
 1 

A Personalized Probabilistic Approach to Ovarian Cancer Diagnostics 1 

Dongjo Ban1, Stephen N. Housley1, Lilya V. Matyunina1, L. DeEtte McDonald1, Victoria L. 2 

Bae-Jump2, Benedict B. Benigno3, Jeffrey Skolnick1,4, and John F. McDonald1* 3 

 4 

1Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of 5 

Technology, 315 Ferst Drive, Atlanta, GA 30332 USA 6 

2Department of Obstetrics and Gynecology, University of North Carolina, 3009 Old Clinic 7 

Building, Chapel Hill, NC 27599, USA 8 

3Ovarian Cancer Institute, 1266 W. Paces Ferry Rd NW #339, Atlanta, GA 30327, USA 9 

4Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of 10 

Technology, 315 Ferst Drive, Atlanta, GA 30332, USA 11 

 12 

 13 

*Corresponding author: 315 Ferst Drive, Atlanta, GA 30332, USA; 404-550-7214; 14 

john.mcdonald@biology.gatech.edu 15 

 16 

 17 

 18 
HIGHLIGHTS 19 
 20 

• Predictive models derived from machine learning (ML) analyses of serum metabolic 21 
profiles can accurately (PPV 93%) detect ovarian cancer (OC). 22 

• Only a minority of the most predictively informative metabolites are currently annotated 23 
(7%). 24 

• Lipids predominate among the most predictively informative metabolites currently 25 
annotated. 26 

• The frequency distribution of model-derived patient scores can be used to develop a 27 
useful clinical tool for the diagnosis of OC. 28 

 29 
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Abstract 30 

 31 

 Objective. The identification/development of a machine learning (ML)-based classifier 32 

that utilizes metabolic profiles of serum samples to accurately identify individuals with ovarian 33 

cancer (OC). 34 

 Methods. Serum samples collected from 431 OC patients and 133 normal women at four 35 

geographic locations were analyzed by mass spectrometry. Reliable metabolites were identified 36 

using recursive feature elimination (RFE) coupled with repeated cross-validation (CV) and used 37 

to develop a consensus classifier able to distinguish cancer from non-cancer. The probabilities 38 

assigned to individuals by the model were used to create a clinical tool that assigns a likelihood 39 

that an individual patient sample is cancer or normal.  40 

 Results.  Our consensus classification model is able to distinguish cancer from control 41 

samples with 93% accuracy. The frequency distribution of individual patient scores was used to 42 

develop a clinical tool that assigns a likelihood that an individual patient does or does not have 43 

cancer.  44 

 Conclusions. An integrative approach using metabolomic profiles and ML-based 45 

classifiers has been employed to develop a clinical tool that assigns a probability that an 46 

individual patient does or does not have OC. This personalized/probabilistic approach to cancer 47 

diagnostics is more clinically informative and accurate than traditional binary (yes/no) tests and 48 

represents a promising new direction in the early detection of OC.  49 

 50 

1. Introduction 51 
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Early cancer diagnosis is one of the most important contributing factors to the successful 52 

treatment of the disease [1]. Early diagnosis is especially challenging for cancers like ovarian 53 

cancer (OC) that can progress rapidly, and yet display little to no clinical symptoms early in their 54 

development [2]. The ideal cancer diagnostic should not only be highly accurate, but additionally 55 

non-invasive and low cost to be widely available to the general public. Despite heroic efforts to 56 

develop such cancer diagnostics over the last several decades, this goal has proven to be 57 

frustratingly elusive [3]. A major reason for this is that, on the molecular level, cancer is a highly 58 

heterogenous disease not only between different types of cancer but even among individuals with 59 

the same cancer type [4]. As a consequence, finding a single molecular biomarker or set of 60 

biomarkers that are universally shared among individuals with even the same type of cancer is 61 

extremely difficult.  62 

 In recent years, various computational methods, including machine learning (ML), have 63 

been applied in efforts to identify patterns embedded within large omics datasets (e.g., 64 

genomic/proteomic/metabolomic) that may constitute an accurate diagnostic of cancer [5], [6] 65 

and other diseases [7]. For example, perturbations of metabolic levels in the blood and/or other 66 

body fluids have long been considered promising indicators of cancer and other diseases [8], [9] 67 

because metabolites constitute end points of many, if not most, of the molecular processes 68 

underlying biological functions. As such, metabolic profiles have been proposed as a molecular 69 

phenotype of biological systems, reflective of collective information encoded at the genome 70 

level and realized at the transcriptome and proteome levels [10]. 71 

 Despite the inherent advantages of metabolic patterns as biomarkers of cancer and other 72 

diseases, extreme care is required in both the selection and analysis of metabolomic datasets. For 73 

example, potential technical inconsistencies in data acquisition (e.g., variation in sensitivity 74 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.24.23298971doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.24.23298971
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

between instruments/laboratories and/or analytic drift associated with the same instrument over 75 

time) can easily compromise the reliability of acquired datasets unless frequent standardization 76 

with control samples is employed throughout the analytic process.  In addition, extra precaution 77 

is needed in both the computational analysis of metabolic and other omics datasets and the 78 

interpretation of results. For example, there are a variety of ML approaches to the analysis of 79 

omics data, and each is associated with individual strengths and weaknesses [11], [12]. Despite 80 

these challenges, the use of metabolomic and other omics profiles as early indicators of cancer is 81 

not insurmountable and may provide clinicians with a powerful and highly accurate tool for 82 

personalized cancer diagnosis when properly addressed. 83 

 We report here on the development of a ML-based approach for the early detection of OC 84 

using metabolomic profiles in blood. Analyses were carried out on serum samples collected from 85 

431 OC patients and 133 normal women at four geographic locations in the United States and 86 

Canada. The utility of a consensus classifier was evaluated using four independent sets of 87 

metabolomic profiles. Combining the best predictions from each profile using the consensus 88 

classifier resulted in a final set of predictions that can distinguish cancer from control samples 89 

with high accuracy (PPV 93%). We illustrate how the frequency distribution of individual patient 90 

scores can be used to develop a useful clinical tool that may be used to assign a likelihood that an 91 

individual does or does not have OC.  92 

 93 

2. Methods 94 

Details of the extensive methods employed in this study are presented in the 95 

Supplementary Material. Briefly, 431 serous papillary OC and 133 normal serum samples were 96 

obtained from four geographic locations (Atlanta, GA, Philadelphia, PA, Chapel Hill, NC, and 97 
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Alberta, Canada) and were transferred to Creative Proteomics laboratory (Shirley, NY)	for ultra-98 

performance liquid chromatography, high-resolution mass spectrometry (UPLC-MS) analysis. A 99 

pooled quality control sample was obtained by combing equal amounts of each of the individual 100 

OC and control serum samples. Samples were individually processed through two different 101 

columns and analyzed using two different ionization modes (negative and positive) resulting in 102 

four distinct datasets (HP: HILIC positive; HN: HILIC negative; RN: C18 reversed phase 103 

negative; RP: C18 reversed phase positive). Reliable features (metabolites) were identified using 104 

recursive feature elimination (RFE) coupled with repeated cross-validation (CV). The output 105 

from these processing steps for each of the four datasets was an assignment of a relative ranking 106 

of features reflective of the relative frequencies of the features after repeated CV iterations. A 107 

consensus classifier was constructed by aggregating the results of five independent ML 108 

classifiers [logistic regression (LRC), random forest (RFC), support vector machine (SVM), k-109 

nearest neighbor (KNN), and adaptive boosting (ADA)] to generate predictive classification 110 

models. The probabilities assigned to individuals by the consensus model were utilized to create 111 

a background distribution of probabilities that a given sample was cancer or normal.  112 

 113 

3. Results 114 

 115 

3.1 Data acquisition 116 

 117 

The data acquisition process for this study is summarized in Figure 1A. Serum samples 118 

collected from 431 OC patients and 133 non-cancerous/normal individuals were obtained from 119 

four geographic locations in the United States (Fox Chase Cancer Center-Philadelphia, PA; 120 
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UNC-Chapel Hill, NC; Northside Hospital-Atlanta, GA, and Canada-Alberta Health Services-121 

Alberta, BC). Samples were characterized using ultra-performance liquid chromatography 122 

coupled with tandem mass spectrometry (UPLC-MS/MS). Each serum sample was 123 

independently processed through two different columns (HILIC and C18 reversed phase) and 124 

analyzed using two different ionization modes (negative and positive) resulting in four distinct 125 

datasets during MS/MS (HP: HILIC positive; HN: HILIC negative; RN: C18 reversed phase 126 

negative; RP: C18 reversed phase positive). Because of the large number of samples, 127 

metabolomic analyses were conducted over two separate batches. To detect and correct 128 

instrument drift within and between runs, a pooled quality control (QC) sample was run 129 

following analysis of every ten patient samples. A scatter plot of principle component analyses 130 

performed on the preprocessed data confirmed that no significant experimental variation was 131 

detected between batches after quality control of the data (Fig. 1B).  132 

 133 

Fig. 1. Workflow diagram illustrating data acquisition and preparation process. A) Serum samples from ovarian 134 
cancer patients and non-cancerous individuals are collected from multiple geolocations. They are analyzed using 135 
UPLC-MS/MS in an untargeted workflow to characterize the metabolome of ovarian cancer patients. Normalization 136 
and filtering of the features are performed following the best practices to obtain the preprocessed metabolomic 137 
profiles for downstream analyses. B) Scatter plot of principal component analysis performed on the preprocessed 138 
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data after accounting for systematic and random errors. QC samples (orange) are shown to mostly cluster together 139 
with no clear separation between the two batches, indicating unwanted experimental variation has been eliminated. 140 

 141 

3.2 Assessing the Stability of Metabolomic Features 142 

 143 

The overall goal of our study is the identification/development of a ML classifier that 144 

utilizes metabolic profiles to accurately distinguish individuals with or without OC. Toward this 145 

end, we independently examined the predictive accuracy of five ML classifiers for each of the 146 

four datasets: RFC, SVC, ADA, KNN, and LRC.  147 

Prior to the independent evaluation of each of these classifiers, we identified reliable 148 

features (metabolites) with recursive feature elimination (RFE) [13] coupled with repeated cross-149 

validation (CV). The output from these processing steps for each of the four datasets was an 150 

assignment of a relative ranking of features reflective of the relative frequencies of the features 151 

after repeated CV iterations, as well as their relative contribution levels as determined by the 152 

Gini importance scores (see Methods in Supplementary Material for details). 153 

Across all four datasets, we observed a moderate positive correlation (HN: R = 0.26, p < 154 

0.001; HP: R = 0.56, p < 0.001; RN: R = 0.39, p < 0.001; RP: R = 0.50, p < 0.001) between the 155 

relative frequency of features and their importance (Fig. 2). This trend is most apparent in the RP 156 

dataset where the vast majority of features of high importance were in high frequency. In 157 

contrast, the HP dataset displayed a number of lower frequency features of high Gini importance 158 

(See Methods in Supplementary Material for details). 159 
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 160 

Fig. 2. The frequency and Gini importance values of features in each dataset. The x-axis and y-axis correspond 161 
to feature frequency and importance value, respectively. The weights computed by combining frequencies 162 
and importance values were represented by the sizes and opacity of the points. The analysis revealed that 163 
across all datasets, many features had high frequency but relatively lower levels of importance. The HN 164 
dataset exhibited the smallest range of importance values, while most features were observed frequently. 165 
The RN and HP datasets showed a similar pattern, with the HP dataset being particularly noteworthy due 166 
to a subset of features displaying lower frequencies but higher importance values. The RP dataset 167 
displayed the largest number of features with high levels of both frequency and importance values. 168 

 169 

Features were assigned weights, a combined metric of both relative frequency and 170 

importance, then ranked and grouped into rank groups. Features were then classified with respect 171 

to putative functions using the human metabolome database (HMDB, https://hmdb.ca). Lipids 172 

and lipid-like molecules were found to be widely distributed across rank groups while most other 173 

putatively annotated classes of metabolites were predominantly associated with lower rank 174 

features (Supplementary Fig. 5). The vast majority of the highly ranked features remain 175 

unannotated. Indeed, only ∼7% of the complete set of features identified in this study were 176 

associated with metabolite information from HMDB. 177 

 178 

3.3 Evaluation of Classifier Performance 179 

 180 
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Prior to the evaluation of the classifier performance, a neural network based autoencoder 181 

was used to reduce the dimensionality of the datasets while preserving informative representation 182 

of the original (Supplementary Fig. 6). Using the compressed dataset, the ability of each of the 183 

five classifiers (RFC, SVC, ADA, KNN, LRC) to correctly identify cancer samples and non-184 

cancer controls was independently evaluated using four metrics: 1) Positive predictive value 185 

(PPV, a.k.a. precision), 2) negative predictive value (NPV), 3) f1-score (F1), and 4) Matthew's 186 

correlation coefficient (MCC).  PPV (precision) is the number of true positives divided by the 187 

number of true positives plus false positives (potential range: 0-100%), while NPV is the number 188 

of true negatives divided by the number of true negatives plus false negatives (potential range: 0-189 

100%). The f1-score, which symmetrically represents both precision and recall in a single metric, 190 

is the harmonic mean of precision and recall (a.k.a. sensitivity; potential range: 0-100%).  MCC 191 

reflects the correlation between the observed and predicted binary classifications (potential 192 

range: −1 to +1). An MCC of +1 represents a perfect prediction, 0 no better than a random 193 

prediction and −1 indicates total disagreement between predictions and observations. MCC 194 

considers true and false positives and negatives and is generally regarded as a balanced measure 195 

of predictive accuracy even if the classes are of very different sizes [14]. The performance of 196 

each of the five classifiers and the consensus classifier based on repeated cross-validation is 197 

presented in Table 1. 198 

 199 
Table 1 200 

Performance evaluation metrics for individual and consensus classifier 201 

Dataset Classifier PPV NPV F1 MCC Dataset Classifier PPV NPV F1 MCC 

SVC 97% 88% 95% 0.86 Consensus 97% 90% 95% 0.86 

Consensus 96% 89% 95% 0.85 SVC 97% 88% 95% 0.86 

KNN 96% 88% 94% 0.83 LRC 97% 88% 95% 0.85 

HN 

LRC 95% 89% 94% 0.83 

RN 

ADA 96% 91% 95% 0.85 
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ADA 95% 90% 94% 0.83 KNN 95% 90% 94% 0.84  

RFC 95% 88% 93% 0.82 

 

RFC 95% 92% 94% 0.84 

Consensus 95% 89% 94% 0.82 Consensus 96% 92% 95% 0.87 

SVC 95% 88% 93% 0.82 SVC 96% 91% 95% 0.85 

KNN 94% 88% 93% 0.79 KNN 95% 90% 94% 0.84 

LRC 94% 87% 92% 0.78 LRC 95% 90% 94% 0.83 

ADA 93% 91% 93% 0.8 ADA 95% 93% 94% 0.84 

HP 

RFC 93% 88% 92% 0.78 

RP 

RFC 94% 92% 93% 0.81 

 202 
 203 
  While the performance of the individual and consensus classifiers varied across different 204 

datasets, the differences were minor. The HP dataset displayed a slightly lower performance 205 

relative to the HN, RN, and RP datasets. However, the overall performance was consistently high 206 

across the four datasets (PPV ≥ 93%; NPV ≥ 87%; F1 ≥ 92%; MCC ≥ 0.78; Fig. 3A). The 207 

cumulative confusion matrix from the consensus classifier (Fig. 3B) is generally consistent with 208 

these results demonstrating a relatively low misclassification rate of false negatives (∼2 to 3%) 209 

and slightly higher rate of false positives (~11 to17%).  210 

 211 

Fig. 3. Comparison of consensus classifier performance. A) The performance characteristics of the models were 212 

graphically represented through precision-recall (PR) curves. Besides the HP dataset, the models for the remaining 213 
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datasets showed similar levels of performance. B) Cumulative confusion matrices, also compiled from repeated CV, 214 

further reinforced these observations despite the false positives (FP) and false negatives (FN). 215 

 216 

3.4 Utility of class probabilities as background distributions 217 

 218 

The results of the repeated cross-validation scores can be used to assign a mean 219 

probability (adjusted to fall within a -2 to 2 range) that signifies the certainty of either a 220 

cancerous or non-cancerous classification. These probabilities were averaged for each sample 221 

and the distributions for each of the four datasets are displayed in Fig. 4A. The results highlight 222 

the classifier’s ability to clearly distinguish between cancerous and non-cancerous samples in all 223 

four datasets. 224 

By combining results from the four datasets and selecting the best average score among 225 

them, we observed a notable improvement in classifying both cancer and normal samples. This 226 

underscores that each dataset brings its unique contribution to the accurate prediction of cancer 227 

or non-cancer status (Fig 4B).  A striking 97% of the cancer samples scored within the 1.0-2.0 228 

range, with no (0%) misclassification of non-cancerous samples (Supplementary Table 7). In 229 

contrast, 83% of the non-cancerous/normal samples were found to fall within the -2.0 to -1.0 230 

score range indicating that our consensus classifier is better at predicting cancer than non-cancer.  231 

 When binary classification results for the cancer samples are subdivided into early-stage 232 

(Stage I/II) and late-stage (Stage III/IV) cancer groups, the classifier still demonstrates high 233 

accuracy. It not only identifies late-stage cancer samples effectively but also classifies early-234 

stage samples accurately. This holds true when considering both individual scores (Figure 4C) 235 

and best scores (Figure 4D). Using the best scores, the classifier's predictive accuracy reaches 236 

98% for early-stage samples and 92.7% for late-stage cancers for score range 1.5-2 237 
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(Supplementary Table 7).  Adoption of our proposed workflow in a clinical setting would enable 238 

women to undergo serum profiling at a clinic to predict their cancer status (Fig. 4E). 239 

 240 

 241 

Fig. 4. Evidence for the classifier’s ability to clearly distinguish between cancerous and non-cancerous samples. A) 242 
The bar charts exhibit the distributions of scores that have been converted from class probabilities and ranged from -243 
2 to 2 to improve visual clarity. The scores represent averages obtained from repeated cross-validation (CV) for each 244 
sample. Clear differentiation can be observed between the scores of cancer (red) and normal (blue) samples across 245 
all four datasets. The peaks in the distributions indicate the most frequently occurring score range for the samples. 246 
B) Similar to the previous bar chart, this figure illustrates the best average score across the four datasets 247 
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demonstrating a notable improvement in classifying both cancer and normal classes. C) The bar chart illustrates the 248 
distribution of samples across various score ranges. This revealed that early- and late-stage samples clearly 249 
distinguish themselves from the normal samples.  D) In an analogous manner to figure B), selecting the best score 250 
improves the final score for the scores at the stage-level. E) Diagram visualizing the potential adoption of the 251 
proposed workflow in a clinical setting. Given the absence of approved screening methods for ovarian cancer, this 252 
approach enables women to undergo serum profiling at a clinic to predict their cancer status. This could result in 253 
three possible scenarios: an individual's serum profile (X) falls within a score range where misdiagnosis is unlikely, 254 
enabling a confident ruling out of a cancer diagnosis. An individual's score (Y) falls within a range where 94% of 255 
others with this score have been diagnosed with cancer. Lastly, determining the cancer status of an individual (Z) 256 
may be challenging, as there are only a few samples within this score range and it is in the middle of the distribution.  257 

4. Discussion 258 

Although the incidence of OC is relatively low (2.5% of all malignancies in women [15]), 259 

it is among the most lethal of all cancers due to its high mortality rate. The reason for this is 260 

largely attributable to the fact that the disease is not typically diagnosed until the late (post-261 

metastatic) stages of development (Stage III/IV) when effective treatment is difficult. For 262 

example, the most common sub-type of OC, serous papillary (65% of OC patients), is typically 263 

not diagnosed until Stage III/IV when the 5-year survival rate is only 31%. In contrast, if the 264 

disease is identified and treated early in its development (Stage I/II), the 5-year survival rate is 265 

93%. These statistics dramatically underscore the dire need for an early diagnostic test for OC 266 

and other cancers where early-stage clinical symptoms are virtually non-existent.   267 

The traditional approach for the identification of non-invasive biomarkers of cancer has 268 

been the screening of blood (or other body fluids) in search of significant changes in the 269 

presence/levels of molecules (typically proteins) associated with the disease [16]. A well-known 270 

example of such a diagnostic is the PSA (prostate specific antigen) biomarker for prostate cancer 271 

[17].  272 

The OC biomarker candidate, CA125 (a.k.a., mucin 16/ MUC16) [18] was first 273 

introduced in 1996 [19]. Although an elevated level of CA125 is detected in ∼90% of late stage 274 

(III/IV) OC patients, it is elevated in only ∼50% of early-stage patients making it a poor 275 

biomarker of early-stage disease with a PPV of only ∼30% [20]. In 2003, a second candidate 276 
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biomarker for OC, HE4 (human epididymis protein), was introduced [21]. While HE4 was an 277 

improvement over CA125 in having a reported PPV of ∼58%, it is still not sufficiently accurate 278 

to serve as a diagnostic test. Combining the results of the HE4 and CA125 together did not 279 

significantly improve PPV. However, the combination did lead to the development of a logistic 280 

regression model called ROMA (risk of malignancy algorithm) that was approved by FDA in 281 

2011 as a method to classify patients with a pelvic mass into those with high vs. low risk of 282 

having OC [20].  283 

By the early 2000s, it was becoming progressively clear that, on the molecular level at 284 

least, cancer was a much more complex disease than originally envisioned [4]. This realization 285 

was supported by findings indicating the existence of a multitude of disrupted molecular 286 

pathways (and underlying mutations) capable of leading to even the same cancer type. Such 287 

molecular level heterogeneity among individual cancer patients made the likelihood of 288 

identifying one or two biomarkers capable of accurately diagnosing all individuals with even the 289 

same type of cancer highly unlikely. As a consequence, the search for more accurate ways to 290 

diagnose cancer became focused on exploring larger combinations of biomarkers that might 291 

better capture the molecular heterogeneity underlying the disease [22]–[25].   292 

In the case of OC, there were a number of multi-biomarker diagnostic tests developed in 293 

the early 2000s [26]–[28]. However, none of these early efforts were sufficiently validated to 294 

acquire FDA approval. In 2009, an assay (trade name OVA1) was proposed that incorporated 295 

levels of five serum proteins combined with proprietary software to generate high or low 296 

probability that an ovarian mass was a malignant tumor [29]. While the test was approved by 297 

FDA as a clinical aid in determining if a patient should be referred for further analysis, the test’s 298 

low PPV (31%) [30] eliminated it from consideration as an effective OC diagnostic. A more 299 
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recent version of the OVA1 test (initially known as OVA2 but now trademarked as OVERA) 300 

uses a slightly different set of proteins upon which to generate its predictions. Although an 301 

improvement over OVA1, OVERA continues to be associated with a relatively low PPV (∼40%) 302 

[31], thereby again excluding it as a reliable OC diagnostic.  303 

With the expanded availability of omics technologies and associated datasets (e.g., 304 

genomic, transcriptomic, proteomic, metabolomic) in recent years, a new approach to diagnostics 305 

began to emerge [32]. The application of various AI (artificial intelligence) approaches, most 306 

notably machine learning, to the analysis of large omics datasets of diseased and non-diseased 307 

individuals opened the possibility of the identification of patterns by which these categories 308 

could be distinguished. Predictive models built upon such classifications might then constitute a 309 

new generation of diagnostic tests.  310 

While this basic concept is straightforward, its application is certainly not. There are 311 

multiple approaches to ML, and each is associated with individual strengths and weaknesses 312 

[11], [12]. In addition, the output from ML analyses of omics datasets is heavily dependent upon 313 

both the quality and type of data being analyzed. For example, classifiers that are based 314 

exclusively on ML analysis of DNA sequence datasets may be appropriate if the onset and 315 

progression of the disease in question is exclusively attributable to genetic mutations. Certainly, 316 

there is a significant genetic component to cancer, but other environmental (e.g., diet, lifestyle, 317 

microbiome, etc.) and molecular (e.g., epigenetic/gene expression changes, gene-gene/protein-318 

protein interactions, etc.) factors are also known to play significant roles. Indeed, it has been 319 

proposed that the accurate characterization of a complex disease like cancer will ultimately 320 

require simultaneous analyses of multi-omics datasets [33]. While this may well be the case, the 321 
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development of computational methodologies sufficiently complex to accurately characterize 322 

multi-omics datasets is only in its infancy [34], [35].  323 

In lieu of an approach that simultaneously analyzes multi-omics datasets, we chose a 324 

currently available alternative, i.e., working with a dataset that reflects biological changes 325 

occurring on multiple levels. Metabolic profiles are widely viewed as a molecular phenotype 326 

reflective of underlying collective information encoded at the genome level and realized at the 327 

transcriptome and proteome levels. As such, metabolic profiles have long been considered 328 

promising indicators of cancer and other complex diseases [8], [9].  329 

To help ensure the quality of our metabolic data, individual normal and OC patient 330 

samples were collected from four geographically divergent locations and analyzed using ultra-331 

performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS-332 

positive and negative modes and each sample independently pre-processed through two 333 

columns) generating four distinct datasets (HN: HILIC negative; HP: HILIC positive; RN: C18 334 

reversed phase negative; RP: C18 reversed phase positive). To guard against instrumental drift 335 

between runs, the same control samples were analyzed following every ten biological samples. 336 

Principle component analyses of data generated from our MS analyses across different batches 337 

and times demonstrated little experimental variation between runs. 338 

Each of our four datasets was analyzed separately to determine if any particular dataset 339 

contained more relevant information than any other. We found little difference in the accuracy of 340 

predictions computed using each dataset individually. When we combined the best average score 341 

from each of the four datasets, we observed an improvement in the classification of both cancer 342 

and normal samples. This suggests that each of the four datasets contribute uniquely to the 343 

accurate prediction of cancer status.  344 
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Computationally, we evaluated the performance of five independent ML classifiers. A 345 

consensus classifier that generates average predictive probabilities from the probabilities of each 346 

of the individual classifiers gave the best overall performance with a PPV of 93%. Interestingly, 347 

the overall predictive accuracy of our consensus classifier was better for early- relative to late-348 

stage patients. We found that late-stage patients display greater heterogeneity in molecular 349 

profiles than early-stage patients. While the reason for this dichotomy is currently unknown, the 350 

preliminary findings suggest that OCs may become more metabolically heterogeneous as they 351 

progress/metastasize. However, because the sample size of early-stage patients is considerably 352 

less than late-stage patients in this study, further analysis of expanded datasets will be required to 353 

resolve this issue.  354 

Our model’s accuracy in predicting women with OC is slightly greater than its accuracy 355 

in predicting women without the disease. The reason for this is currently unknown but may, at 356 

least in part, be due to the fact that the model may be detecting disease in women prior to clinical 357 

symptoms and clinical diagnosis. Time course studies are currently being instituted to test this 358 

hypothesis. 359 

The high PPV (93%) associated with our consensus classifier supports the notion that ML 360 

analysis of omics data, and of metabolomic data in particular, is an extremely promising 361 

approach for the future diagnosis of ovarian and possibly other cancers as well. Such analyses 362 

will likely lead to a more probabilistic approach to cancer diagnosis that will serve to personalize 363 

the process much as genomic profiling of individual patient tumors is personalizing cancer 364 

treatment (i.e., precision cancer medicine).  365 

Despite these highly favorable prospects, it is important to keep in mind the limitations of 366 

ML analyses of omics data. For example, the PPV associated with even the same ML based 367 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.24.23298971doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.24.23298971
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

predictive model can be highly sensitive to the size and composition of the datasets employed in 368 

building and testing the models. For example, in an earlier pilot study of the metabolic profiles of 369 

a relatively small number (46) of OC patient samples collected from one of the same areas 370 

sampled in our current study (Northside Hospital, Atlanta), the authors generated a predictive 371 

model with a putative accuracy of 100% [36]. The relative reduction in accuracy associated with 372 

our current model relative to this earlier study coupled with the fact that none of the top ranked 373 

features in the earlier study ranked within the top 100 features in our current study 374 

(Supplementary Table 8) underscores the impact of datasets on ML/metabolomic based 375 

predictive models. Future refinements in the development of metabolomic (and likely all omics) 376 

based ML models will need to address the issue of how many samples over what geographic area 377 

are needed to reflect the full spectrum of diversity in OC (and other cancer types). 378 

In an effort to exemplify how the type of results generated in our study might, in the 379 

future, translate into a clinically useful tool, we grouped the quantity and percentage of our 380 

samples into score ranges. We envision a clinical tool in which the scores of individual patients 381 

can be mapped across such a distribution providing a likelihood that an individual patient does or 382 

does not have cancer. Such information could serve as a significant aid in determining the need 383 

for treatment or continued monitoring. For example, consider the scenarios presented in Fig. 4F. 384 

Scenario (A) represents a situation in which an individual's serum profile falls within a score 385 

range that makes cancer highly unlikely. In such a case, the individual may only require yearly 386 

monitoring. In scenario (B), the detection is more problematic due to a relatively small number 387 

of samples in this score range and a comparable number of cancerous and non-cancerous 388 

patients. In such cases, a patient may be referred for more additional and/or more frequent 389 

screening. Scenario (C) depicts a situation where an individual's score lies in a range where a 390 
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majority (94%) of patients has been diagnosed with cancer. In such a case, the patient would 391 

likely be referred for immediate advanced screening/treatment.  392 

In summary, our results confirm the overall potential of an integrative approach using 393 

metabolomic profiles and ML-based classifiers for the detection of OC. The accuracy of these 394 

classifiers is highly dependent upon both the quality and quantity of the data upon which models 395 

are built. We found little difference in the accuracy of predictions generated using alternative 396 

ML classifiers, although the consensus classifier generated the most accurate predictions.  397 

Application of results generated from our consensus classifier illustrated how the frequency 398 

distribution of individual patient scores can be used to develop a useful clinical tool that assigns 399 

a likelihood that an individual does or does not have OC. We believe this 400 

personalized/probabilistic approach to cancer diagnostics is more robust and clinically 401 

informative than the more traditional binary (yes/no) tests and may represent a promising new 402 

direction in the early detection of OC and perhaps other cancer types as well.  403 
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