distributed, the gap can be filled by using alternative FL algorithms.

2) Larger models exhibited better resistance to the changes in FL scales. With a fixed

number of data, the performance of FL models overall degraded as the clients' size
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increased. However, the deterioration diminished when combined with larger

pre-trained models such as BERT-based models and GPT-2.

3) FL significantly outperformed large language models (LLMs), e.g., GPT-3, GPT-4, and

PaLM 2, with zero-/one-shot learning, both in terms of prediction accuracy and

inference speed.

Results

In this section, we present our main results of analysis on FL with a focus on several

practical facets, including 1) learning tasks, 2) scalability, 3) data distribution, 4) model

architectures and sizes, and 5) comparative assessments with LLMs.

FedAvg, Single-client, and Centralized learning for NER and RE tasks

Table 1 offers a summary of the performance evaluations for FedAvg, single-client

learning, and centralized learning on five NER datasets, while Table 2 presents the

results on three RE datasets. Our results on both tasks consistently demonstrate that

FedAvg outperformed single-client learning. Notably, in cases involving large data

volumes, such as BC4CHEMD and 2018 n2c2, FedAvg managed to attain performance

levels on par with centralized learning, especially when combined with BERT-based

pre-trained models.
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Table 1. Comparison of FedAvg with centralized learning and single-client learning on

5 NER tasks measured by F1-score with lenient (upper) and strict (lower, inside

parenthesis) matching scheme. For datasets involving multiple entities, we report the

macro average score. The reported values represent the mean and standard deviation

over three repeated experiments.

Model Method 2018 n2c2 BC2GM BC4CHEMD JNLPBA NCBI-disease

BERT

Centralized 0.879±0.002
(0.822±0.001)

0.972±0.001
(0.928±0.001)

0.981±0.001
(0.968±0.001)

0.969±0.001
(0.939±0.002)

0.989±0.001
(0.973±0.000)

Single 0.833±0.004
(0.766±0.002)

0.886±0.001
(0.755±0.002)

0.924±0.001
(0.883±0.000)

0.905±0.001
(0.813±0.002)

0.918±0.003
(0.842±0.003)

FedAvg 0.877±0.002
(0.817±0.002)

0.959±0.001
(0.897±0.000)

0.973±0.000
(0.954±0.001)

0.949±0.001
(0.896±0.001)

0.976±0.001
(0.949±0.001)

BlueBERT

Centralized 0.879±0.005
(0.820±0.007)

0.975±0.000
(0.932±0.002)

0.965±0.004
(0.944±0.007)

0.969±0.001
(0.940±0.003)

0.987±0.008
(0.968±0.009)

Single 0.836±0.004
(0.767±0.005)

0.904±0.003
(0.775±0.003)

0.930±0.001
(0.895±0.003)

0.907±0.001
(0.817±0.003)

0.929±0.004
(0.857±0.006)

FedAvg 0.876±0.002
(0.817±0.000)

0.966±0.001
(0.919±0.002)

0.977±0.000
(0.959±0.000)

0.963±0.001
(0.923±0.001)

0.984±0.002
(0.963±0.000)

BiLSTM-CRF

Centralized 0.834±0.002
(0.783±0.002)

0.924±0.001
(0.866±0.001)

0.958±0.001
(0.934±0.001)

0.961±0.000
(0.924±0.001)

0.971±0.002
(0.944±0.004)

Single 0.734±0.001
(0.667±0.006)

0.619±0.005
(0.409±0.014)

0.764±0.002
(0.669±0.007)

0.824±0.003
(0.669±0.010)

0.738±0.012
(0.589±0.041)

FedAvg 0.782±0.002
(0.734±0.003)

0.793±0.005
(0.645±0.013)

0.920±0.002
(0.882±0.002)

0.902±0.001
(0.810±0.004)

0.865±0.020
(0.767±0.035)

Centralized 0.884±0.002
(0.823±0.002)

0.980±0.000
(0.937±0.003)

0.983±0.001
(0.972±0.001)

0.971±0.000
(0.943±0.001)

0.993±0.001
(0.975±0.001)

BioBERT Single 0.849±0.004
(0.784±0.003)

0.927±0.001
(0.808±0.001)

0.945±0.001
(0.913±0.001)

0.917±0.001
(0.828±0.002)

0.937±0.001
(0.870±0.008)

FedAvg 0.879±0.002
(0.818±0.003)

0.974±0.001
(0.922±0.000)

0.978±0.000
(0.963±0.001)

0.957±0.001
(0.910±0.002)

0.983±0.002
(0.958±0.001)

Bio_clincialB
ERT

Centralized 0.885±0.006
(0.827±0.005)

0.974±0.001
(0.933±0.001)

0.980±0.001
(0.967±0.001)

0.969±0.001
(0.941±0.001)

0.993±0.001
(0.975±0.001)

Single 0.847±0.002
(0.782±0.002)

0.892±0.001
(0.765±0.004)

0.925±0.002
(0.885±0.003)

0.904±0.001
(0.815±0.001)

0.927±0.001
(0.854±0.008)

FedAvg 0.878±0.001
(0.815±0.001)

0.960±0.002
(0.901±0.001)

0.971±0.001
(0.953±0.001)

0.951±0.000
(0.901±0.001)

0.982±0.003
(0.958±0.004)

GPT-2

Centralized 0.801±0.001
(0.745±0.001)

0.891±0.001
(0.836±0.001)

0.879±0.002
(0.857±0.002)

0.925±0.001
(0.881±0.001)

0.928±0.002
(0.904±0.002)

Single 0.741±0.005
(0.685±0.007)

0.708±0.010
(0.549±0.011)

0.747±0.004
(0.687±0.006)

0.793±0.004
(0.669±0.005)

0.765±0.012
(0.684±0.013)

FedAvg 0.798±0.003
(0.746±0.001)

0.796±0.001
(0.674±0.006)

0.825±0.000
(0.794±0.000)

0.844±0.001
(0.748±0.001)

0.852±0.003
(0.809±0.002)
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Table 2. Comparison of FedAvg with centralized learning and single-client learning on

RE task measure by macro F1-score. The reported values represent the mean and

standard deviation over three repeated experiments.

Model Method 2018 n2c2 EUADR GAD

BERT

Centralized 0.947±0.001 0.750±0.040 0.738±0.028

Single 0.887±0.008 0.576±0.154 0.652±0.010

FedAvg 0.946±0.002 0.527±0.008 0.703±0.021

BlueBERT

Centralized 0.950±0.002 0.582±0.109 0.755±0.007

Single 0.896±0.010 0.420±0.048 0.663±0.021

FedAvg 0.950±0.002 0.548±0.073 0.714±0.018

Centralized 0.942±0.002 0.737±0.049 0.783±0.007

BioBERT Single 0.895±0.009 0.640±0.119 0.672±0.015

FedAvg 0.942±0.002 0.718±0.037 0.750±0.008

Bio_ClincialBERT

Centralized 0.950±0.001 0.741±0.067 0.743±0.014

Single 0.902±0.004 0.620±0.138 0.589±0.034

FedAvg 0.946±0.003 0.578±0.057 0.695±0.009

GPT-2

Centralized 0.951±0.004 0.684±0.097 0.709±0.004

Single 0.893±0.013 0.279±0.104 0.630±0.008

FedAvg 0.946±0.003 0.547±0.086 0.721±0.009

Influence of FL scale on the performance of LMs

In clinical applications, there are two distinct learning paradigms. The first involves

small-scale client cohorts, each equipped with substantial data resources, often seen in

collaborations within hospital networks. In contrast, the second encompasses widely

distributed clients, characterized by more limited data holders, often associated with

collaborations within clinical facilities or on mobile platforms. We investigated the
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performance of FL on the two learning paradigms by varying client group sizes while

maintaining a fixed total training data volume. The results are summarized in Fig. 1,

revealing a consistent trend: notably larger models, such as those backed by BERT and

GPT-2 architectures, exhibited great resilience to fluctuations in federation scales. In

contrast, the lightweight model, as of BiLSMT-CRF, was susceptible to alterations of

scale, resulting in a rapid deterioration in performance as the number of participating

clients increased.

Fig. 1 Performance of FL models with varying numbers of clients

Comparison of FedAvg and FedProx with data heterogeneity

Biomedical texts often exhibit high specialization due to distinct protocols employed by

different hospitals when generating medical records, resulting in great variations —

sublanguage differences. Therefore, FL practitioners should account for such data

heterogeneity when implementing FL in healthcare systems. We simulated a real

9
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non-IID scenario by emulating BC2GM and JNLPBA as two clients and jointly

performing FL. We considered two FL algorithms including FedAvg and FedProx, both

are widely deployed in practice. For comparison, we also studied a simulated IID

setting using the 2018 n2c2 dataset by random splitting. As shown in Table 3, we

observed that the performance of FedProx was sensitive to the choice of the

hyper-parameter 𝜇. Notably, a smaller 𝜇 consistently resulted in improved performance.

When 𝜇was carefully selected, FedProx outperformed FedAvg when the data were

non-IID distributed (lenient F1 score of 0.994 vs. 0.934, and strict F1 score of 0.901 vs.

0.884). However, the difference between the two algorithms was mostly

indistinguishable when the data were IID distributed (lenient F1 score of 0.880 vs.

0.879, and strict F1 score of 0.820 vs. 0.818).

Table 3. Comparison of FedAvg with centralized learning and single-client learning

using bioBERT. We select the value of 𝜇 (a hyper-parameter in FedProx) as suggested by

the FedProx paper. The reported values represent the mean and standard deviation over

three repeated experiments.

Method 𝜇
IID (2018 n2c2) non-IID (BC2GM& JNLPBAS)

lenient strict lenient strict

Centralized - 0.884±0.002 0.823±0.002 0.964±0.001 0.929±0.000

FedAvg - 0.879±0.002 0.818±0.003 0.934±0.003 0.884±0.003

FedProx

1 0.855±0.003 0.790±0.005 0.880±0.001 0.772±0.002

0.5 0.868±0.001 0.809±0.002 0.881±0.002 0.777±0.001

0.1 0.872±0.003 0.814±0.004 0.897±0.002 0.817±0.002

0.01 0.878±0.003 0.819±0.002 0.933±0.002 0.884±0.003

0.001 0.880±0.002 0.820±0.001 0.944±0.002 0.901±0.002

10
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Impact of the LM size on the performance of different training schemes

We investigated the impact of model size on the performance of FL. We compared 6

models with varying sizes with the smallest one comprising 20 M parameters and the

largest one comprising 334M parameters. We picked the BC2GM dataset for illustration

and anticipated similar trends would hold for other datasets as well. As shown in Fig. 2,

in most cases, larger models (represented by large circles) overall exhibited better test

performance than their smaller counterparts. For example, BlueBERT demonstrated

uniform enhancements in performance compared to BiLSTM-CRF and GPT2. Among all

the models, BioBER emerged as the top performer, whereas GPT-2 gave the worst

performance.

Fig. 2 Comparison of model performance with different sizes, measured by the number

of trainable parameters on the BC2GM dataset. The size of the circle tells the number of

model parameters, while the color indicates different learning methods. The x-axis

represents the mean test F1-score with the lenient match.
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Comparison between FL and LLM

Table 4. Comparison of LLM and FL on NER and RE tasks. We report strict and lenient

(in parenthesis) F1-score for NER, and macro F1-score for RE. For both tasks, the

inference speed is measured by the time to process one instance (sentence).

Model Method
NER RE

2018 n2c2 NCBI-disease instance/s 2018 n2c2 GAD instance/s

GPT-3 zero-shot 0.294 (0.446) 0.382 (0.564) 7.38 0.204 0.451 0.47

GPT-3 one-shot 0.493 (0.621) 0.374 (0.604) 7.63 0.294 0.462 0.46

GPT-4 zero-shot 0.486 (0.701) 0.602 (0.773) 5.90 0.638 0.494 0.86

GPT-4 one-shot 0.636 (0.774) 0.621 (0.764) 6.63 0.739 0.459 0.76

PaLM 2 zero-shot 0.226 (0.404) 0.552 (0.676) 1.05 0.574 0.600 0.52

PaLM 2 one-shot 0.470 (0.591) 0.527 (0.644) 1.03 0.618 0.471 0.55

BlueBERT FL 0.824 (0.899) 0.954 (0.986) 1.49x10-3 0.969 0.742 2.61x10-2

GPT-2 FL 0.784 (0.840) 0.830 (0.868) 6.12x10-4 0.946 0.721 1.58x10-2

In light of the well-demonstrated performance of large language models (LLMs) on

various linguistic tasks, we explored the performance gap of LLMs to the smaller LMs

trained using FL. Notably, it is usually not common to fine-tune LLMs due to the

formidable computational costs and protracted training time. Therefore, we selected

two representative methods that enable direct inference from pre-trained LLMs,

specifically zero-shot and one-shot learning, and compared them with models trained

using FL. We followed the experimental protocol outlined in a recent study32 and

evaluated all the models on two NER datasets (2018 n2c2 and NCBI-disease) and two

RE datasets (2018 n2c2, and GAD). The results, as summarized in Table 4, underscore
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that FL, whether implemented with a BERT-based model or GPT-2 model, consistently

outperformed GPT-3 and even surpassed GPT-4 and PaLM 2 with both zero-shot and

one-shot learning. Beyond the performance gains, FL trained with small LMs also

offered substantially faster inference speeds.

Discussion

In this study, we visited FL for biomedical NLP and studied two established tasks (NER

and RE) across 7 benchmark datasets. We examined 6 LMs with varying parameter sizes

(ranging from BiLSTM-CRF with 20 M to transformer-based models up to 334 M

parameters) and compared their performance using centralized learning, single-client

learning, and federated learning. On almost all the tasks, we showed that federated

learning achieved significant improvement compared to single-client learning, and

oftentimes performed comparably to centralized learning without data sharing,

demonstrating it as an effective approach for privacy-preserved learning with

distributed data. The only exception is in Fig. 8, where single-client learning

outperformed FedAvg when using BERT and bio_ClinicalBERT. We believe this is due

to the lack of training data. As each client only owned 28 training sentences, the data

distribution, although IID, was highly under-represented, making it hard for FedAvg to

find the global optimal solutions. Surprisingly, FL achieved reasonably good

performance even when the training data was limited (284 total training sentences from

all clients), confirming that transfer learning from either the general text domain (e.g.,
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BERT and GPT-2) or biomedical text domain (e.g., blueBERT, bioBERT,

bio_ClinicalBERT) is beneficial to the downstream biomedical NLP task and pretraining

on medical data often gives a further boost. Another interesting finding is that GPT-2

always gave inferior results compared to BERT-based models. We believe this is because

GPT-2 is pre-trained on text generation tasks that only encode left-to-right attention for

the next word prediction. However, this unidirectional nature prevents it from learning

more about global context which limits its ability to capture dependencies between

words in a sentence.

In the sensitivity analysis of FL to client sizes, we found there is a monotonic trend that,

with a fixed number of training data, FL with fewer clients tends to perform better. For

example, the classical BiLSTM-CRF model (20M), with a fixed number of total training

data, performs better with few clients, but performance deteriorates when more clients

join in. It is likely due to the increased learning complexity as FL models need to learn

the inter-correlation of data across clients. Interestingly, the transformer-based model

(>= 108M), which is over 5 sizes larger compared to BILSMT-CRF, is more resilient to

the change of federation scale, possibly owing to its increased learning capacity.

We analyzed the performance of FedProx in real-world non-IID scenarios and compared

it with FedAvg to study the behavior of different FL algorithms under data

heterogeneity. Although the FedProx achieved slightly better performance than FedAvg

when the data were non-IID distributed, it is very sensitive to the hyper-parameter 𝜇

which strikes to balance the local objective function and the proximal term. Specifically,
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when data was IID and 𝜇was set to a large value (e.g., 𝜇=1), FedProx yielded a 2.4%

lower lenient F1-score compared to FedAvg. When the data were non-IID, this

performance gap further widened to 5.4%. It is also noteworthy that when 𝜇 is set to 0,

and all the clients are forced to perform an equal number of local updates, FedProx

essentially reverts to FedAvg.

We also investigated the impact of model size on the performance of FL. We observed

that as the model size increased, the performance gap between centralized models and

FL models narrowed. Interstingly, BioBERT, which shares the same model architecture

and is similar in size to BERT and Bio_ClinicalBERT, performs comparably to larger

models (such as BlueBERT), highlighting the importance of pre-training for model

performance. Overall, the size of the model is indicative of its learning capacity, large

models tend to perform better than smaller ones. However, large models require longer

training time and more computation resources which results in a natural trade-off

between accuracy and efficiency.

In comparison with LLM, FL models were the winner both in terms of prediction

accuracy and inference speed. We hypothesize that LLMs, although perform well on

general linguistic tasks, can not easily adapt to the specialized tasks given zero/one

sample as input. To close the gap and make better use of LLMs given the context of

biomedical NLP, specialized LLMs that are pre-trained on medical text data 33 or model

fine-tuning 34 are needed.
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While seeing many promising results of FL for LMs, we acknowledge our study suffers

from the following limitations: 1) most of our experiments, excluding the non-IID study,

are conducted in a simulated environment with synthetic data split, which may not

perfectly align with the distribution patterns of real-world FL data. 2) we mostly

focused on horizontal FL, but have not extended to vertical FL35. 3) we have not

considered FL combined with privacy techniques such as differential privacy36 and

homographic encryption37. To address these limitations and further advance our

understanding of FL for LMs, our future study will focus on the real-world

implementation of FL and explore the practical opportunities and challenges in FL such

as vertical FL and FL combined privacy techniques. We believe our study will offer

comprehensive insights into the potential of FL for LMs, which can serve as a catalyst

for future research to develop more effective AI systems by leveraging distributed

clinical data in real-world scenarios.

Methods

NLP tasks and corpora

We compared FL with alternative training schemes on 8 biomedical NLP datasets with a

focus on two NLP tasks: NER (5 corpora) and RE (3 corpora). The NER and RE are two

established tasks for information extraction in biomedical NLP. Given an input

sequence of tokens, the goal of NER is to identify and classify the named entities, such

as diseases and genes, present in the sequence. RE is often the follow-up task that aims

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.24.23299002doi: medRxiv preprint 

https://www.zotero.org/google-docs/?VRJgIk
https://www.zotero.org/google-docs/?lU3yvY
https://www.zotero.org/google-docs/?x9H06V
https://doi.org/10.1101/2023.11.24.23299002
http://creativecommons.org/licenses/by-nc-nd/4.0/


to discover the relations between pairs of named entities. For example, a gene-disease

relation (BRCA1-breast cancer) can be identified in a sentence "Mutations of BRCA1

gene are associated with breast cancer". For RE tasks, we take the entity positions as

given and formulate the problem as follows: given a sentence and the spans of two

entities, the task is to determine the relationship between the two entities.

Table 5. List of corpora and their statistics. The data splits are counted based on the

number of sentences.

Corpus Entity/Relation Type Task Train Dev Test

2018 n2c238 8 entities1 NER 48727 6091 6091

BC2GM39 gene NER 26006 3251 3251

BC4CHEMD40 drug/chem NER 94170 11772 11771

JNLPBA41 gene NER 29559 3695 3695

NCBI-disease42 disease NER 10125 1266 1266

2018 n2c238 disease RE 72786 9099 9098

EUADR43 gene-disease RE 284 36 35

GAD21 gene-disease RE 4097 513 512

For all NER corpora, it follows the same BIO notation to distinguish the beginning (B),

inside (I), and outside (O) of entities. We adopted most of the preprocessed corpora

from the paper of BioBERT8, except for the 2018 n2c2 dataset (both NER and RE). For all

the datasets, we removed duplicated notes and split the data into the train(80%),

dev(10%), and test(10%). A summary of the datasets can be found in Table 5, we defer to

supplementary materials for more detailed descriptions for each dataset.

1A total of 9 entities are considered including reason, frequency, ADE, strength, duration, route, form, and dosage. Details about the 2018
n2c2 dataset can be found in supplementary materials.
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Federated learning algorithms

FL represents a family of algorithms that aims to train models in a distributed

environment in a collaborative manner. Consider a scenario where there are K clients

with distributed data , where , and and are the𝐷 =  {𝐷
1
,  𝐷

2
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clients and is the weights of the -th clients such that and . The𝑝
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∑ 𝑝
𝑖
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weights are usually determined by the quantity of clients’ training samples. For

example, it equals when clients share the same amount of training data.1
𝐾

In an FL game, there are two types of players: server and client. The server is the

compass that navigates the whole process of FL including signaling the start and end of

federated learning, synchronizing the local model updates, and dispatching the

updated models. The clients are responsible for fetching models from the server,

updating models using their local data, and sending the updated models back to the

server.
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Throughout the whole process, there are two major steps: 1) the clients use their own

data to optimize the local objectives — local updates, 2) local clients upload the

updated model or gradients to the server, 3) the server acquires the local models and

synchronize the updates —model aggregation, and 4) server dispatch the models to the

clients. While different FL algorithms may have specialized designs for local updates or

model aggregation, they share the same training paradigm.

We considered the two most popular FL algorithms called Federated Averaging

(FedAvg)30 and another variant FedProx31. FedAvg is the most basic and standard FL

algorithm that uses stochastic gradient descent (SGD) to progressively update the local

model. More specifically, each client locally takes a fixed number of gradient descent

steps on their local model using their local training data. On another hand, the server

will aggregate these local models by taking the weighted average as the resulting new

model for the next round. However, in FedAvg, the number of local updates can be

determined by the size of the data. When the size of the data varies, the local updates

performed locally can be significantly different. FedProxwas introduced to tackle the

issue of heterogeneous local updates in FedAvg. By adding a proximal term to the

objective of the local update, the impact of variable local updates is suppressed. More

specifically, at iteration t, the inner local updates are trying to find the solution that

minimizes the following objective

𝑀𝑖𝑛
𝑤

 1
𝑛

𝑘 𝑖=1

𝑛
𝑘

∑ 𝐿
𝑤

𝑋
𝑖
,  𝑌

𝑖( ) +  µ
2 ||𝑤 − 𝑤𝑡||
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where is the weights of the network from the iteration t. A comparison of FedAvg𝑤𝑡

and FedProx can be found in Algorithm 1 and Algorithm 2 in supplementary materials.

Study design

As shown in Fig. 2, we explored three learning methods: 1) federated learning,

centralized learning, and single-client learning. To simulate the conventional learning

scenario, we varied the data scale and conducted the following experiments:

centralizing all client data to train a single model (centralized learning) and training

separate models on each client's local data (single-client learning).

Fig. 2 A comparison of centralized learning, federated learning, and single-client

learning.

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.24.23299002doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.24.23299002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Models: To better understand the effect of LMs on FL, we chose models with various

sizes of parameters from 20 M to 334 M including Bidirectional Encoder

Representations from Transformer(BERT)1, and Generative Pre-trained Transformer

(GPT), as well as classical RNN-based model like BiLSTM-CRF44. BERT-based models

utilize a transformer encoder and incorporate bi-directional information acquired

through two unsupervised tasks as a pre-training step into its encoder. Different BERT

models differ in their pre-training source dataset and model size, deriving many

variants such as BlueBERT12, BioBERT8, and Bio_ClinicBERT45. BiLSTM-CRF is the only

model in our study that is not built upon transformers. It is a bi-directional model

designed to handle long-term dependencies, is used to be popular for NER, and uses

LSTM as its backbone. We selected this model in the interest of investigating the effect

of federation learning on models with smaller sets of parameters. For LLMs, we selected

GPT-3, GPT-4, and PaLM 2 for assessment as both can be publicly accessible for

inference. A summary of the model can be found in Table 6, and details on the model

description can be found in the supplementary materials.

Table 6. List of LMs used for comparison.

Model Param Backbone pre-trained Source Year

BiLSTM-CRF44 20M LSTM - 2015

BERT1 109M Transformer encoder Wikipedia + BooksCorpus 2018

BlueBERT12 334M Transformer encoder PubMed 2019

BioBERT8 108M Transformer encoder Wikipedia + BooksCorpus + PubMed + PMC 2020

Bio_ClinicalBERT9 108M Transformer encoder clinical notes 2019
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GPT-246 124M Transformer decoder Wikipedia +news+books 2019

GPT-347 175B Transformer decoder CommonCrawl+BooksCorpus+Wikipedia+WebText2 2020

GPT-448 - Transformer decoder - 2023

PaLM 249 - Transformer web documents, books, code, mathematics, and
conversational data

2023

Training details

Data Preprocessing: we adapted most of the dataset from the BioBERT paper with

reasonable modifications by removing the duplicate entries and redoing the data splits;

details of cleaning steps can be found in the supplementary materials. The maximum

token limit was set at 512, with truncation—coded sentences with length larger than 512

were trimmed.

Federated learning simulation: We considered two different learning settings: learning

from independent and identically distributed (IID) data and learning from non-IID

data. For the first setting, we randomly split the data into k folds uniformly. For the

majority of our experiments, k was chosen as 10, while we also varied k from 2 to 10 to

study the impact of the size of the federation. For the second setting, we considered

learning from heterogeneous data collected from different sources. This represents the

real-world scenario where complex and entangled heterogeneities are co-existed. We

picked the BC2GM and JNLPBA as two independent clients, both are targeting the same

gene entity recognition tasks but were collected from different sources.

LLMs with zero-/one-shot learning:We followed the experiment protocol as in the

previous study32. In NER, the prompts for zero-shot are designed as:
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“Task: the task is to extract disease entities in a sentence”

“Input”: the input is a sentence.”

“Output: the output is an HTML that highlights all the disease entities in the sentence. The

highlighting should only use HTML tags <span style=\”background-color: #FFFF00\”> and

</span> and no other tags.”

For one-shot, we add an example of input and expected outputs:

“Example:

Input: In summary, inactivation of the murine ATP7B gene produces a form of cirrhotic liver

disease that resembles Wilson disease in humans and toxic milk phenotype in the mouse”

Output: In summary, inactivation of the murine ATP7B gene produces a form of <span

style=”background-color: #FFFF00> cirrhotic liver disease</span> that resembles <span

style=”background-color: #FFFF00>Wilson disease</span> in humans and toxic milk

phenotype in the mouse”

For model evaluation, we randomly selected 200 test samples in the test dataset and

reported the prediction performance over the selected samples.

Training Models: We used Adam to optimize our models with an initial learning rate of

0.001 and momentum of 0.9. The learning rate was scheduled by

linear_scheduler_with_warmup. All experiments were performed on a system equipped

with an NVIDIA A100 GPU and an AMD EPYC 7763 64-core Processor.

Reported evaluation: For NER, we reported the performance of these metrics at the

macro average level with both strict and lenient match criteria. Strict match considers
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the true positive when the boundary of entities exactly matches with the gold standard,

while lenient considers true positives when the boundary of entities overlaps between

model outputs and the gold standard. For all tasks, we repeated the experiments three

times and reported the mean and standard deviation to account for randomness.

Data Availability

All the datasets involved in this study are publicly available from the following official

websites:

2018 n2c2:https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

BC2GM:https://biocreative.bioinformatics.udel.edu/tasks/

BC4CHEMD:https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/che

mdner-corpus/

JNLPBA:http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004

NCBI-disease:https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/

EUADR: https://biosemantics.erasmusmc.nl/index.php/resources/euadr-corpus

GAD:https://maayanlab.cloud/Harmonizome/dataset/GAD+Gene-Disease+Associati

ons

Code Availability

Our project codes are publicly available on Github:

Train and evaluate FL models: https://github.com/PL97/FedNLP
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Texts preprocessing: https://github.com/PL97/Brat2BIO

Evaluation: https://github.com/PL97/NER_eval

LLMs evaluations: https://github.com/GaoxiangLuo/LLM-BioMed-NER-ER
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