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Abstract 
Background: Neuroimaging studies have provided valuable insights into the macroscale im-
pacts of antidepressants on brain functions in patients with major depressive disorder. How-
ever, the findings of individual studies are inconsistent. Here, we aimed to provide a quanti-
tative synthesis of the literature to identify convergence of the reported findings at both re-
gional and network levels and to examine their associations with neurotransmitter systems.  
Methods: Through a comprehensive search in PubMed and Scopus databases, we reviewed 
5,258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant 
effects in major depressive disorder. Activation likelihood estimation was used to investigate 
regional convergence of the reported foci of consistent antidepressant effects, followed by 
functional decoding and connectivity mapping of the convergent clusters. Additionally, uti-
lizing group-averaged data from the Human Connectome Project, we assessed convergent 
resting-state functional connectivity patterns of the reported foci. Next, we compared the con-
vergent circuit with the circuits targeted by transcranial magnetic stimulation (TMS) therapy. 
Last, we studied the association of regional and network-level convergence maps with se-
lected neurotransmitter receptors/transporters maps. 
Results: No regional convergence was found across foci of treatment-associated alterations in 
functional imaging. Subgroup analysis across the Treated > Untreated contrast revealed a 
convergent cluster in the left dorsolateral prefrontal cortex, which was associated with work-
ing memory and attention behavioral domains. Moreover, we found network-level conver-
gence of the treatment-associated alterations in a circuit more prominent in the frontoparietal 
areas. This circuit was co-aligned with circuits targeted by “anti-subgenual” and “Beam F3” 
TMS therapy. We observed no significant correlations between our meta-analytic findings 
with the maps of neurotransmitter receptors/transporters. 
Conclusion: Our findings highlight the importance of the frontoparietal network and the left 
dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate 
to their role in improving executive functions and emotional processing.  
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Introduction 
Major depressive disorder (MDD) is the most common psychiatric disorder and a leading 
cause of disability worldwide [1]. Despite decades of research and the development of various 
pharmacological, psychological, and stimulation-based therapy, optimal treatment of MDD 
remains a challenge [2]. The conventional antidepressant medications, which are the mainstay 
of MDD treatment, can only achieve clinical response after several weeks of treatment [3] and 
only in around half the patients [4]. The challenges in the treatment of MDD are partly due to 
our limited understanding of the mechanisms by which antidepressants interact with the 
complex and heterogeneous neurobiology of MDD. 

The monoamine neurotransmitter hypothesis of MDD postulates that decreased levels 
of serotonin and norepinephrine in specific brain regions are responsible for depressive symp-
toms, and antidepressant medications can normalize the imbalance in neurotransmitter levels 
[5]. While this hypothesis has dominated the field of MDD research and treatment for decades, 
it is increasingly being questioned, as the supporting evidence for a decreased concentra-
tion/activity of serotonin in MDD has been found inconclusive [6]. This, together with the 
discovery of rapid antidepressant effects of ketamine, a glutamate receptor antagonist [7, 8], 
suggests that the therapeutic effects of antidepressants cannot be simply explained as re-
balancing the synaptic levels of the monoamine neurotransmitters. Thus, it is crucial to study 
the macroscale effects of antidepressant medications on the brain regions and networks be-
yond their neurochemical and cellular effects. Understanding these macroscale effects may 
help better understand their clinical effects on various symptoms of MDD, which is ultimately 
needed to improve treatment outcomes. 

Neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and 
positron emission tomography (PET) have been used to study the macroscale effects of anti-
depressants on brain activity, metabolism, or connectivity [9, 10]. These studies have reported 
diverse functional effects of antidepressants on various brain areas, such as: i) normalizing 
reactivity of the amygdala, insula, and anterior cingulate cortex to negative stimuli [11–14], ii) 
reducing metabolism of paralimbic and subcortical areas, paralleled by increasing metabolism 
of fronto-parietal areas [15], or iii) modulation of resting-state function in the frontal, limbic 
and occipital areas as well as basal ganglia [16–18]. However, while individual neuroimaging 
studies are useful, the breadth of the literature and inconsistencies among the reported find-
ings [10], necessitates a quantitative synthesis of the published literature to identify the most 
consistent findings that are robust to the large variability of the individual studies (in terms 
of clinical features and methodology), as well as their susceptibility to false positive/negative 
effects due to the usually small samples [19, 20].  

Neuroimaging meta-analysis is a promising tool that enables a quantitative synthesis 
of the previously published literature [21, 22]. The most common approach in neuroimaging 
meta-analyses, i.e., coordinate-based meta-analysis (CBMA), aims to find potential regional 
convergence across the peak coordinates of the reported effects in individual studies [23]. Sev-
eral neuroimaging meta-analyses have previously used this approach to study the regional 
convergence of the brain effects associated with the treatment of MDD, focusing on various 
therapeutic approaches and different neuroimaging modalities [24–30]. However, MDD is in-
creasingly being recognized as a brain network disorder with distributed abnormalities across 
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the whole brain, and similarly, the antidepressants’ effects could be distributed across the 
brain rather than localized [9]. Such distributed effects may be overlooked by the CBMA ap-
proaches, which are inherently intended for regional localization of effects. Recently, a novel 
meta-analytic approach has been introduced which aims to identify the convergence of re-
ported findings at the level of networks by characterizing the normative convergent connec-
tivity of the reported foci tested against random foci [31]. Using this approach, it was shown 
that despite a lack of regional convergence of reported abnormalities in MDD [32], there is a 
convergence of their connectivity in circuits which recapitulates clinically meaningful models 
of MDD [31]. 

Here, we aimed to identify how the findings of the previous functional neuroimaging 
studies on the effects of antidepressants converge on both regional and network levels by 
performing an updated CBMA as well as a network-level meta-analysis on the reported find-
ings. Following, we compared our meta-analytic findings with the targets of transcranial mag-
netic stimulation (TMS) therapy and their associated circuits. Last, we asked whether the pat-
tern of the observed meta-analytic effects of antidepressant medications on functional imag-
ing can be potentially explained by the regional distribution of the neurotransmitter recep-
tors/transporters (NRT) linked to these medications, leveraging the publicly available PET 
maps of neurotransmitter receptors and transporters [33]. 

Methods 
This meta-analysis was performed according to the best-practice guidelines for neuroimaging 
meta-analyses [21, 22] and is reported adhering to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement [34]. The protocol for this study was 
pre-registered on the International Prospective Register of Systematic Reviews (PROSPERO, 
CRD42020213202). 

Search and study selection 
We searched the PubMed and Scopus databases to identify peer-reviewed eligible neuroim-
aging studies investigating the effects of antidepressants on MDD. The search was performed 
in July 2022, using the keywords reported in Table S1. In addition, we searched the BrainMap 
annotated database of neuroimaging experiments using Sleuth by setting the diagnosis to 
MDD and pharmacology to the antidepressants [35–38]. Further, to avoid missing any addi-
tional relevant studies, we traced the references of relevant neuroimaging reviews/meta-anal-
yses. Next, the duplicated records were removed, and the resulting 5258 unique records were 
assessed for eligibility by two raters (S.RJ. and S.SN.) independently. The eligibility of records 
was assessed first using their titles or abstracts and then, for the potentially relevant records, 
by examining their full texts. Other authors (A. E., A. S., M. T.) resolved any disagreements 
between the main raters. 

As suggested previously [21, 22], original studies were included if: 1) they studied 
patients with MDD, excluding patients with other major psychiatric or neurological 
comorbidities and adolescent or late-life patients, 2) the patients were treated with antidepres-
sants, 3) the antidepressants effects on the function of gray matter structures were investigated 
using eligible neuroimaging modalities, i.e., functional magnetic resonance imaging 
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(including task-based [tb-fMRI], resting-state [rs-fMRI] and arterial spin labeling [ASL-
fMRI]), fluorodeoxyglucose positron emission tomography (FDG-PET), or single-photon 
emission computed tomography (SPECT), 4) the results of pre- vs. post-treatment, treated vs. 
placebo/untreated, or group-by-time interaction contrasts were reported as peak coordinates 
of significant clusters in standard spaces (Montreal Neurological Institute [MNI] or Talairach) 
or were provided by the authors at our request, 5) the analysis was performed across the 
whole brain, was not limited to a region of interest (ROI) or hidden ROI conditions such as 
small volume correction (SVC), as these approaches are biased toward finding significance in 
the respective areas, hence violating the assumption of ALE method that all voxels of the brain 
have a unified chance of being reported [21, 22], and 6) at least six subjects were included in 
each group (Fig. 1). 

Data extraction and preprocessing 
From the eligible studies, we extracted demographic and clinical data (number of participants, 
age, sex, response to treatment, medications, treatment duration), methodological details (im-
aging modality, scanner field strength, task paradigm, software package, statistical contrast, 
and the multiple comparisons correction method), as well as the peak coordinates/foci (x, y, 
z) of experiments’ findings. Of note, we use the term “study” to refer to an individual publi-
cation, and the term “experiment” to refer to the individual group-level contrasts reported 
within each “study” (e.g., Treated > Untreated). Following the data extraction, the coordinates 
reported in Talairach space were transformed into MNI space [39], so that all the experiments 
are in the same reference space. If the applied reference space was not explicitly reported or 
provided by authors after our request, we assumed the default settings of the software pack-
ages were used for normalization [21, 22]. In addition, to avoid spurious convergence over the 
experiments performed on the same/overlapping samples (reported within or across studies), 
in each meta-analysis, we merged the coordinates from multiple experiments pertaining to 
the same/overlapping samples, to make sure that each study contributes once per analysis, 
as suggested previously [21, 22, 40]. 

Activation likelihood estimation 
The revised version of the activation likelihood estimation (ALE) method [23] was used to test 
the regional convergence of the reported differences against the null hypothesis of randomly 
distributed findings across the brain. In this method, the peak coordinates were convolved 
with 3D Gaussian probability distributions that have a full width at half maximum, inversely 
proportional to the sample size. This allowed experiments with larger samples to have a 
greater statistical certainty in the meta-analysis. Next, for each experiment, the convolved foci 
were combined to generate per-experiment “modeled activation” (MA) maps. Subsequently, 
the MA maps for all the experiments included in the meta-analysis were combined into an 
ALE score map, representing the regional convergence of results at each location of the brain. 
The ALE score map was then statistically tested against a null distribution reflecting randomly 
distributed findings to distinguish true convergence from by-chance overlap [23, 40]. The re-
sulting p-values were subsequently thresholded at voxel height threshold of p < 0.001. Finally, 
to avoid spurious findings [23], the resulting p-values were corrected for multiple compari-
sons using the family-wise error correction at the cluster level (cFWE). Specifically, the signif-
icance of cluster extents was assessed against a null distribution of maximum cluster sizes 
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generated using a Monte Carlo approach with 10,000 permutations, wherein for each permu-
tation ALE was performed on randomly selected foci distributed across the grey matter, and 
the maximum size of resulting null clusters were recorded. 

In addition to an ALE meta-analysis on all included experiments (the ‘all-effects’ ALE) 
we performed several complementary ALE meta-analyses based on the direction of the effect 
(treatment contrast i.e., Treated > Untreated [Tr+] or Untreated > Treated [Tr-]), imaging mo-
dality, study design, and type of the antidepressants. The analyses were performed only if 12 
or more experiments were included in each category, as ALE analyses with too few experi-
ments are likely to be largely driven by a single experiment and, therefore, lack sufficient sta-
tistical power to provide valid results [41]. 
Contribution assessment of the convergent clusters 
For each significant convergent cluster, the relative contribution of included experiments was 
calculated as the fraction of the ALE values within the cluster accounted for by each experi-
ment contributing to the cluster. Specifically, the contribution of each experiment to the clus-
ter was calculated as follows: (i) Voxel-wise ratios were calculated between ALE score values 
of the cluster voxels after removing each experiment compared to the original ALE score cal-
culated based on all included experiments. (ii) These ratios were averaged across the cluster 
voxels and subtracted from one, reflecting on average how much each experiment accounts 
for the ALE scores within the cluster. (iii) Contributions were normalized to a sum of 100%. 
Subsequently, we reported the contributions per categories of the contributing experiments 
according to modality, condition (task-based or resting-state), and medications, by summing 
up the contribution of the experiments within each category. 
Functional decoding of the convergent clusters 
We applied the data from task-based functional neuroimaging experiments and their anno-
tated behavioral domains (BD) included in the BrainMap database [35–38] to identify BDs 
significantly associated with the convergent clusters identified in the main ALE analyses [42]. 
In particular, we used binomial tests to assess whether the probability of each cluster activa-
tion given a particular BD, i.e., P(Activation|BD), is significantly higher than the overall a 
priori chance of its activation across all BDs, i.e., P(Activation). The resulting p-values were 
subsequently adjusted for multiple comparisons at false discovery rate (FDR) of 5%. 
Meta-analytic coactivation mapping of the convergent clusters 
We investigated the task-based functional connectivity of the convergent clusters identified 
in the main ALE analyses using meta-analytic coactivation mapping (MACM) [43]. We used 
the data from task-based functional neuroimaging experiments on healthy individuals in-
cluded in the BrainMap database [35–38]. For each identified convergence cluster from the 
main ALE analyses, we identified all the experiments that reported at least one focus of acti-
vation therein, and after merging the experiments reported within each study, performed an 
ALE meta-analysis across those studies, thresholded at pcFWE < 0.05. This approach identifies 
brain regions consistently co-activated with the convergent cluster across all task-based func-
tional neuroimaging experiments. 
Resting-state functional connectivity of the convergent clusters 
We obtained the group-averaged dense resting-state functional connectivity (RSFC) matrix of 
the Human Connectome Project – Young Adults (HCP- YA) dataset (n=1003) available in Cifti 
format [44, 45]. The convergent cluster in the MNI space was transformed to fsLR space using 
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neuromaps [46] and in turn mapped to Cifti ‘grayordinates’ (cortical vertex or subcortical voxel)  
covering the cluster extent. Subsequently, the whole-brain RSFC maps of these grayordinates 
were extracted from the HCP dense RSFC and were uniformly averaged, resulting in a RSFC 
map of the convergent cluster. 

Network-based meta-analysis 
In addition to the conventional CBMA, we performed a network-based meta-analysis ap-
proach [31], to identify convergent functional connectivity of the reported foci compared to 
randomly distributed foci. We used the normative group-averaged dense RSFC matrix of the 
HCP dataset in these analyses. For the given set of experiments in the all-effects, Tr+ and Tr- 
analyses, we performed the following: (i) The MNI coordinates of all the reported foci in the 
included experiments were mapped from the voxel space to their closest grayordinate based 
on Euclidean distance. The foci with no grayordinate in their 10 mm radius were excluded (16 
out of 528). Of note, the median distance of the mapped grayordinates from the MNI coordi-
nates of foci was 2.26 mm. (ii) The whole-brain RSFC maps of the foci were extracted from the 
HCP dense RSFC and averaged in two levels: First, the RSFC maps of the foci from each ex-
periment were averaged across the foci to create average experiment-specific RSFC maps. Sec-
ond, average experiment-specific RSFC maps were averaged across experiments, weighted by 
their sample sizes, which resulted in a pooled RSFC map of all the experiments included in 
the analysis. (iii) This observed RSFC map was compared to a permutation-based null distri-
bution of RSFCs to create a Z-scored convergent connectivity map. Specifically, in each of the 
1000 permutations, we randomly sampled an equal number of foci as reported in the included 
experiments and averaged their RSFC maps as described above in step ii, resulting in a set of 
1000 null RSFC maps. (iv) We calculated two-tailed p-values as the frequency of null pooled 
RSFC exceeding the observed pooled RSFC at each grayordinate, and subsequently trans-
formed the p-values to Z scores. These maps, referred to as ‘convergent connectivity maps’, 
reflect greater- or lower-than-chance connectivity of the reported foci to the rest of the brain, 
which indicate convergent circuits connected to the locations of reported antidepressant treat-
ment effects. Of note, to assess the effect of weighting the second-level average by experiment 
sample sizes, we additionally performed a sensitivity analysis in which this weighting was 
not applied. 

Using a similar approach, we additionally assessed convergent connectivity of the re-
ported foci to the seven canonical resting-state networks [47]. Here, we averaged the true and 
null pooled RSFC maps (calculated in steps ii and iii above) within each network. Following, 
for each of the seven networks, a two-tailed p-value was calculated as the frequency of null 
within-network average of pooled RSFC exceeding that of the true foci. Lastly, we corrected 
for multiple comparisons across the seven networks by FDR adjustment at 5%. 

Association with transcranial magnetic stimulation targets 
We compared the location of the ALE convergent clusters with four TMS target coordinates, 
including the anatomical “5-CM” site (MNI -41, 16, 54) [48], “Beam F3” site (MNI -41, 42, 34) 
[49] and the “anti-subgenual” site (MNI –38, 44, 26) [50] used in clinical trials. In addition, we 
extracted the RSFC maps of grayordinates corresponding to these coordinates from the HCP 
dense RSFC and evaluated their spatial correlations with the all-effects convergent connectiv-
ity map of antidepressant effects as well as the RSFC maps of ALE convergent clusters.  
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In these correlations we parcellated the maps using Schaefer-400 parcellation in the cortex 
(400 parcels) and Tian S2 parcellation in the subcortex (32 parcels), and accounted for spatial 
autocorrelation by using permutation testing of variogram-based surrogated maps. In this 
approach, random surrogate maps were created with variograms that were approximately 
matched to that of the original map, as implemented in BrainSMASH [51]. Following, the Pear-
son correlation coefficient between observed maps X and Y was compared against a non-par-
ametric null distribution of coefficients resulting from correlating surrogates of X with the 
observed map Y. Lastly, we corrected for multiple comparisons across the correlations using 
FDR adjustment at 5%. Notably, these associations were performed between parcellated maps 
given high computational costs of generating variogram-based surrogate maps at the level of 
grayordinates. 

Association of meta-analytic findings with neurotransmitter recep-
tor/transporter densities 
The PET maps of tracers associated with NRT were obtained from a previous study [33], 
which curated these maps from various sources [52–69]. These maps were based on tracers 
for serotoninergic and noradrenergic receptors/transporters (5HT1a, 5HT1b, 5HT2a, 5HT4, 
5HT6, 5HTT, NAT) as well as the NMDA receptor. The PET maps were available in MNI 
volumetric space and were parcellated using Schaefer-400 parcellation in the cortex (400 par-
cels) and Tian S2 parcellation in the subcortex (32 parcels), and were subsequently Z-scored 
across parcels. In case multiple maps were available for a NRT we calculated an averaged 
map weighted by the sample size of the source studies. 

We then calculated the correlation of parcellated NRT maps with the all-effects con-
vergent connectivity map while accounting for spatial autocorrelation by using variogram-
based permutation testing as described above. In addition, we tested for over-/under-expres-
sion of the NRTs in the ALE convergent clusters. To do so, we first normalized the Z-scored 
and parcellated maps of NRTs to 0-1 and after projecting them to the cortical surface, calcu-
lated the median normalized density of each NRT within the convergent cluster. Next, we 
compared the observed median densities against a null distribution calculated based on sur-
rogate NRT maps with preserved spatial autocorrelation which were generated using 
BrainSmash [51]. In all tests, the resulting p-values were corrected for multiple comparisons 
across the NRT maps by using FDR adjustment at 5%. 
 

Data and code availability 
The code used in this study can be accessed in a GitHub repository at 
https://github.com/amnsbr/antidepressants_meta. This repository includes all the Python 
code used to run the analyses and generate the figures apart from the MATLAB code used for 
behavioral decoding, which is available upon request. In addition, the repository includes the 
coordinates and processed data reported in our study, with the exception of: i) HCP-YA dense 
connectome is accessible to registered users at https://db.humanconnectome.org/, and ii) 
BrainMap dataset which is available as a file upon request, but is additionally searchable us-
ing Sleuth (https://www.brainmap.org/sleuth/). 
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Results 
Experiments included in the meta-analysis 
The study selection process is depicted in Fig. 1. We screened 5258 records resulting from our 
broad and sensitive search and assessed 586 full texts for eligibility to finally include 36 stud-
ies and 30 experiments with non-overlapping samples (Table 1 and Table S2) [12–18, 70–98]. 
Collectively 848 MDD patients were included in the experiments. The patients were treated 
using SSRIs (n=17), ketamine (n=7), SNRIs (n=7), mirtazapine (n=2), clomipramine (n=1), 
quetiapine (n=1), or bupropion (n=1). In six experiments, the patients received variable med-
ications. The imaging modalities included were tb-fMRI (n=18), FDG-PET (n=4), H2O-PET 
(n=1), rs-fMRI (n=4), ASL-fMRI (n=2) and 99mTc-HMPAO SPECT (n=2). 
 

 
Fig. 1. Study selection flowchart. 
MDD: major depressive disorder, LLD: late-life depression, ROI: region of interest, SVC: small volume 
correction. 

 
Convergent regional effects of antidepressants 
No statistically significant regional convergence was found in our ALE meta-analysis on all 
included experiments reflecting treatment-related alterations in brain function (pcFWE > 0.387), 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 30, 2024. ; https://doi.org/10.1101/2023.11.24.23298991doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.24.23298991


 10 

nor in its subgroup analyses limited to specific types of treatments or modalities (Table 2). 
However, among the Tr+ experiments (n=20) we observed a significant cluster of convergence 
in the left middle frontal gyrus within the dorsolateral prefrontal cortex (DLPFC) (MNI -38, 
30, 28; 132 voxels) (Fig. 2). The convergence in this cluster was driven by contributions from 
seven experiments from eight studies [15, 17, 81–84, 86, 97]. The relative contribution of ex-
periments using different medications included SSRIs (58.3%), ketamine (25.3%), and variable 
classes (16.4%). The contribution of experiments using PET (56.3%) was the highest, followed 
by fMRI (43.4%) and SPECT (0.3%). The scanning paradigms of contributing experiments in-
cluded resting-state (81.0%) and emotional tasks (18.9%). Following, we investigated regional 
convergence of the Tr+ experiments across more specific subgroups of these experiments and 
found additional/different clusters (Fig. S1). To assess the convergence across classic antide-
pressants, we performed a subgroup analysis after excluding ketamine among 14 Tr+ experi-
ments and found clusters of convergence in the left (MNI -38, 30, 30; 95 voxels) and right 
DLPFC (MNI 44, 26, 24; 106 voxels). In addition, to assess the effect of study design, a sub-
group analysis was performed on 18 Tr+ experiments that only reported pre- versus post-
treatment effects and revealed convergent clusters in the left (MNI -38, 30, 28; 135 voxels) and 
right DLPFC (MNI 44, 26, 24; 99 voxels). Following, we investigated the effect of treatment 
duration and performed an ALE on Tr+ effects reported after more than four weeks of treat-
ment (12 experiments) which revealed a convergent cluster in the medial superior frontal gy-
rus (MNI 8, 54, 30; 104 voxels). Lastly, to assess the effect of variability in clinical outcomes, 
an ALE was performed on 12 Tr+ experiments which reported ≥ 50% rate of clinical response, 
and revealed a cluster of convergence in the left supramarginal gyrus (MNI -48, -44, 40; 123 
voxels) in addition to the right DLPFC (MNI 44, 26, 24; 123 voxels). 

We observed no significant convergence in the ALE meta-analysis performed on the 
opposite contrast among Tr- experiments (N = 21; pcFWE > 0.615) as well as their more specific 
subgroups (Table 2).  

 
Fig. 2. Treatment-induced increase of voxel-based physiology in the left dorsolateral prefrontal 
cortex. A. Peak coordinates of the included experiments in Treated > Untreated (red) and Un-
treated > Treated (blue) comparisons. Each dot represents a peak coordinate. B. Activation 
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likelihood estimation showed significant convergence of Treated > Untreated comparisons in the 
left dorsolateral prefrontal cortex (DLPFC) after family-wise error correction at cluster level. 
 

Functional decoding and MACM of the dorsolateral prefrontal cortex 
cluster 
Next, we studied the behavioral relevance as well as task-based and resting-state FC of the 
convergent cluster identified in the main ALE meta-analysis on Tr+ experiments within the 
left DLPFC. Using the data from the BrainMap database, we observed that the behavioral 
domains of working memory (likelihood ratio = 1.85) and attention (likelihood ratio = 1.43) 
were significantly associated with this cluster’s activation, yet they did not survive FDR cor-
rection. 

The MACM of the left DLPFC cluster showed its significant co-activation with regions 
in the prefrontal cortex, superior parietal lobule, insula, and anterior cingulate and paracingu-
late cortices (pcFWE < 0.05; Fig. 3A). The average RSFC of the left DLPFC cluster based on the 
HCP dataset dense connectome showed its connectivity with widespread regions in the pre-
frontal cortex, superior frontal gyrus, insula, anterior cingulate, paracingulate cortices, supra-
marginal gyrus, inferior temporal gyrus, and basal ganglia, and its anti-correlation with re-
gions in the subgenual anterior cingulate cortex, orbitofrontal cortex, posterior cingulate, an-
gular gyrus, and temporal pole (Fig. 3B). 

 
Fig. 3. Connectivity mapping of the left dorsolateral prefrontal cortex cluster. Using the center 
of convergent cluster at the left dorsolateral prefrontal cortex as the seed (outlined patch), the 
meta-analytical co-activation (A) and resting-state functional connectivity (B) maps are shown. 
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Convergent connectivity mapping of antidepressants’ effects 
MDD and its treatment are believed to affect distributed regions and networks in the brain 
[9], and ALE, which aims to identify regional convergence of localized effects cannot charac-
terize convergence of such distributed effects. Therefore, we next aimed to investigate the meta-
analytic effects of antidepressants at a network level, following a recently introduced ap-
proach [31]. To do so, we used the group-averaged dense functional connectome obtained 
from the HCP-YA dataset and quantified the convergent connectivity of the reported coordi-
nates of antidepressant effects, which was compared against null connectivity patterns of ran-
dom points. 
 The peak coordinates of all the included experiments, indicating alterations in func-
tional imaging measures associated with antidepressants (512 foci from 30 experiments), 
showed greater-than-chance connectivity of these coordinates with widespread regions in the 
dorsolateral and medial prefrontal cortex, anterior insula, precuneus, supramarginal gyrus 
and inferior temporal gyrus. At the level of canonical resting-state networks, these foci 
showed significant greater-than-chance convergent connectivity to the frontoparietal (FPN; 
<Z> = 0.23, pFDR < 0.05) network (Fig. 4). The convergent connectivity described above was 
calculated by taking an average of pooled RSFC maps across experiments which was 
weighted by their sample sizes. Subsequently, in a sensitivity analysis we showed a similar 
convergent connectivity map when this weighting was not applied (r = 0.922, pvariogram < 0.001; 
Fig. S2), though at the level of canonical resting-state networks it revealed no significant ef-
fects.  
 The network-level analyses separately performed on the Tr+ (177 foci from 20 experi-
ments) and Tr- effects (206 foci from 21 experiments) revealed convergent connectivity maps 
which were anti-correlated with each other (r = -0.57, pvariogram < 0.001; Fig. S3). The convergent 
connectivity map of all experiments (Fig. 4) was significantly correlated with the convergent 
connectivity map of Tr+ (r = 0.48, pvariogram < 0.001) but not Tr- experiments (r = 0.051, pvariogram 
= 0.732). Furthermore, the contrast-based analyses at the level of canonical resting-state net-
works revealed no significant greater-/lower-than-chance connectivity of the foci with these 
networks after FDR correction.  

 
Fig. 4. Convergent connectivity mapping of antidepressant effects. left: The cortical and subcor-
tical map represent Z-scored convergent connectivity map of the foci from all experiments. right: 
Mean resting-state functional connectivity (RSFC) of the observed foci across canonical resting-
state networks (denoted by “-“) compared against null mean values calculated based on 1000 per-
mutations of randomly selected foci (half-violin plots). In frontoparietal network (FPN) observed 
mean RSFC was significantly more extreme than the null distribution in a two-tailed test.  
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VIS: visual network, SMN: somatomotor network, DAN: dorsal attention network, SAN: salience net-
work, LIM: limbic network, FPN: frontoparietal network, DMN: default mode network. 

 
The spatial localization of antidepressants’ effects compared with TMS 
targets 
The left DLPFC is one of the most common stimulation targets in the TMS treatment of MDD 
[99, 100]. Next, we explored whether our meta-analytic findings on the convergent effects of 
antidepressants might spatially correspond with the different TMS targets. We compared the 
location of the peak coordinate of the left DLPFC cluster identified in the Tr+ ALE meta-anal-
ysis and observed its distance with the different targets ranged from 13 to 27 mm (Fig. 5A). 
Moreover, the RSFC map of the Tr+ cluster showed significant correlations (pvariogram, FDR < 
0.001), positively with the RSFC maps of “Beam F3” (r = 0.82) and “anti-subgenual” (r = 0.72) 
targets, but negatively with the RSFC map of “5-CM” (r = -0.50) target (Fig. 5B). In addition, 
the convergent connectivity map of antidepressant effects showed a significant and positive 
correlation with the RSFC of “anti-subgenual” target (r = 0.31, pvariogram,FDR < 0.001). 
 

 
Fig 5. Association of antidepressants meta-analytic effects and transcranial magnetic stimula-
tion targets. A. The locations of three different TMS targets is shown in comparison to the left 
DLPFC convergent cluster identified in the activation likelihood estimation meta-analysis on 
Treated > Untreated experiments. B. The convergent connectivity map of antidepressant effects, 
the RSFC map of the left DLPFC cluster, and the RSFC maps of the different TMS sites as well as 
their cross-correlations are shown. In the correlation matrix within each cell the Pearson correla-
tion coefficient is reported. Asterisks denote pvariogram, FDR < 0.05. 
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The association between neurotransmitter receptor/transporter maps 
and meta-analytic effects of antidepressants 
Lastly, we explored whether the regional and network-level convergence of antidepressant 
effects co-localizes with the spatial distribution of serotoninergic and noradrenergic NRTs as 
well as NMDA receptor (Fig. 6A) [33]. We first focused on the cluster of convergence of Tr+ 
effects in the left DLPFC and quantified the median density of each NRT (normalized to a 
range of [0-1]) in this region, showing the varying density of the NRTs. However, after FDR 
correction none of the NRTs were significantly over-/under-expressed in this cluster (Fig. 6B). 
Next, we evaluated the correlation of the parcellated convergent connectivity map with the 
NRT maps and observed no significant correlations after FDR correction and while account-
ing for the spatial autocorrelation (Fig. 6C). 

 
Fig. 6. Association of meta-analytic findings with neurotransmitter receptor/transporter maps. 
A. The parcellated and Z-scored PET maps of neurotransmitter receptor/transporter (NRT) are 
shown. Red outline indicates the left dorsolateral prefrontal cortex (L DLPFC) convergent cluster 
identified in the activation likelihood estimation meta-analysis on Treated > Untreated experi-
ments. B. Median normalized density of NRTs in L DLPFC cluster. None of the NRTs showed 
significantly more extreme normalized density in this cluster compared to a null distribution cre-
ated using variogram-based surrogate maps and after false discovery rate adjustment. C. Pearson 
correlation of parcellated convergent connectivity map with the NRT maps. None of the correla-
tions were significant using variogram-based surrogates and after false discovery rate adjustment. 
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Discussion 
In the present study, we synthesized findings of the neuroimaging literature on the brain ef-
fects associated with pharmacotherapy of MDD at regional and network levels. At the re-
gional level, our meta-analysis showed no significant convergence across all the included ex-
periments, though we found convergence of the reported treatment-associated increases of 
functional measures in the left DLPFC. This convergent cluster was associated with working 
memory and attention behavioral domains and showed meta-analytical connectivity with re-
gions in the prefrontal cortex, superior parietal lobule, and insula. Extending our meta-anal-
ysis to the network level, we found greater-than-chance convergent connectivity of the re-
ported foci of antidepressant effects primarily to the frontoparietal network. Subsequently, 
we found that the convergent connectivity of the foci was co-aligned with circuits connected 
to the “anti-subgenual” and “Beam F3” TMS targets. Last, we did not observe any significant 
association between the spatial pattern of the regional and network-level meta-analytic effects 
and the NRT maps. 

Beyond regional convergence: Network-level convergent effects of anti-
depressants to the frontoparietal network 
The pathology in MDD is increasingly thought to be distributed across brain regions and net-
works, rather than solely being localized [9]. Previous ALE meta-analyses aimed at identify-
ing the regional convergence of abnormalities in MDD have revealed minimal or no regional 
convergence [32, 101, 102]. However, a recent meta-analysis by Cash et al. [31] revisited the 
functional imaging literature on brain abnormalities in MDD, aiming to identify the network-
level convergence of abnormalities in MDD. They identified circuits of convergent connectiv-
ity related to the location of emotional and cognitive processing abnormalities in MDD, in-
cluding lower-than-chance connectivity of the emotional processing abnormalities to DLPFC 
and pre-supplementary motor area, and greater-than-chance connectivity of the cognitive 
processing abnormalities to DLPFC, cingulum, insula, and precuneus [31]. Here, we found 
regional convergence of Tr+ functional effects in left DLPFC, yet our main ALE meta-analysis 
across all functional treatment effects revealed no significant regional convergence. The lack 
of regional convergence in our overall ALE meta-analysis, similar to the case of previous ALE 
meta-analyses on MDD disease effects, may be attributed to the biological and clinical heter-
ogeneity of MDD and antidepressant effects, as well as the methodological heterogeneity of 
the included experiments [102]. But more importantly, it may reflect distributed rather than 
localized effects of antidepressants [9]. Therefore, following a similar approach to Cash et al. 
[31], we investigated network-level convergence of the reported antidepressant effects, and 
found their greater-than-chance connectivity in a network most prominent in the dorsolateral 
and medial prefrontal cortex, anterior insula, precuneus, supramarginal gyrus and inferior 
temporal gyrus. This circuit largely resembles the circuit of cognitive processing abnormali-
ties in MDD [31]. Furthermore, at the level of canonical resting-state networks we found sig-
nificant convergent connectivity of the reported findings with the FPN.  

The convergent connectivity of reported antidepressant effects to the FPN, together 
with the cluster of regional convergence found in the ALE meta-analysis on the Tr+ experi-
ments, highlights the importance of FPN and DLPFC in the therapeutic effects of antidepres-
sants. These regions play pivotal roles in higher executive and cognitive functions of the brain, 
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which are shown to be impaired in patients with MDD [103–106]. Indeed, more severe execu-
tive dysfunctions are linked with higher severity of depressive symptoms [105]. The executive 
and cognitive dysfunction in MDD is thought to contribute to emotional dysregulation, which 
is a hallmark of MDD psychopathology [107, 108]. Specifically, patients with MDD might have 
impairments in cognitive control when processing negative emotions, deficits in the inhibition 
of mood-incongruent material, and difficulties in attentional disengagement from negative 
stimuli, which are among the mechanisms that are thought to contribute to emotional dysreg-
ulation [107, 108]. Indeed, antidepressants medications are shown to improve the executive 
functioning of patients with MDD, in the domains of attention and processing speed [109], 
psychomotor speed [110] and cognitive interference inhibition [106], and can lead to better 
emotional regulation strategies [111]. Hypoactivity of the prefrontal cortex in MDD is thought 
to contribute to the deficits of executive functioning [105, 112, 113] and emotional regulation 
[108, 112, 114, 115]. For instance, patients with MDD have shown a reduced activity of the 
DLPFC during an attentional interference task using emotional distracters [116], which can be 
normalized by antidepressants [117]. Furthermore, the FPN in patients with MDD shows re-
duced within-network connectivity and decreased connectivity with the parietal regions of 
the dorsal attention network, as reported by a meta-analysis on seed-based RSFC studies 
[118]. In addition, hypoconnectivity of the FPN with the rest of the brain has been observed 
in relation to depressive symptoms in the general population [119]. The treatment of MDD 
using various therapeutic approaches can affect intra- and inter-network connectivity of the 
FPN [9], DMN [120], and SAN [121–123]. Overall, MDD is characterized by altered function 
and connectivity of distributed networks, importantly including the FPN, but also the SAN, 
DMN and limbic networks, which can be modulated by the treatment (see review in Chai et 
al. [9]).  

A similar network may be modulated by both antidepressants and TMS 
The importance of DLPFC and FPN in MDD treatment has further been observed in non-
pharmacological therapeutic approaches. For example, psychotherapy of patients with MDD 
and PTSD is shown to normalize the activity of DLPFC and increase the within-network con-
nectivity of FPN [124]. In addition, the left DLPFC is one of the most common targets of stim-
ulation in TMS therapy of MDD [99, 100]. High-frequency TMS applied to this region alters 
its activity, which in turn may have therapeutic effects by modulating the activity of its con-
nected circuits [48, 99]. Interestingly, in our study, we found that both the convergent connec-
tivity map of the antidepressant effects and the RSFC map of the left DLPFC cluster of con-
vergence across Tr+ experiments were positively and significantly correlated with the “anti-
subgenual” target RSFC map [50, 99, 100, 125]. Hyperactivity of the subgenual anterior cingu-
late cortex in MDD is thought to contribute to increased processing of negative stimuli [113]. 
Therefore, both the “anti-subgenual” TMS and antidepressant treatment of MDD might mod-
ulate the activity of a similar circuit, including DLPFC and sgACC. Of note, we found that the 
“5-CM” TMS target’s circuit was anticorrelated with the circuits of “anti-subgenual” and 
“Beam F3” TMS targets as well as our Tr+ convergence cluster in left DLPFC. Indeed, distinct 
circuits connected to these different TMS targets has been previously reported, and in a retro-
spective study, were found to relate to clinical response in distinct clusters of depressive 
symptoms [125].  
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Lack of association between neurotranmitters and the system-level effects 
of antidepressants 
The neurotransmitter hypothesis of MDD suggests that the dysregulation of the monoamin-
ergic neurotransmitter systems is central to the pathophysiology of MDD, and antidepres-
sants normalize the dysregulations of these neurotransmitter systems [5, 126, 127]. In our anal-
yses, we found that the PET-based maps of serotoninergic and noradrenergic receptors and 
transporters were not significantly correlated with the regional and network-level meta-ana-
lytic effects of antidepressants. This suggests a disparity between the antidepressant effects 
on brain function, as observed in functional imaging studies, and the regions where their tar-
get NRTs are highly expressed. The observed divergence raises the question of what mecha-
nisms may relate the micro-scale actions of antidepressants on the NRTs to their system-level 
effects on brain function. Molecular imaging techniques combined with functional imaging 
might provide clues to this link. The findings of molecular imaging studies in MDD and its 
treatment are diverse (see a comprehensive review by Ruhé et al. [127]). For example, there 
has been some evidence of decreased serotonin synthesis rate in the prefrontal and cingulate 
cortex of patients with MDD [128–130]. However, a recent umbrella review summarizing the 
research on the serotonin hypothesis of MDD concluded that there is a lack of convincing 
evidence for the association of MDD with serotoninergic deficits, such as a lower serotonin 
concentration or changes in the receptors [6]. Moreover, the antidepressive effects of keta-
mine, an NMDA receptor antagonist, highlight the importance of the other non-monoamin-
ergic neurotransmitters in the pathophysiology and treatment of MDD [7, 8]. These findings 
suggest that although the monoaminergic neurotransmitter hypothesis of MDD helped us 
understand the pathophysiology of MDD, it may not provide a full understanding of the dis-
ease [6, 131, 132].  
An overview of neuroimaging meta-analyses on MDD treatments 
The neuroimaging effects of treatment in MDD have been previously investigated in a num-
ber of CBMAs [24–30]. These studies have focused on various types of treatment, with more 
specific (e.g., only SSRI medications [27]) or broader (e.g., pharmacotherapy, psychotherapy, 
and electroconvulsive therapy [29]) scopes compared to our study. In addition, various imag-
ing modalities under different conditions have been investigated, from focusing on fMRI ex-
periments during emotional processing tasks [30] to a broader multimodal investigation of 
neuroimaging experiments [29]. Given the differences in the scope and methodology of the 
previous CBMAs, it is not surprising that they have reported variable findings (Table 3). How-
ever, it is important to note that according to the current guidelines [21, 22], there are a few 
methodological issues to consider in some of the (earlier) CBMAs, which may have influenced 
their findings. These issues include: i) a small number of experiments included in the main or 
subgroup analyses, which can limit the power and increase the risk of a single experiment 
dominating the findings [41], ii) including explicit or hidden ROI-based experiments which 
are biased to inflate significance in the selected brain area, iii) using less stringent methods of 
multiple comparisons correction, e.g., thresholding clusters simply by applying a lenient clus-
ter extent and height, or by using FDR, or iv) performing ALE using the earlier versions of 
GingerALE (< 2.3.3), in which a software bug was reported that can lead to more lenient mul-
tiple comparisons correction [133]. Here, we set out to avoid such methodological issues by 
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following the best-practice guidelines to conduct CBMAs [21, 22]. Furthermore, we provided 
network-level accounts of the effects of antidepressants reported in the literature [31], which 
acknowledges that the effects may be distributed rather than localized, and in doing so, com-
plements the conventional CBMA approach of identifying regional convergence. 
Future directions and limitations 
In this section, we highlight areas for future research that can extend our findings and address 
some of our limitations. First, while our study characterizes regional and network-level con-
vergence of antidepressant effects across multiple imaging modalities, treatments, and clinical 
phenotypes, more focused meta-analyses will be needed on specific selections of experiments, 
when more data is available in the future. Relatedly, and on the other hand, broader meta-
analyses on multiple treatment modalities (including medications, psychotherapy, and brain 
stimulation) can extend previous work [24, 29] and address the question of whether there is a 
general MDD treatment effect that is shared across different therapies. Second, we studied the 
neuroimaging effects of antidepressant medications on patients with MDD who had received 
but not necessarily responded to the treatment. There is considerable variability in the clinical 
outcomes of antidepressant treatment [4], and this is likely to be associated with variable neu-
roimaging effects. To investigate the heterogeneity of imaging effects related to the clinical 
outcomes at the level of included studies, we performed subgroup analyses focused on exper-
iments reporting clinical response in at least half the patients. Among the Tr+ subset of those 
experiments, in a small ALE, we observed convergent clusters in the left supramarginal gyrus 
and the right DLPFC. However, further in-depth original and meta-analytic neuroimaging 
studies are needed to evaluate the inter-individual variability of treatment-induced changes 
in brain function and its relevance to clinical response, for example, by comparing the treat-
ment-associated functional alterations between responders and non-responders. Addition-
ally, utilizing multivariate machine learning models on imaging, genetics, and clinical data 
could provide valuable insights into the inter-individual variability among MDD patients in 
terms of disease characteristics and in turn, response to treatment, which is critical towards 
personalized treatment [134–136]. Third, as we did not restrict our data to randomized con-
trolled trials, the included subjects may have received other interventions such as psychother-
apy, which may confound the results. This issue can be addressed in a future meta-analysis 
focused on randomized controlled trials, when more studies are available. Fourth, our net-
work-level meta-analysis was performed using a group-averaged functional connectome 
based on resting-state imaging data of healthy subjects, and therefore, provides an indirect 
view on network-level actions of antidepressants. Further large-scale studies are needed to 
investigate these effects using individual-level connectomic approaches on MDD patients 
treated with antidepressants. 

Conclusion 
This comprehensive meta-analysis of the functional neuroimaging studies on the regional and 
network-level convergence of the effects of antidepressant medications in MDD underscores 
the importance of the FPN and particularly DLPFC. This observation may be attributed to the 
key roles of these regions in executive functions and emotional processing. The convergent 
regional and connectivity maps of antidepressant effects engaged circuits similar to those of 
“anti-subgenual” and “Beam F3” TMS targets, which may indicate common circuits are 
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targeted by these different treatment modalities. Lastly, we identified no associations between 
our regional and network-level meta-analytic findings with the spatial maps of neurotrans-
mitter receptors/transporters, suggesting that the localized functional effects of antidepres-
sants cannot be directly explained by the localization of these receptors/transporters. Our 
study highlights the need for future research integrating multiple levels of antidepressant ac-
tions at the micro- and macroscale in the context of inter-individual variability of patients with 
MDD and their heterogeneous clinical outcomes. 
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Table 1. Characteristics of studies included in this meta-analysis 
# First Author, Year a N (female 

%) 
Treated / 
Untreated 

Responded 
% 

Age 
Treated / 
Untreated 

Wash out 
period 

Antidepressant medi-
cation  

Duration 
between 

Scans 

Modality 

1 
Abdallah, C. G., 2017 

18 (44%) 55.5% 43 1 w Ketamine 1 d 
rs-fMRI 
(GBC) 

Murrough, J. W., 2015 tb-fMRI 

2 Bremner, J. D., 2007 13 (84%) 100% 40.0c 4 w Fluoxetine or Venlafax-
ine 6 +/- 3 m H2O-PET 

3 Carlson, P. J., 2013 20 (30%) 30.0% 48 2 w Ketamine 1-3 d FDG-PET 

4 Cheng, Y., 2017 38 (70%c) 60% 28c Drug-naive Escitalopram 5 h, 4 w, 8 
w 

rs-fMRI 
(fALFF) 

5 Downey, D., 2016 21 (62%) / 
19 (58%) n.a. 27.1 / 

25.7 n.a. Ketamine 45 min rs-fMRI 

6 Fonzo, G. A., 2019 96 (72%) / 
105 (64%) n.a. 37 / 36 n.a. Sertraline 8 w tb-fMRI 

7 Frodl, T., 2011 24 (33%) n.a. 39 1 y Venlafaxine or 
Mirtazapine 4 w tb-fMRI 

8 Fu, C. H., 2004, 2007 19 (68%) n.a. 43 n.a. Fluoxetine 8 w tb-fMRI 

9 Fu, C. H., 2015 24 (41%c) 79% 40.2 4 weeks Duloxetine 12 w tb-fMRI 

10 Gonzalez, S., 2020 11 (27%) 45.4% 48 None Ketamine 1 h, 6 h, 
24 h ASL-fMRI 

11 Jiang, W., 2012 21 (57%) 100% 29 Drug-naive Escitalopram 8-12 w tb-fMRI 

12 Joe, A.Y., 2006 35 (72%) 53.8% 45.3 n.a. Citalopram 3 w 
99mTc-
HMPAO 
SPECT 

13 Keedwell, P., 2008 12 (50%) 66% 49.0 Drug-naive Variable 6 – 18 w tb-fMRI 

14 Kennedy, S. H., 2001 13 (0%) 100% 37 4 w Paroxetine 6 w FDG-PET 
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15 Kohn, Y., 2008 11 (54%) 100% 49 Variable Paroxetine, Fluoxetine 
or Clomipramine 2 y 

99mTc-
HMPAO 
SPECT 

16 
Komulainen, E., 2018 17 (53%) / 

15 (60%) n.a. 27 / 23 4 m 
Escitalopram 1 w 

tb-fMRI 
 
 Komulainen, E., 2021 15 (53%) / 

14 (57%) n.a. 29 / 24 n.a. 

17 
Kraus, C., 2019 26 (73%) / 

36 (63%) 84% 30.4 / 
28.5 3 m Escitalopram ± Ven-

lafaxine or Mitrazapine 12 w tb-fMRI 
Rütgen, M., 2019 29 (72%) 75.8% 30 3 m 

18 Li, C. T., 2016 32 (69%) 31.2% 44 n.a. Ketamine 1 h FDG-PET 

19 Lopez-Sola, M., 2010 13 (85%) 69.2% 45 15 d Duloxetine 1 w, 8 w tb-fMRI 

20 Mayberg, H. S., 2000 10 (0%) 50.0% 49c 1 m Fluoxetine 1 w, 6 w FDG-PET 
 

21 Reed, J. L., 2018, 2019 28 (64%c) n.a. 36c 2 w Ketamine 2d, 11d tb-fMRI 
 

22 Robertson, B., 2007 8 (75%) 75% 41c n.a. Bupropion 8 w tb-fMRI 

23 Sankar, A., 2017 23 (56%) 78.2% 40 4 w Duloxetine 12 w tb-fMRI 

24 Sterpenich, V., 2019 10 (60%) n.a. 51 None Ketamine 1 d, 7 d tb-fMRI 

25 Wagner, G., 2010 20 (90%) 50.0% 39 Variable Citalopram or Reboxe-
tine 6 w tb-fMRI 

26 Walsh, N. D., 2007 20 (70%) 75.0% 44 n.a. Fluoxetine 8 w tb-fMRI 

27 
Wang, L., 2014 14 (36%) 100% 33 

Drug-naive Escitalopram 8 w 
rs-fMRI 
(ReHo) 

Wang, L., 2017 20 (55%) 100% 35 rs-fMRI 
(fALFF) 

28 Wang, Y., 2012 18 (61%) n.a. 32 Drug-naive Fluoxetine 8 w tb-fMRI 

29 Williams, R. J., 2021 38 (68%) 57% (after 8 
weeks) 36.2 n.a. Citalopram or Quetiap-

ine 1 w tb-fMRI 
30 Yin, Y., 2018 11 (36%) 100% 49.2 4 w Variable 8 w ASL-fMRI 
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a Publications with overlapping samples are grouped together, b Mean or median, c Reported for all the subjects rather than those in the included 
experiment 
n.a.: not available, fMRI: functional magnetic resonance imaging, rs-fMRI: resting-state fMRI, tb-fMRI: task based fMRI, ASL-fMRI: arterial spin labeling fMRI, 
FDG-PET: fluorodeoxyglucose-positron emission tomography, SPECT: single-photon emission computed tomography, GBC: global brain connectivity, fALFF: 
fractional amplitude of low-frequency fluctuations, ReHo: regional homogeneity, ASL: arterial spin labeling. 
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Table 2. Activation Likelihood Estimation (ALE) analyses on the effects of antidepressants in major depressive disorder 
Experiments Comparison N Min pcFWE

a Convergence 

All 
 

All 30 0.387 - 
Treated > Untreated 20 0.005 L DLPFC 
Treated < Untreated 21 0.615 - 

Based on modality 
Rest All 12 0.052 - 
Task All 19 0.970 - 
Based on treatment and clinical setting 
Excluding ketamine All 23 0.486 - 
 Treated > Untreated 14 0.024 L DLPFC, R DLPFC 
 Treated < Untreated 16 0.464 - 
Pre- versus post-
treatment effects 

All 24 0.294 - 
Treated > Untreated 18 0.004 L DLPFC, R DLPFC 
Treated < Untreated 20 0.469 - 

Treatment duration 
> 4 weeks 

All 20 0.472 - 
Treated > Untreated 12 0.010 R mSFG 
Treated < Untreated 14 0.189 - 

Response in ≥50% of 
subjects 

All 19 0.614 - 
Treated > Untreated 12 0.007 L SMG, R DLPFC 
Treated < Untreated 15 0.357 - 

 

a Bold p-values indicate statistical significance. 
cFWE: cluster-wise family-wise error, SSRI: selective serotonin reuptake inhibitor, L: left, R: right, DLPFC: dorsolateral prefrontal cortex, mSFG: medial superior 
frontal gyrus, SMG: supramarginal gyrus. 
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Table 3. Comparison of the existing coordinate-based neuroimaging meta-analyses on the brain effects of antidepressants. 

CBMA N stud-
iesa  

Treatment Imaging Method Findings 

Fitzgerald et 
al., 2008 

9 SSRI PET, SPECT 
(resting-
state) 

ALE, FDR-cor-
rected, BrainMap 

↑: middle frontal gyrus, inferior frontal gyrus, anterior 
cingulate cortex, precentral gyrus, supramarginal gyrus, 
posterior cingulate gyrus, inferior parietal lobe, mid-
brain, putamen 
↓: middle and superior frontal gyri, medial frontal gyrus, 
subgenual and pregenual anterior cingulate, parahippo-
campal gyrus, hippocampus, insula, putamen 

Delaveau et al., 
2011 

9 Antidepres-
sants 

fMRI, PET 
(emotional 
activation) 

ALE, FDR-cor-
rected, GingerALE 
2.0 

↑: dorsal medial prefrontal cortex, dorsolateral prefrontal 
cortex, cuneus, fusiform gyrus, lingual gyrus, middle 
temporal gyrus, putamen, caudate, thalamus, anterior 
insula, anterior cingulate cortex 
↓: thalamus, caudate, putamen, globus pallidus, hippo-
campus, amygdala, parahippocampal gyrus, anterior in-
sula, anterior cingulate cortex, orbitofrontal cortex, pos-
terior cingulate cortex, middle frontal gyrus, pre/post-
central gyri, lingual gyrus, cerebellum, supramarginal 
gyrus, fusiform gyrus 

Graham et al., 
2013 

4 Any fMRI ALE / GPR, FDR-
corrected, Ginger-
ALE 2.1 / custom 
code 

↑: - (ALE), precentral gyrus, precuneus, dorsolateral pre-
frontal cortex (GPR) 
↓: superior temporal gyrus, cerebellum (ALE), precu-
neus, dorsal lateral prefrontal cortex, lateral occipital re-
gion (GPR) 
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Ma, 2015 b 22 SSRI, SNRI fMRI (emo-
tional pro-
cessing) 

ALE, FDR-cor-
rected, GingerALE 
2.3 

↑: dorsolateral prefrontal cortex (negative emotions) 
↓: amygdala, hypothalamus, putamen, middle temporal 
gyrus, ventromedial prefrontal cortex, posterior insula, 
middle frontal gyrus (negative emotions) 
↑↓: amygdala, dorsolateral prefrontal cortex, hippocam-
pus, ventromedial prefrontal cortex, anterior cingulate 
cortex, fusiform, anterior insula, precuneus (positive 
emotions) 

Boccia et al., 
2016 

12 Antidepres-
sants, Psy-
chotherapy 

fMRI ALE, FDR-cor-
rected, GingerALE 
2.1 

↑↓: insula, anterior cingulate cortex, precentral and post-
central gyri, middle frontal gyrus, precuneus, basal gan-
glia, putamen, cerebellum 

Chau et al., 
2017 

7 SSRI, TMS, 
ECT 

PET, SPECT, 
ASL-fMRI 
(resting-
state) 

MLKD, cFWE-cor-
rected 

↑: - 
↓: anterior insula 

Li et al., 2022c 33 Antidepres-
sants (incl. 
ketamine), 
CBT, ECT 

fMRI, PET, 
VBM 

ALE, cFWE-cor-
rected, GingerALE 
3.0 

↑: amygdala, parahippocampal gyrus, thalamus 
↑↓: amygdala, parahippocampal gyrus, thalamus, ante-
rior cingulate cortex, middle frontal gyrus, insula, claus-
trum 

Current paper 37 Antidepres-
sants (incl. 
ketamine) 

fMRI, PET, 
SPECT 

ALE, cFWE-cor-
rected, pyALE 

↑: dorsolateral prefrontal cortex 
↓: - 
↑↓: - 

 
a Only includes number of studies on the effects of pharmacotherapy on MDD, excluding other treatments and disorders, b Reported results 
indicate antidepressant effects in mood disorders including depression and anxiety. Results specific to MDD were not reported. c Reported results 
indicate effects of all treatments. Specific effects of antidepressant medications were not reported. 
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↑: increased imaging measures, ↓: decreased imaging measures, ↑↓: changed imaging measure in any direction , SSRI: selective serotonin reuptake inhibitor, 
SNRI: serotonin-norepinephrine reuptake inhibitor, TMS: transcranial magnetic stimulation, CBT: cognitive behavioral therapy ECT: electroconvulsive therapy, 
PET: positron emission tomography, SPECT: single-photon emission computed tomography, fMRI: functional magnetic resonance imaging, ASL: arterial spin 
labeling, VBM: voxel-based morphometry, ALE: activation likelihood estimation, FDR: false discovery rate, MKLD: cFWE: cluster-level family-wise error cor-
rection, multilevel kernel density. 
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