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Abstract

While Large Language Models (LLMs) have showcased their potential in diverse language tasks, their
application in the healthcare arena needs to ensure the minimization of diagnostic errors and the prevention
of patient harm. A Medical Knowledge Graph (KG) houses a wealth of structured medical concept
relations sourced from authoritative references, such as UMLS, making it a valuable resource to ground
LLMs’ diagnostic process in knowledge. In this paper, we examine the synergistic potential of LLMs
and medical KG in predicting diagnoses given electronic health records (EHR), under the framework
of Retrieval-augmented generation (RAG). We proposed a novel graph model: DR.KNOWS, that selects
the most relevant pathology knowledge paths based on the medical problem descriptions. In order to
evaluate DR.KNOWS, we developed the first comprehensive human evaluation approach to assess the
performance of LLMs for diagnosis prediction and examine the rationale behind their decision-making
processes, aimed at improving diagnostic safety. Using real-world hospital datasets, our study serves to
enrich the discourse on the role of medical KGs in grounding medical knowledge into LLMs, revealing
both challenges and opportunities in harnessing external knowledge for explainable diagnostic pathway
and the realization of AI-augmented diagnostic decision support systems.

1 Introduction

The ubiquitous use of Electronic Health Records (EHRs) and the standard documentation practice of
daily care notes are integral to the continuity of patient care by providing a comprehensive account of
the patient’s health trajectory, inclusive of condition status, diagnoses, and treatment plans (Brown et al.,
2014). Yet, the ever-increasing complexity and verbosity of EHR narratives, often laden with redundant
information, presents the risk of cognitive overload for healthcare providers, potentially culminating in
diagnostic inaccuracies (Rule et al., 2021; Liu et al., 2022; Nijor et al., 2022; Furlow, 2020). Physicians
often skip sections of lengthy and repetitive notes and rely on decisional shortcuts (i.e. decisional
heuristics) that contribute to diagnostic errors (Croskerry, 2005).

Current efforts at automating diagnosis generation from daily progress notes leverage language models.
Gao et al. (2022) introduced a summarization task that takes progress notes as input and generates a
summary of active diagnoses. They annotated a set of progress notes from the publicly available EHR
dataset called Medical Information Mart for Intensive Care III (MIMIC-III) (Johnson et al., 2016). The
BioNLP 2023 Shared Task, known as PROBSUM, built upon this work by providing additional annotated
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notes and attracted multiple efforts focused on developing solutions (Gao et al., 2023; Manakul et al.,
2023; Li et al., 2023). These prior studies utilize language models like T5 (Raffel et al., 2020) and
GPT (Floridi and Chiriatti, 2020), demonstrating a growing interest in applying generative large language
models (LLMs) to serve as solutions. Unlike the conventional language tasks where LLMs have shown
promising abilities, automated diagnosis generation is a critical task that requires high accuracy and
reliability to ensure patient safety and optimize healthcare outcomes. Concerns regarding the potential
misleading and hallucinated information that could result in life-threatening events prevent them from
being utilized for diagnosis prediction (Baumgartner, 2023).

One of the solutions to improve factual accuracy is to utilize a knowledge graph to retrieve relevant
knowledge to guide the LLMs with better instruction (Pan et al., 2023). In the biomedical domain, the
Unified Medical Language System (UMLS) (Bodenreider, 2004), a comprehensive resource developed
by the National Library of Medicine in the United States, has been extensively used in NLP research. It
serves as the leading medical knowledge source, facilitating the integration and retrieval of biomedical
information. The UMLS offers concept vocabulary and semantic relationships, enabling the construction
of medical knowledge graphs. Prior studies have leveraged UMLS knowledge graphs for tasks such as
information extraction (Huang et al., 2020; Lu et al., 2021; Aracena et al., 2022; He et al., 2020), and
question-answering (Lu et al., 2021). However, UMLS knowledge graphs have not been applied to the
task of diagnosis prediction.

Mining relevant knowledge for diagnosis is particularly challenging for two reasons: the highly
specific factors related to the patient’s complaints, histories, and symptoms in EHR, and the vast search
space within a knowledge graph containing 4.5 million concepts and 15 million relations for diagnosis
determination. While utilizing a multi-hop reasoning mechanism for disease pathology discovery via
the UMLS knowledge graph aligns with the need for extensive medical knowledge in diagnostics,
implementing this approach is hampered by its computational complexity. Specifically, the number of
concepts in the UMLS knowledge graph reachable within one hop ranges from 2 to 33k, with a median of
368. The number of two-hop paths may exhibit exponential growth due to the UMLS knowledge graph’s
high connectivity. Therefore, addressing the computational complexity of multi-hop reasoning within the
extensive UMLS knowledge graphs is crucial for effective knowledge mining in medical diagnostics.

In this study, we explore using knowledge graphs as an external module to ground LLM’s diagnostic
process in medical knowledge and take the initial step of building a graph model to discover relevant paths
using the UMLS. We propose DR.KNOWS (Diagnostic Reasoning Knowledge Graphs), that retrieves
top N case-specific knowledge paths about the pathology of diseases through a multi-hop mechanism,
overcoming the difficulties of retrieving and selecting paths from the entire knowledge graph. We then
adapt the predicted paths into a graph-prompting method for LLMs. We utilized ChatGPT-3.5-turbo for
our experiments on knowledge grounding since it represents the cutting-edge in language models and has
been frequently examined as a diagnostic instrument in earlier research (Kuroiwa et al., 2023; Caruccio
et al., 2024).

Going beyond the technical aspects of constructing knowledge graphs, our work also focuses on the
precise evaluation of LLMs, motivated by the need of improving diagnostic performance and ensuring
diagnostic safety (Balogh et al., 2015; Donaldson et al., 2000). Existing evaluation metrics for LLM
output are insufficient for evaluating diagnostic accuracies, where precise performance is necessary to
ensure diagnostic safety. We focus on an evaluation framework that can identify the diagnostic errors
and the root cause, and assess the self-explanatory aspects of LLMs’ diagnostic processes. We designed
the first human evaluation survey, following the SaferDX instrument, an organizational self-assessment
tool with recommended practices aimed at improving diagnostic safety (Singh et al., 2019), for LLMs
diagnosis prediction. The survey also incorporates the latest evaluation criteria for LLM, including factual
accuracy, hallucination, quality of evidence, and other relevant aspects, identified from previous work
in the field of biomedical NLP (Otmakhova et al., 2022; Singhal et al., 2023; Moramarco et al., 2021;
Adams et al., 2021). Our aim is to bridge the gap between comprehensive diagnostic evaluation for safety
and the capabilities of advanced language models, facilitating a deeper understanding of their diagnostic
performance, and paving the way for safe LLM-augmented diagnostic decision support.
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Figure 1: Study overview: we focused on generating diagnoses (red font text in the Plan section) using the
SOAP-Format Progress Note with the aid of large language models (LLM). The input consists of Subjective,
Objective and Assessment sections (the dotted line box on the example progress note), and diagnoses in the Plan
sections are the ground truth. We introduced an innovative knowledge graph model, namely DR.KNOWS, that
identifies and extracts the most relevant knowledge trajectories from the UMLS Knowledge Graph. The nodes for
the UMLS knowledge graph are Concept Unique Identifiers (CUIs) and edges are the semantic relations among
CUIs. We experimented with prompting ChatGPT for diagnosis generation, with and without DR.KNOWS predicted
knowledge paths. Furthermore, we investigated how this knowledge grounding influences the diagnostic output of
LLMs using human evaluation. Text with underlines are the UMLS concepts identified through a concept extractor.

Figure 2: Inferring possible diagnoses within 2-hops from a UMLS knowledge graph given a patient’s medical
description. We highlight the UMLS medical concept in the color boxes (“female", “sepsis", etc). Each concept has
its own subgraph, where concepts are the vertices, and semantic relations are the edges (for space constraint, we
neglect the subgraph for “female" in this graph presentation). On the first hop, we could identify the most relevant
neighbor concepts to the input description. The darker color the vertices are, the more relevant they are to the
input description. A second hop could be further performed based on the most relevant nodes, and reach the final
diagnoses “Pneumonia and influenza" and “Respiratory Distress Syndrome". Note that we use the preferred text of
Concept Unique Identifiers (CUIs) for presentation purposes. The actual UMLS KG is built on CUIs rather than
preferred text.
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Our work and contribution are structured into four primary components:

1. designing and evaluating DR.KNOWS, a graph-based model that selects the top N probable diagnoses
with explainable paths (§4);

2. designing and implementing the first human evaluation framework for LLMs diagnosis generation
and reasoning (§4.3),

3. revealing the usefulness of DR.KNOWS as an additional module to augment LLMs in generating
relevant diagnoses, a first iteration of integrating knowledge graphs for graph prompting (§2.3),

4. demonstrating the utilities of our proposed human evaluation framework that reveals LLM’s
diagnostic performance with critical aspects of ensuring diagnostic safety (§2.3).

Our research poses a new problem that has not been addressed in the realm of NLP for diagnosis
generation - harnessing the power of knowledge graphs for the controllability and explainability of LLMs.
The following key findings will inform future work on developing knowledge graph-based methods for
LLMs for diagnostic prediction:

Strong Diagnostic Performance: Using the proposed human evaluation framework, ChatGPT
demonstrated robust diagnostic accuracy with a median score of 66%, supported by exceptional self-
explanation capabilities (“Reasoning” median score > 94%), underscoring its potential as a clinical
diagnostic decision-support tool.

Knowledge Graph’s Impact on Abstraction and Correct Reasoning: Integrating knowledge graphs
into ChatGPT had a notable impact on finding the correct medical concepts, enhancing the model’s
ability to generate abstractive diagnoses and improving reasoning (RATIONALE sub-category in human
evaluation) by guiding the diagnostic process with relevant knowledge paths.

Future Knowledge Graph Model Enhancements: Analysis of DR.KNOWS highlighted limitations
in cases with unrelated pathways. Addressing these challenges through improving clinical narrative
embedding, as well as improving the design of DR.KNOWS with other components like Bayesian network,
might enhance the diagnostic potential of KG-based models in the future.

Utility of Our Proposed Human Evaluation for LLM: While the overall diagnostic accuracy and
reasoning scores show the output with and without knowledge paths in the input has no differences, the
broken-down scores present the strengths and weaknesses of different models. The granular approach of
evaluation enables a more informed analysis of LLMs for particular applications and contributes to the
iterative process of model refinement. The scoring aspects of PLAUSIBILITY, OMISSION, SPECIFICITY,
RATIONALE address various critical facets of AI interpretability and decision-making quality, aiming
at mitigating the risks and enhancing the reliability and safety of diagnostics provided by AI systems.
We provide the full guidelines of human evaluation in Supplementary Material and hope to contribute to
facilitating the development of safe AI diagnostic tools.

Figure 1 presents the study overview of this work. We studied summarizing diagnoses from daily
progress notes written in the SOAP-format. We developed a novel graph model, DR.KNOWS, that
identifies and retrieves relevant knowledge paths from UMLS KG. DR.KNOWS is available in two
versions: TriAttnw, which employs trilinear attention to determine the relevance scores for each knowledge
path, and MultiAttnw, which utilizes a multi-head attention mechanism to score and select knowledge
paths. Our initial evaluation of DR.KNOWS focuses on its capability to identify and predict Concept
Unique Identifiers (CUIs) for diagnoses, specifically addressing the CUI prediction task. Subsequently,
we explored how these additional knowledge pathways could be harnessed to enhance ChatGPT’s ability
to summarize diagnoses derived from daily progress notes. To achieve this, we integrated the knowledge
pathways predicted by DR.KNOWS into a prompting framework for ChatGPT. Additionally, we presented
the performance difference between the zero-shot and few-shot settings.

We summarized the deployment of evaluation metrics in Table 2. On CUI prediction task, we
reported CUI-based Recall, Precision and F-score. The metrics helped us understand if the DR.KNOWS
could accurately identify CUIs that are the final diagnoses. On the results obtained through ChatGPT,
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we first applied automated metrics including CUI-based Recall, Precision, F-score, and two ROUGE
variants (ROUGE-2 and ROUGE-L Lin (2004)). Then we asked two medical professionals to conduct
a human evaluation using our proposed framework under the supervision of two senior physicians. By
examining the effects of graph prompting on LLMs with real-world EHR data, we strive to contribute to
an explainable AI diagnostic pathway.

2 Results

2.1 Data overview

We used two sets of progress notes from different clinical settings in this study: MIMIC-III and IN-HOUSE
EHR datasets. MIMIC-III is one of the largest publicly available databases that contains de-identified
health data from patients admitted to intensive care units (ICUs), developed by the Massachusetts Institute
of Technology and Beth Israel Deaconess Medical Center (BIDMC). MIMIC-III includes data from
over 38,000 patients admitted to ICUs at the BIDMC between 2001 and 2012. The second set, namely
the IN-HOUSE EHR data, was a subset of EHRs including adult patients (ages > 18) admitted to the
Univesity of Wisconsin Health System between 2008 to 2021. In contrast to the MIMIC subset, the IN-
HOUSE set covered progress notes from all hospital settings, including Emergency Department, General
Medicine Wards, Subspecialty Wards, etc. While the two datasets originated from separate hospitals
and departmental settings and might reflect distinct note-taking practices, they both followed the SOAP
documentation format for progress notes.

Gao et al. (2022, 2023) introduced a subset of 1005 progress notes from MIMIC-III with active
diagnoses annotated from the Plan sections. Therefore, we applied this dataset for training and evaluation
for both graph model intrinsic evaluation (§2.2) and diagnosis summarization (§2.3). The IN-HOUSE
dataset did not contain human annotation. Still, by parsing the text with a medical concept extractor that
was based on UMLS SNOMED-CT vocabulary, we were able to pull out concepts that belonged to the
semantic type of T047 DISEASE AND SYNDROMES. We deployed this set of concepts as the ground
truth data to train and evaluate the graph model in §2.2. The final set of IN-HOUSE data contained 4815
progress notes. We presented the descriptive statistics in Table 1. When contrasting with MIMIC-III, the
IN-HOUSE dataset exhibited a greater number of CUIs in its input, leading to an extended CUI output.
Additionally, MIMIC-III encompassed a wider range of abstractive concepts compared to the progress
notes of IN-HOUSE. Example Plan sections from the two datasets are in the Appendix A.

Dataset Dept. #Input #Output % Abstractive
CUIs CUIs Concepts

MIMIC-III ICU 15.95 3.51 48.92%
IN-HOUSE All 41.43 5.81 <1%

Table 1: Average number of unique Concept Unique Identifiers (CUI) in the input and output on the two EHR
dataset: MIMIC-III and IN-HOUSE. Abstractive concepts are those not found in the input, but present in the gold
standard diagnoses.

Given that our work encompasses a public EHR dataset (MIMIC-III) and a private EHR dataset
with protected health information (IN-HOUSE), we conducted training using three distinct computing
environments. Specifically, most of the experiments on MIMIC-III were done on Google Cloud Computing
(GCP), utilizing 1-2 NVIDIA A100 40GB GPUs, and a conventional server equipped with 1 RTX 3090 Ti
24GB GPU. The IN-HOUSE EHR dataset is stored on a workstation located within a hospital research
lab. The workstation operates within a HIPAA-compliant network, ensuring the confidentiality, integrity,
and availability of electronic protected health information (ePHI), and is equipped with a single NVIDIA
V100 32GB GPU. To use ChatGPT, we utilized an in-house ChatGPT-3.5-turbo version hosted on our
local cloud infrastructure. This setup ensures that no data is transmitted to OpenAI or external websites,
and we are in strict compliance with the MIMIC data usage agreement.
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Evaluation metrics Description Tasks

CUI-based Recall, An automated metric measuring the set overlap of CUI prediction (§2.2);
Precision, F-score predicted CUIs and gold CUIs. Formulas are described Diagnosis prediction(§2.3)

in §4.

ROUGE-2, ROUGE-L Automated metrics measuring the overlap of the Diagnosis prediction(§2.3)
Lin (2004) bigrams (ROUGE-2) or longest common sub-sequences

(ROUGE-L) between predicted text and reference text.

Human evaluation Medical professionals evaluating ChatGPT’s diagnosis Diagnosis prediction(§2.3)
output and reasoning output. Sub-categories include
accuracy, omission, abstraction, plausibility, specificity
and others. Details can be found at §4.3.

Table 2: Overview of the evaluation for the tasks. Note that for CUI-based evaluation, the text is first converted to a
set of UMLS CUIs using a concept extractor.

2.2 Evaluation of DR.KNOWS on Predicting Diagnoses

Model MIMIC IN-HOUSE
Top N Recall Precision F-Score Top N Recall Precision F-Score

Concept Ex. - 56.91 13.59 21.13 - 90.11 12.38 20.09
(95% CI) 55.62, 58.18 12.32, 14.88 19.85, 22.41 88.84, 91.37 11.09, 13.66 18.81, 21.37

MultiAttnW 4 26.91 22.79 23.10 6 24.68 15.82 17.69
(95% CI) 25.64, 28.19 21.51, 24.06 21.83, 24.39 23.35, 25.91 14.55, 17.10 16.40, 18.96

6 29.14 16.73 19.94 8 28.69 15.82 17.33
27.85, 30.41 15.46, 18.00 18.66, 21.22 27.43, 29.98 14.55, 17.11 16.06, 18.60

TriAttnW 4 29.85 17.61 20.93 6 34.00 22.88 23.39
(95% CI) 26.23, 33.45 16.33, 18.89 19.67, 22.21 31.04,36.97 20.92, 24.85 21.71, 25.06

6 37.06 19.10 25.20 8 44.58 22.43 25.70
35.80, 38.33 17.82, 20.37 23.93, 26.48 41.38, 47.78 20.62, 24.23 24.06, 27.37

Table 3: Performance comparison between concept extraction (Concept Ex.) and two DR.KNOWS variants on
target CUI prediction using MIMIC and IN-HOUSE dataset.

We compared DR.KNOWS with QuickUMLS (Soldaini and Goharian, 2016), which is a concept
extraction baseline that identified the medical concepts from raw text. We took input text, parsed it with
the QuickUMLS and outputted a list of concepts. Table 3 provided results on the two EHR datasets MIMIC
and IN-HOUSE. The selection of different top N values was determined by the disparity in length between
the two datasets (see App. A). DR.KNOWS demonstrated superior precision and F-score across both
datasets compared to the baseline, with precision scores of 19.10 (95% CI: 17.82 - 20.37) versus 13.59
(95% CI: 12.32 - 14.88) on MIMIC, and 22.88 (95% CI: 20.92 - 24.85) versus 12.38 (95% CI: 11.09 -
13.66) on the in-house dataset. Additionally, its F-scores of 25.20 on MIMIC and 25.70 on the in-house
dataset exceeded the comparison scores of 21.13 (95% CI: 19.85 - 22.41) and 20.09 (95% CI: 18.81 -
21.37), respectively, underscoring its effectiveness in accurately predicting diagnostic CUIs. The TriAttnw
variant of Dr. Knows consistently outperformed the MultiAttnw variant on both datasets, with F-scores
of 25.20 (95% CI: 23.93 - 26.48) versus 23.10 (95% CI: 21.83 - 24.39) on MIMIC and 25.70 (95% CI:
24.06 - 27.37) versus 17.69 (95% CI: 16.40 - 18.96) on IN-HOUSE. The concept extractor baseline reached
the highest recall, with 56.91 on MIMIC and 90.11 on IN-HOUSE, as it found all the input concepts that
overlapped with the reference CUIs, in particular on the IN-HOUSE dataset that was largely an extractive
dataset (App. A).

2.3 Prompting Large Language Models for Diagnosis Generation
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Model ROUGE 2 ROUGE L CUI Recall CUI Precision CUI F-Score

Prompt-based Zero-shot

ChatGPT 7.05 19.77 23.68 15.52 16.04
(95% CI) 6.54, 7.56 19.26, 20.28 23.18, 24.19 15.00, 16.02 15.53, 16.55

+Path 5.70 15.49 25.33 17.05 18.21
(95% CI) 5.19, 6.21 14.98, 15.99 24.82, 25.84 16.29, 17.81 17.46, 18.98

Prompt-based Few-shot

ChatGPT 3-shot 9.63 21.84 22.71 19.57 21.02
(95% CI) 8.32,10.06 19.99,22.09 20.99,23.96 17.23, 19.78 20.26, 21.79

5-shot 9.73 21.23 22.45 19.67 20.96
(95% CI) 8.52, 10.18 19.58, 21.72 20.93, 23.80 17.66, 20.33 20.19, 21.73

3-shot+Path 10.66 24.32 26.48 24.22 25.30
(95% CI) 9.17, 10.72 22.44, 24.25 25.33, 28.36 21.44, 24.21 24.52, 26.06

5-shot+Path 11.73 25.43 27.76 24.56 26.02
(95% CI) 10.51, 12.25 23.53, 25.35 26.56, 29.39 22.47, 25.12 25.25, 26.78

Table 4: Best performance on MIMIC test set (with annotated active diagnoses) from ChatGPT across all prompt
styles with (+Path) and without DR.KNOWS path prompting. We report ROUGE-2, ROUGE-L, CUI Recall,
Precision and F-score to illustrate the performance difference better. We use teal color to highlight the 95%
confidence interval (CIs) when there is a distinct CIs for the +Path compared to no path scenarios.

Results reported in automated metrics Shifting from a zero-shot to a few-shot learning scenario
resulted in a clear boost in performance. The few-shot’s minimum ROUGE-2 score of 9.63 (95% CI: 8.32
- 10.06), surpassed the zero-shot’s maximum of 7.05 (95% CI: 6.54 - 7.56), and the few-shot’s minimum
CUI-F score of 20.96 (95% CI: 20.19 - 21.73) outperformed zero-shot’s score of 18.21 (95% CI: 17.46. -
18.98).

The performance comparison between ChatGPT with DR.KNOWS in the predicted paths scenario
versus the no paths scenario provided additional improvement in the few-shot setting. Notably, in the
3-shot scenario, the +Path yielded a ROUGE-L score of 24.32 (95% CI: 22.44 - 24.25) versus 21.84 (95%
CI: 19.99 - 22.09), and a CUI-F score of 25.30 (95% CI: 24.52 - 26.06) versus 21.02 (95% CI: 20.26 -
21.79) from the no path scenarios. In the 5-shot setting, the +Path configuration outperformed the no
path setting across all metrics (Table 4). The ROUGE-2 score was 11.73 (95% CI: 10.51 - 12.25), and
exceeded the no path score of 9.73 (95% CI: 8.52 - 10.18). ROUGE-L scores were also higher at 25.43
(95% CI: 23.53 - 25.35) compared to 21.23 (95% CI: 19.58 - 21.71).

Results from human evaluation Human evaluation was performed on few-shot ChatGPT with and
without KG, using 38.88% samples of the test set (n=92). Figure 3 shows the diagnosis scores and
reasoning scores from ChatGPT with and without DR.KNOWS. Both models achieved diagnostic accuracy
with a median score surpassing 0.66 (IQR: 0.57-0.74 for with knowledge graph (KG); IQR 0.54-0.75 for
no KG), and their reasoning scores exhibited a median exceeding 0.90 (IQR: 0.86-0.97 for KG; 0.90-0.97
for no KG). In contrast to the automated metrics, human evaluation indicated that the presence or absence
of DR.KNOWS did not yield an overall difference in performance (p=0.63); however, several subgroup
components were different.

Figure 4 describes all components of the diagnosis scores, considering six distinct scoring aspects.
ChatGPT models with and without KG paths exhibited similar performance in ACCURACY, OMISSION,
UNCERTAINTY, PLAUSIBILITY, and SPECIFICITY. Notably, both models excelled in terms of ACCURACY,
consistently providing about 80% affirmative answers ("Yes") to the question of whether the output meets
the criteria for an official diagnosis. In contrast, their performance in ABSTRACTION ranged from 13%
("KG") to 18% ("No KG"). On omitted diagnoses, approximately 14% to 15% stemmed from aleatoric
uncertainty. This uncertainty contributed to about 18% of cases for “majority aleatoric" and 33% for “all
aleatoric" scenarios for both models. Lastly, concerning the level of ABSTRACTION, ChatGPT with KG
did not favor more extractive diagnoses than ChatGPT without KG, scoring 87% compared to 81% for
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Figure 3: Overall performance for ChatGPT models with the absence (“No KG") and the presence of
DR.KNOWS (“KG”).

Figure 4: Diagnosis scores for ChatGPT models with the absence (“No KG") and the presence of
DR.KNOWS (“KG”).
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Figure 5: Reasoning scores for ChatGPT models with the absence (“No KG") and the presence of
Dr.Knows (“KG”).

"No" answers (p=0.09).
In Figure 5, when examining the reasoning scores, there was no significant increase in omission, with

16% observed with KG, as opposed to 10% without KG (p=0.16). When it comes to RATIONALE (correct
reasoning), ChatGPT with KG exhibits a 55% strong agreement with humans, while ChatGPT “No KG”
demonstrates 50% strong agreement (p<0.01). On the ABSTRACTION category asking about the presence
of abstraction in model output, there was a notable drop from 88% ("No KG") to 78% ("KG") in the
affirmative responses (p=0.03), indicating less abstraction required with KG paths. Differences were also
noted in EFFECTIVE ABSTRACTION in favor of the KG paths (p<0.01).

Error analysis We discovered two primary types of error in DR.KNOWS output that could result in
missed opportunities for improving knowledge grounding. Figure 6 presents an example where the
ChatGPT did not find the provided knowledge paths useful. In this case, the majority of the provided
knowledge paths were highly extractive (“leukocytosis” “reticular dysgenesis”“paraplegia” are target
concepts the knowledge paths led to and all have “self” relationship). On the abstraction paths the target
concepts “abdomen hernia scrotal” and “chronic neutrophilia” were found, which were not relevant to the
input patient condition.

Another error observed occurred when DR.KNOWS selected the source CUIs that were less likely
to generate pertinent pathways for clinical diagnoses, resulting in ineffective knowledge paths. Figure 7
shows a retrieved path from “Consulting with (procedure)” to “Consultation-action (qualifier value)”.
Although some procedure-related concepts like endoscopy or blood testing were valuable for clinical
diagnosis, this specific path of consulting did not contribute meaningfully to the input case. Similarly,
another erroneous pathway began with “Drug Allergies" and led to "Allergy to dimetindene (finding)”,
which is contradictory given that the input note explicitly states “No Known Drug Allergies”. While
the consulting path’s issue was its lack of utility, the “Drug Allergies” path could introduce the risk of
hallucination (misleading or fabricated content) within ChatGPT.

In addition to DR.KNOWS’ errors, there were instances where ChatGPT failed to leverage accurate
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Figure 6: An error example of DR.KNOWS retrieved knowledge pathways. DR.KNOWS finds two paths
leading to irrelevant and misleading diagnosis, marked as red fonts. The  symbol represents a self-loop.

Figure 7: An example from ChatGPT with DR.KNOWS extracted knowledge pathways. Two paths had
source CUIs (“Consulting with (procedure), Drug Allergy”) that were less likely to generate pertinent
paths for clinical diagnoses. Note that the path of “Drug allergy” led to a path contradicting to the “No
Known Drug Allergies” description in the input. The path of “cirrhosis of liver” was a correct diagnosis,
but ChatGPT failed to include it.
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Figure 8: Illustration of ChatGPT with KG paths selected by DR.KNOWS, introducing abstraction
concepts and enhancing predicted diagnosis plausibility. Human annotators find the predicted diagnosis
from ChatGPT, with knowledge paths, more plausible compared to the one without.

Figure 9: The “Reasoning” output of ChatGPT with and without knowledge paths on the same input
example as in Fig 8. The highlighted green text demonstrates the utilization of DR.KNOWS knowledge
paths to enhance ChatGPT’s reasoning capabilities. Human evaluators find that the ChatGPT with KG
produces correct reasoning.
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knowledge paths presented. Figure 7 includes a knowledge path about “Cirrhosis of liver”, which was a
correct diagnosis. However, ChatGPT did not contain this diagnosis.

Finally, when DR.KNOWS retrieved the correct knowledge paths and ChatGPT utilized it well, there
was an improvement in the output quality. Figure 8 presents an example where all the paths retrieved by
DR.KNOWS were relevant to the input, and successfully led to ChatGPT outputting plausible diagnoses.
This led to higher PLAUSIBILITY scores from human evaluators.

3 Discussion

On the few-shot setting, with and without DR.KNOWS retrieved paths, ChatGPT demonstrated a median
diagnostic accuracy of 66% and exhibited a remarkable median score exceeding 94% in reasoning, as per
human evaluation. The incorporation of DR.KNOWS retrieved paths proved to be beneficial, enhancing
ChatGPT’s performance, as evidenced by higher scores from automated metrics and improvements
noted in ABSTRACTION and RATIONALE aspects during human evaluation. A primary source of errors
stemmed from DR.KNOWS incorrectly identifying irrelevant target concepts and initiating retrievals with
less effective CUIs. This issue, along with ChatGPT’s struggle to incorporate the correct paths, was
highlighted as key areas for improvements.

Impact of KG on LLM knowledge grounding Based on human evaluation of overall diagnostic
accuracy and reasoning, integrating a knowledge graph appeared to make no noticeable impact on the per-
formance of ChatGPT. However, closer examination of the scoring sub-category revealed that DR.KNOWS
enhances ChatGPT’s ability to identify abstractive diagnoses and accurately deduce connections between
input and possible diagnoses. Half diagnoses within MIMIC dataset are not abstracted (< 50%), which
may have limited the ability of the knowledge graph approach to demonstrate benefits over the native
LLM, as the knowledge graph approach would be expected to specifically augment the abstraction task.
The 10% decrease in ChatGPT’s abstraction with KG can be attributed to the more abstract information
provided in the input when using KG. Human evaluation also favored ChatGPT with KG’s rationale rather
than without KG (p<0.01), indicating that the inclusion of KG enhances the medical grounding of the
responses, leading to more clinically relevant and factually supported reasoning. Results evaluated by
automated metrics, ROUGE and Concept F-score also illustrated the improved precision and F-score
in identifying the correct diagnostic concepts. Such knowledge grounding highlighted the potential
for strengthening LLM’s medical decision-making and reducing hallucinations, which is critical in an
AI-augmented diagnostic decision-support system.

Through these results, our work presented the potential benefits of knowledge grounding through
a retrieval-augmented generation framework utilizing the most important concepts and relations for
knowledge-intensive tasks. Expanding or modifying the memory and knowledge of large language models
is not a straightforward task, potentially resulting in factual inaccuracies and hallucinations. The use of a
retrieve-and-augment framework, leveraging external knowledge sources, has demonstrated its ability to
mitigate these issues, as evidenced by previous research (Lewis et al., 2020; Shuster et al., 2021).

Overall performance and insights drawn from human evaluation scores The median diagnostic
accuracy of 66%, achieved by both few-shot prompting ChatGPT models, revealed ChatGPT’s robust
performance in generating diagnoses from daily hospital progress notes. The exceptionally strong
performance in reasoning, with a median score surpassing 94%, highlights ChatGPT’s capacity for
weighing and integrating various pieces of evidence when arriving at a diagnosis, a promising indication
for clinical diagnostic reasoning. This evidence-based approach is crucial for LLMs for clinical diagnostic
decision-support, ensuring that the model’s recommendations are rooted in the provided input and that
such evidence-based grounding is accessible to healthcare providers.

The detailed scoring in human evaluation not only highlighted ChatGPT’s performance but also
pointed towards areas for future enhancement. One significant issue to address was the omission of
diagnoses. Currently, ChatGPT exhibited no omitted diagnoses in only 15% of cases, with the majority
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of omitted diagnoses attributed to aleatoric uncertainty. This uncertainty arises when the evidence for
diagnoses is present in the input, but the model fails to accurately capture and incorporate this information.
Addressing and minimizing this type of uncertainty is pivotal for enhancing the precision and reliability
of the diagnostic process using ChatGPT.

Discrepancy between automated metrics and human evaluation Our experiments revealed intriguing
differences between the results obtained from automated metrics and human evaluation. While the
automated metrics suggest a performance difference between the two models, with the KG-augmented
model demonstrating a performance gain over its non-KG counterpart, human evaluation results show
that both models are consistently rated as equally proficient. We attributed this divergence to the specific
dimension assessed by automated metrics, as opposed to human evaluation scores that aggregate multiple
distinct scoring criteria. ROUGE assesses content quality through string overlap analysis, while the
concept-based F-score gauges the precision of identified concepts in the generated text. These metrics
offer distinct perspectives on model performance. Nevertheless, it is important to recognize that these
metrics may not entirely capture the nuanced aspects of human evaluation. Further investigation on the
correlation between automated metrics and human scoring is concluded as future work. We also encourage
future research to explore ways to bridge the gap between automated metrics and human judgment for a
more comprehensive assessment of model performance.

Informing future knowledge graph model development from DR.KNOWS error analysis Error
analysis showed that DR.KNOWS still suffered from recognizing knowledge paths that were not related to
the input patient representation, and that the selection of starting medical concepts was pivotal in finding
the right paths. Currently, DR.KNOWS relied solely on semantic-based ranking on the candidate paths,
that is, the cosine similarity between candidate path embeddings and input text, with the quality of these
embeddings being crucial for ranking performance. In addition to enhancing the representation method
and these embeddings, other elements that are essential in modeling relations between symptoms and
diagnoses, for instance, probabilistic modeling (Rotmensch et al., 2017; Wan and Du, 2021), should be
incorporated into the graph-based methods. We encourage future research to explore this integration and
improve DR. KNOWS’ diagnostic potential.

The error analysis also presented instances where ChatGPT neglected to incorporate certain beneficial
knowledge paths. It’s important to acknowledge that ChatGPT operates as a black-box API model, with
its internal weights and training processes being inaccessible. To enhance the efficacy of the graph-based
retrieve-and-augment framework, it would be advantageous to explore the potential of graph-prompting
and instruction tuning on open-source language models. These methods could refine the model’s ability
to utilize relevant information effectively. Other relevant research also employs advanced prompting
techniques, such as self-retrieval-augmented generation (Asai et al., 2023) and step-back prompting (Zheng
et al., 2023), which merit further exploration in future investigations.

In conclusion, LLMs like ChatGPT are a promising direction for generating diagnoses for clinical
decision support; however, methods such as graph prompting are needed to guide the model down correct
reasoning paths to avoid hallucinations and provide comprehensive diagnoses. While we show some
progress in a graph prompting approach with DR.KNOWS, more work is needed to improve methods that
leverage the UMLS knowledge source for grounding to achieve more accurate outputs. Furthermore, our
human evaluation framework carries strong face validity and reliability to evaluate a model’s strengths
and weaknesses as a diagnostic decision support system.
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Figure 10: DR.KNOWS model architecture. The input concepts (“female”, “fever”, etc) are represented by concept
unique identifiers (CUIs, represented as the combination of letters and numbers, e.g.“C0243026”, “C0015967”).

4 Methods

4.1 Grounding Medical Knowledge with Knowledge Graph

4.1.1 Problem Formulation

Diagnosis in progress notes Daily progress notes are formatted using the SOAP Format (Weed, 1969).
The Subjective section of a SOAP format daily progress note comprises the patient’s self-reported
symptoms, concerns, and medical history. The Objective section consists of structural data collected by
healthcare providers during observation or examination, such as vital signs (e.g., blood pressure, heart
rate), laboratory results, or physical exam findings. The Assessment section summarizes the patient’s
overall condition with a focus on the most active problems/diagnoses for that day. Finally, the Plan section
contains multiple subsections, each outlining a diagnosis/problem and its treatment plan. Our task is to
predict the list of problems and diagnoses that are part of the Plan section.

Using UMLS KG to find potential diagnoses given a patient’s medical narrative The UMLS concepts
vocabulary comprises over 187 sources. For our study, we focused on the Systematized Nomenclature
of Medicine-Clinical Terms (SNOMED CT). The UMLS vocabulary is a comprehensive, multilingual
health terminology and the US national standard for EHRs and health information exchange. Each UMLS
medical concept is assigned a unique SNOMED concept identifier (CUI) from the clinical terminology
system. We utilize semantic types, networks, and semantic relations from UMLS knowledge sources to
categorize concepts based on shared attributes, enabling efficient exploration and supporting semantic
understanding and knowledge discovery across various medical vocabularies.

Given a medical knowledge graph where vertices are concepts and edges are semantic relations, and
an input text describing a patient’s problems, we could perform multi-hop reasoning over the graphs and
infer the final diagnoses. Figure 1 demonstrated how UMLS semantic relations and concepts can be used
to identify potential diagnoses from the evidence provided in a daily care note. The example patient
presents with medical conditions of fever, coughing, and sepsis, which are the concepts recognized by
medical concepts extractors (cTAKES (Savova et al., 2010) and QuickUMLS (Soldaini and Goharian,
2016)) and the starting concepts for multi-hop reasoning. Initially, we extracted the direct neighbors for
these concepts. Relevant concepts that align with the patient’s descriptions were preferred. For precise
diagnoses, we chose the top N most relevant nodes at each hop.

This section introduces the architecture design for DR.KNOWS. As shown in Figure 10, all identified
UMLS concepts with assigned CUI from the input patient text will be used to retrieve 1-hop subgraphs
from the constructed large UMLS knowledge graph. These subgraphs are encoded as graph representations
by a Stack Graph Isomorphism Network (SGIN) (Xu et al., 2019) and then fed to the Path Encoder,
which generates path representations. The Path Ranker module assesses 1-hop paths by considering
their semantic and logical association with the input text and concept, generating a score using the path
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representation, input text, and concept representation. The top N scores among the set of 1-hop neighbor
nodes, aggregated from all paths pointing to those nodes, guide the subsequent hop exploration. In case a
suitable diagnosis node is not found, termination is assigned to the self-loop pointing to the current node.

4.1.2 Contextualized Node Representation

We defined the deterministic UMLS knowledge graph G = VE based on SNOMED CUIs and semantic
relations, where V is a set of CUIs, and E is a set of semantic relations. Given an input text x containing
a set of source CUIs Vsrc ✓ V , and their 1-hop relations Esrc ✓ E , we can construct relation paths for
each hviiIi=1 ✓ Vsrc as P = {p1,p2, . . . ,pJ} s.t. pj = {v1, e1,v2 . . . et�1,vt}, j 2 J , where t is a
pre-defined scalar and J is non-deterministic. Relations et were encoded as one-hot embeddings. We
concatenated all concept names for vi with special token [SEP], s.t. li = [name 1 [SEP] name 2 [SEP] ...],
and encoded li using SapBERT (Liu et al., 2021) to obtain hi. This allowed the CUI representation
to serve as the contextualized representation of its corresponding concept names. We chose SapBERT
for its UMLS-trained biomedical concept representation. The hi is further updated through topological
representation using SGIN:

h
(k)
i = MLP(k)((1 + ✏(k))h(k)

i +
X

s2N (vi)

RELU(hs, es,i)) ,

hi = [h(1)
i ;h(2)

i ; . . . ;h(K)
i ] .

(1)

where N (vi) represents the neighborhood of node vi, h
(k)
i is the representation of node vi at layer k, ✏(k)

is a learnable parameter, and MLP(k) is a multilayer perceptron. GIN iteratively aggregates neighborhood
information using graph convolution followed by nonlinearity, modeling interactions among different
v ✓ V . Furthermore, the stacking mechanism is introduced to combine multiple GIN layers. The
final node representation vi at layer K is computed by stacking the GIN layers, where [·; ·] denotes
concatenation.

We empirically observed that some types of CUIs are less likely to lead to useful paths for diseases,
e.g., the concept “recent" (CUI: C0332185) is a temporal concept and the neighbors associated with it are
less useful. We designed a TF-IDF-based weighting scheme to assign higher weights to more relevant
CUIs and semantic types, and multiply these WCUI to its corresponding hi:

WCUI = TFIDFconcept ⇤
X

TFIDFsemtypeconcept . (2)

4.1.3 Path Reasoning and Ranking

For each node representation hi, we used its n-hop h
(n)
t,i of the set neighborhood V(n)

t for hi and the

associated relation edge e
(n)
t,i to generate the corresponding path embeddings:

pi =

(
hi if n = 1

p
(n�1)
t,i otherwise ,

(3)

p
(n)
t,i = FFN(Wih

(n)
i +Wt([e

(n)
t,i ,h

(n)
t,i ])) . (4)

where FFN is feed-forward network, and n is the number of hop in the subgraph Gsrc.
For each path embedding pi, we proposed two attention mechanisms, i.e., MultiHead attention

(MultiAttn) and Trilinear attention (TriAttn), to compute its logical relation leveraging the input narrative
representation hx and input list of CUIs hv, both of which are encoded by SapBERT. We further defined
Hi as context relevancy matrix, and Zi as concept relevancy matrix:

Hi = [hx;pi;hx � pi;hx � pi],Hi 2 R4D ,

Zi = [hv;pi;hv � pi;hv � pi],Zi 2 R4D ,

↵i = MultiAttn(Hi � Zi) ,

SMulti
i = �(Relu(�(↵i))) .

(5)
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These relevancy matrices were inspired by prior work on natural language inference (Conneau et al.,
2017), specifying the logical relations as matrix concatenation, difference, and product. An alternative
design is Trilinear attention which learns the intricate relations by three attention maps:

↵i = (hx,hv,pi) =
X

a,b,c

(hx)a(hv)b(pi)cWabc ,

STri
i = �(Relu(�(↵i))) .

(6)

where hx,pi and hv have same dimensionality D, and � is a MLP. Finally, we aggregated the MultiAttn
or TriAttn scores on all candidate nodes , and select the top N entity VN for next hop iteration based on
the aggregated scores:

� = Softmax(⌃Vsrc
i=1⌃

T
t=1S

Tri
i,t ) ,

VN = argmaxN (�) .
(7)

4.1.4 Loss Function

Our loss function consisted of two parts, i.e., a CUI prediction loss and a contrastive learning loss:

L = LPred + LCL . (8)

For prediction loss LPred, we used Binary Cross Entropy (BCE) loss to calculate whether selected VN
is in the gold label Y:

LPred =
MX

m

NX

n

(ym,n ⇤ log(vm,n)+

(1� ym,n) ⇤ log(1� vm,n)) . (9)

where M is the number of gold label Y .
For contrastive learning loss LCL, we encouraged the model to learn meaningful and discriminative

representations by comparing with positive and negative samples:

LCL =
X

i

max(cos(Ai, fi+)� cos(Ai, fi�) + margin, 0) . (10)

where Ai is the anchor embedding, defined as hx � hv, and � is Hadamard product.
P

i indicates a
summation over a set of indices i, typically representing different training samples or pairs. Inspired
from (Yasunaga et al., 2022), we construct cos(Ai, fi+) and cos(Ai, fi�) to calculate cosine similarity
between Ai and positive feature fi+ or negative feature fi�, respectively. This equation measures the
loss when the similarity between an anchor and its positive feature is not significantly greater than the
similarity between the same anchor and a negative feature, considering a margin for desired separation.
Appendix C described the full DR.KNOWS model training process.

4.1.5 Prompting for foundational models

To incorporate graph model predicted paths into a prompt, we applied a prompt engineering strategy
utilizing domain-independent prompt patterns, as delineated in White et al. (2023). Our prompt was
constructed with two primary components: the output customization prompt, which specifies the require-
ment of exploiting knowledge paths, and the context control patterns, which are directly linked to the
DR.KNOWS’s output.

Given that our core objective was to assess the extent to which the prompt can bolster the model’s
performance, it became imperative to test an array of prompts. Gonen et al. (2022) presented a tech-
nique, BETTERPROMPT, which relied on SELECTING PROMPTS BY ESTIMATING LANGUAGE MODEL
LIKELIHOOD (SPELL). Essentially, we initiated the process with a set of manual task-specific prompts,
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Group Output Customization Prompts and No. Perplexity

Non-Subj. A. <Explain> B.You may utilize these facts: C. You may find these facts helpful: 3.86e-13
Subj. D. /E. *Act as a medical doctor, and list the top three direct and indirect diagnoses from

the Assessment. *(You will be provided with some hints from a knowledge graph.)
1.03e-03

Explain the reasoning and assumptions behind your answer.

No. Context Control with Path Presentation

1 Structural.e.g. “Infectious Diseases –> has pathological process –> Pneumonia
"“–>" is added to tokenizers as a new token.

2 Clause. e.g. “Infectious Diseases has pathological process Pneumonia"

Table 5: Five manually designed prompts (Output Customization) and two path representation styles (Context Con-
trol) we create for the path-prompting experiments. There are 10 prompt patterns in total (5 Output Customization x
2 Context Control). For each Output Customization prompt, we generate 50 paraphrases using ChatGPT and run
BETTERPROMPT to obtain the perplexity. This table also include the average perplexity for each prompt. Prompts
with *are also deployed for path-less T5 fine-tuning (baseline).

subsequently expanding the prompt set via automatic paraphrasing facilitated by ChatGPT and backtrans-
lation. We then ranked these prompts by their perplexity score (averaged over a representative sample of
task inputs), ultimately selecting those prompts exhibiting the lowest perplexity.

Guided by this framework, we manually crafted five sets of prompts to integrate the path input, which
are visually represented in Table 5. Specifically, the first three prompts were designed by a non-medical
domain expert (computer scientist), whereas the final two sets of prompts were developed by a medical
domain expert (a critical care physician and a medical informaticist). We designated the last two prompts
as "Subject-Matter Prompts," with the medical persona, and the first three prompts as "Non-Subject-Matter
Prompts." A comprehensive outline elucidating our approach to generating the prompt with paths can be
found in Appendix E.

4.2 Experiments and Automated Evaluation

We trained the proposed DR.KNOWS (TriAttnW and MultiAttnW ) on IN-HOUSE and MIMIC dataset. We
obtained a data split of 600, 81, and 87 on the MIMIC dataset and 3885, 520, 447 on the IN-HOUSE dataset.
The main task is to assess how well DR.KNOWS predicts diagnoses using CUIs. To achieve this, we
analyzed the text in the plan section using a concept extractor and extract the CUIs that fall under the
semantic type T047 DISEASE AND SYNDROMES. Specifically, we included the CUIs that are guaranteed
to have at least one path with a maximum length of 2 hops between the target CUIs and input CUIs.
These selected CUIs formed the "gold" CUI set, which was used for training and evaluating the model’s
performance. Appendix B and D described the preprocessing and training setup, respectively.

Since DR.KNOWS predicts the top N CUIs, we measured the Recall@N and Precision@N as below.
The F-score is the harmonic mean between Recall and Precision, which will also be reported.

Recall =
|pred \ gold|

|gold| (11)

Precision =
|pred \ gold|

|pred| (12)

When evaluating the output diagnoses, we applied the above evaluation metric as well as ROUGE (Lin,
2004). Specifically, ROUGE is a widely used set of metrics designed for evaluating the quality of machine-
generated text by comparing it to reference texts. We utilized the ROUGE-L variant, which is based on
the longest common substring, and the ROUGE-2 variant, which focuses on bigram matching.

4.3 Metrics Development for Human Evaluation

4.3.1 Motivation

Existing frameworks of human evaluation have been implemented for generative AI on certain tasks such
as radiology report generation, but the field of diagnosis generation remains underdeveloped. Robust
evaluation methodologies like SaferDX (Singh et al., 2019) have paved the way for assessing missed
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diagnostic opportunities, but their potential integration with Language Model evaluations has yet to
be explored. Our refined framework underscores the pressing need for a structured human evaluation
approach, which remains the reference standard and overcomes the limitations of quantitative evaluations.
Our rigor in modeling SaferDx, performing a thorough literature review, and iterative user-centered design
by subject matter experts helped to design an evaluation framework that was further validated by strong
inter-rater agreement by medical experts.

We identified seven broad aspects widely deployed in human evaluation for biomedical NLP tasks:
(1) Factual Consistency (Guo et al., 2020; Yadav et al., 2021; Wallace et al., 2020; Abacha et al.,
2023; Moramarco et al., 2021; Otmakhova et al., 2022; Dalla Serra et al., 2022; Cai et al., 2022), (2)
Hallucination (Guo et al., 2020; Umapathi et al., 2023), (3) Quality of Evidence (Otmakhova et al.,
2022; Singhal et al., 2023), (4) Safety / Potential for Harm (Singhal et al., 2023; Dalla Serra et al., 2022;
Adams et al., 2023), (5) Confidence (Otmakhova et al., 2022), (6) Omission (Abacha et al., 2023), and
(7) Linguistic Quality (Radev and Tam, 2003; Guo et al., 2020). These aspects were then broken down
and more clearly defined for inclusion in a human evaluation framework. The only factor not considered
was Linguistic Quality. This factor was tied to general domain tasks and those intent on the fluency and
readability of generated text for the general population. However, in a clinical setting, this is not a key
focus so attention was given to aspects relating to content, instead.

4.3.2 Survey Development

Evaluation criteria The intent of evaluation of clinical diagnostic reasoning tasks is to verify that
inclusion of generative LLMs in the clinical setting does not introduce additional potential for harm on
patients. Therefore, the diagnostic evaluation portion was largely influenced by the revised SaferDx
instrument (Singh et al., 2019) because of its applications in identifying and defining diagnostic errors and
their potential for harm. Based on this instrument and our 6 identified aspects of manual evaluation from
literature searching, the diagnostic evaluation process was broken down into 4 sections: (1) ACCURACY,
(2) PLAUSIBILITY, (3) SPECIFICITY, and (4) OMISSION AND UNCERTAINTY. ACCURACY was intended
to capture the factuality of the diagnostic output as well as penalize a model for hallucinating output that
does not qualify as a diagnosis. PLAUSIBILITY, which is conditional on ACCURACY, was intended to
capture the potential for harm present in an inaccurate diagnosis. SPECIFICITY, which is conditional
on PLAUSIBILITY, is defined as the level of detail provided in the diagnosis. Finally, OMISSION AND
UNCERTAINTY defined cases when a diagnosis is not included in the list of outputted diagnoses but would
be considered by a clinician in the clinical setting based upon the input data. In the case of the omission,
the UNCERTAINTY further defined the reasons as aleatoric uncertainty – when LLM has been provided
with the necessary information but has not utilized it; epistemic uncertainty – when the input to LLM
does not contain the data needed to make a diagnosis.

The quality of evidence aspect of evaluation becomes a key factor in evaluating the reasoning output
because clinical diagnostic reasoning is not a definitive process. Therefore, the reasoning evaluation
portion was largely influenced by the framework established in Singhal et al. (2023), because of their
rigorous validity measures compared to other established evaluation frameworks and focus on evidence
quality as an aspect of evaluation. We utilized three of the aspects of their evaluation framework - (1)
READING COMPREHENSION, (2) RATIONALE, and (3) RECALL OF KNOWLEDGE - and incorporated an
aspect on (4) OMISSION of diagnostic reasoning. READING COMPREHENSION was intended to capture if
a model understood the information in a progress note. RATIONALE was intended to capture the inclusion
of incorrect reasoning steps. RECALL OF KNOWLEDGE was intended to capture the hallucination of
incorrect facts as well as the inclusion of irrelevant facts in the output. Finally, OMISSION served the same
purpose as previously by capturing when the model failed to support conclusions or provide evidence for
a diagnostic choice.

In addition to the aspects outlined above, the evaluators were also asked to answer questions based on
the amount of ABSTRACTION present in each part of the output. This was to ascertain how the knowledge
paths influenced the type of output produced and whether or not the model was able to use abstraction.
Since abstraction does not directly equate to better text generation, these questions did not impact the
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Figure 11: The structure of the survey questions given an LLM output. The output consists of two
components: diagnoses (red-colored text) and reasoning (blue-colored text). For each component, there
are corresponding questions evaluating certain aspects.

scoring process, but served as an additional piece of information. For the reasoning output, EFFECTIVE
ABSTRACTION, conditional on ABSTRACTION, was also utilized to determine if any of the abstracted
output aided or hindered the reasoning.

Implementation Figure 11 presents the structure of the proposed human evaluation survey, and the
questions asked under each scoring aspect. Each model output consists of the model predicted diagnoses
(“Diagnosis”) and reasoning (“<Reasoning>”). We scored diagnoses and reasoning both at the individual
instance level and their entirety. The scoring aspects of each component were highlighted in §4.3.2.

The evaluation framework was implemented utilizing the Research Electronic Data Capture (REDCap)
web application. The input, output, and gold standards were auto-populated into REDCap for the
evaluators. Each evaluator was treated as a different arm in a longitudinal data collection framework
that had two defined events: one for the model utilizing knowledge graph paths and one for the model
without them. The guidelines given to each evaluator contain a step-by-step guide on how to complete
an evaluation in the REDCap system. We attached the complete survey and REDCap interface to
Supplementary Materials.

Validation We employ two crucial methods, construct validity and content validity, to ensure the
robustness and effectiveness of our proposed human evaluation process. Construct validity and content
validity are indispensable tools in the realm of research and assessment, playing pivotal roles in the
verification of usability and the quality of our evaluation framework. two senior physicians who are
experts with more than 10 years of experience in taking care of patients and also board-certified in clinical
informatics served as advisors and pilot test users, which met the requirements for content validity. The
helped design the user guide and train two medical professionals with medical school training to perform
the human evaluations.

The construct validity is supported by the inter-annotator agreement between the two senior physicians
and two medical professionals. Utilizing approximately 20 output examples from each model, iterative
corrections were made to the human evaluation process to maximize usability, clarity, and applicability.
Upon agreement between the clinicians, the two medical professionals were trained to complete the
evaluations. They were trained on approximately 20 output examples from each model until they were
in agreement with the senior clinicians (Kappa > 0.7). The inter-annotator agreement between the two
final evaluators was also verified (Kappa > 0.7).

The construct validity of the proposed survey received further support from our literature search on
previous work that used the same criteria or standards for assessment. We examined over 50 manual
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evaluation framework for text summarization from publications in the Association for Computational
Linguistics and PubMed, and identified the 7 broad aspects of manual evaluation (see §??). We also used
the SaferDx survey instrument to guide our survey development, ensuring the survey was designed with a
focus on diagnostic safety.

4.3.3 Survey scoring

Once the resident and medical student were verified as in agreement with the senior clinicians, each was
given a set of output records from each model to evaluate. In total, at least 92 records were evaluated for
each model.

Processing Steps In the pre-processing phase, we handled missing values in the Plausibility and
Specificity category differently depending on the cause.

Due to the inherent branching logic within some of the categories, missing values were substituted
with a value of 0 during the score calculations. Additionally, we implemented a scoring transformation to
the COMPREHENSION, RECALL, AND RATIONALE questions: to address the reverse interpretation of
these questions, we employed a transformation formula: (6� x).

Diagnosis Scoring The diagnosis score Di given a record i is computed as below:

Di =
p̄i + s̄i + oi

15
(13)

where p̄i is the mean of the plausibility scores for record i, s̄i is the mean of the specificity scores for
record i, oi is the mean of the omission and uncertainty scores for record i, The denominator is 15 because
each component was scored on a 5-point Likert scale and this 15 normalizes the scores into a (0, 1) scale.

Reasoning Scoring The reasoning score Ri given a record i is computed as below:

Ri =
c̄i + ēi + āi

15
(14)

where c̄i is the mean of the comprehension scores, ēi is the mean of the recall scores, āi is the mean of the
rationale scores for record i. The denominator is 15 because each component was scored on a 5-point
Likert scale and this 15 normalizes the scores into a (0, 1) scale.

4.3.4 Significance Testing

Statistical significance testing was performed utilizing a paired assumption. Since the KG and No KG
scoring processes were done using the same progress notes, a pair was considered to be the score from
each model for a particular progress note. Tests on statistical significance between normalized diagnosis
and reasoning scores used a two-sided paired t-test. This is because the diagnosis and reasoning scores
were quantitative values on a 0 to 1 scale. In cases where analysis was done on aspects of the scores (i.e.
SPECIFICITY, OMISSION, PLAUSIBILITY), a McNemar test was utilized. The Likert and binary scale
values were considered nominal categories for this test. All statistical significance testing was performed
in R v4.3.1.
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