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Abstract 1 

Maternity is a special period in a woman’s life that involves substantial physiological, 2 

psychological, and hormonal changes. These changes may cause alterations in many 3 

clinical measurements during pregnancy, which can be used to monitor and diagnose 4 

maternal disorders and adverse postnatal outcomes. Exploring the genetic background 5 

of these phenotypes is key to elucidating the pathogenesis of pregnancy disorders. 6 

In this study, we conducted a large-scale molecular biology analysis of 104 7 

pregnancy phenotypes based on genotype data from 39,194 Chinses women. Genome-8 

wide association analysis identified a total of 407 trait-locus associations, of which 9 

75.18% were previously reported. Among the 101 novel associations for 37 phenotypes, 10 

some were potentially pregnancy-specific and worth further experimental investigation. 11 

For example, ESR1 with fasting glucose, hemoglobin, hematocrit, and several 12 

leukocytoses; ZSCAN31 with blood urea nitrogen. We further performed pathway-13 

based analysis and uncovered at least one significant pathway for 24 traits, in addition 14 

to previously known functional pathways, novel findings included birthweight with 15 

“Reactome signaling by NODAL”, twin pregnancy with “Reactome mitotic G1-G1/S 16 

phases”. The partitioning heritability analysis recapitulated known trait-relevant 17 

tissue/cell types, and also discovered interesting results including twin pregnancy with 18 

“embryoid bodies” cell-type enrichment, the delivery type cesarean section with 19 

“fallopian tube”, and birth weight with “ovary and embryonic stem cells”. In terms of 20 

both sample size and the variety of phenotypes, our work is one of the largest genetic 21 

studies of pregnancy phenotypes across all populations. We believe that this study will 22 

provide a valuable resource for exploring the genetic background of pregnancy 23 

phenotypes and also for further research on pregnancy-related diseases and adverse 24 

neonatal outcomes.  25 

  26 
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Introduction 27 

The clinical phenotypes (e.g., serum and urinary test results) are commonly used for 28 

disease detection and diagnosis. Understanding their genetic architecture is key to 29 

elucidating disease etiology. Up until now, many genome-wide association studies 30 

(GWAS) have been performed to explore the genetic background of these phenotypes, 31 

including hematological 1,2, liver-related3-5, kidney-related6,7, metabolic8,9, protein10,11, 32 

and urinary12,13. Many biobanks and consortiums also allow large-scale genetic analysis 33 

for a vast amount of clinical laboratory measurements, such as UK Biobank14, BioBank 34 

Japan Project (BBJ)11, FinnGen biobank15, and DIAGRAM consortium14.  35 

The serum and urinary test results during pregnancy are critical for assessing 36 

maternal and fetal health status and predicting adverse postnatal outcomes16-18. For 37 

example, the high maternal glucose level is an indication of the risk of developing 38 

gestational diabetes19, and abnormal maternal hemoglobin levels may be a warning of 39 

preterm birth20,21. However, there are few studies investigating the genetic background 40 

of the laboratory features during pregnancy. The aforementioned studies and biobanks 41 

were typically designed for general adults, not the pregnant population. In recent years, 42 

non-invasive prenatal testing (NIPT) has become extensively used to provide pregnant 43 

women with a sensitive noninvasive screening option for chromosomal disorders of 44 

fetuses22. This technology detects whether the fetus has the three major chromosomal 45 

disorders while generating high-throughput maternal genotype data. Our team 46 

previously demonstrated that the NIPT sequencing data could be used for genetic 47 

studies, including variant calling, population history, viral infection patterns, and 48 

genome-wide association study23. We have proved that with highly accurate imputation 49 

performance for the low sequencing depth NIPT data, the GWAS analysis could 50 

maintain high statistical power in identifying trait-associated genetic variants. 51 

In this study, based on the genotype data from 39,194 pregnant women who 52 

underwent the NIPT test, we investigated the genetic background of 104 pregnancy 53 

phenotypes, including maternal phenotypes (e.g., women’s BMI, blood pressure), 54 

postnatal outcomes (e.g., birthweight, delivery option), and laboratory measurements 55 

(e.g., hematological, urinalysis, hormone, infection). The GWAS analysis identified 56 
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407 genome-wide significant associations involved with 66 phenotypes. The majority 57 

(75.18%) of these trait-locus associations were previously identified in either European 58 

or Asian populations, for example, the BMI with FTO, the C-reactive protein level with 59 

CRP, the serum bilirubin levels with the UDP Glucuronosyltransferase Family 1 60 

Members (e.g., UGT1A6). In addition to recapitulating known findings, we also 61 

discovered 101 novel trait-locus associations for 37 phenotypes, for example, thyroid 62 

hormone triiodothyronine (FT3) and ABO, urine glucose levels and CDK12, and total 63 

bile acid and SLC39A9. We also filled the gap of no GWAS results for some phenotypes 64 

in the GWAS Catalog, such as prealbumin (transthyretin), platelet-large cell ratio, and 65 

mucus in urine. Interestingly, we discovered some potentially pregnancy-specific 66 

associations, such as ESR1 with fasting serum glucose, ESR1 with several types of 67 

leukocytosis, ZSCAN31 with blood urea nitrogen, and ABCB4 with γ-glutamyl 68 

transferase. The functional enrichment and partitioning heritability analysis revealed 69 

inspiring results worthy of further exploration. To name one, for birthweight, the 70 

identified functional pathway is “Reactome signaling by NODAL” (regulating 71 

embryonic development) and the relevant cell types are ovary and embryonic stem cells.  72 

Our work is the first one to implement such a large genetic study of pregnancy 73 

phenotypes and all of the GWAS summary statistics results are publicly available for 74 

other researchers to use. These results will certainly provide a theoretical basis and 75 

reference for the study of genetic mechanisms of maternal disorders and postnatal 76 

outcomes.  77 

  78 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.23298979doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 79 

Imputation performance of ultra-low coverage WGS data. In our dataset, 39,194 80 

pregnant women took the NIPT test and had genotype data with an average of data 81 

volume 476 MB (sequencing depth was approximately 0.15X). We removed samples 82 

with sequencing depth less than 0.05X and mapping rate less than 90% and 38,668 83 

samples remained in further analysis. After genotype imputation in STITCH, there were 84 

8,134,302 genotyped SNPs with SNP density provided in Figure 1a. The average 85 

imputation accuracy across all SNPs was 81.37% (Figure 1b). In addition, if we focused 86 

on only well-imputed SNPs with info-score > 0.4, Hardy-Weinberg equilibrium (HWE) 87 

p-value > 1e-6, and minor allele frequency (MAF) > 0.05, the mean imputation 88 

accuracy was 90.46% (Figure 1b). The number of samples who took the folate 89 

metabolism ability genetic test was 272. The averaged correlation of imputed and true 90 

genotypes of three tested variants in genes MTHFR and MTRR was 0.71 and the 91 

maximum value was 0.90 (Figure 1c). These results ensured the high quality and 92 

accuracy of imputed genotype data.  93 

 94 

Genome-wide association analysis of 104 pregnancy traits. We performed GWAS 95 

analysis on 104 traits, each with an effective sample size of over 2,000 (Supplementary 96 

Figure S1). These traits covered a wide range of clinical measurements, grouped into 97 

11 different categories (Supplementary Figure S1, Table 1): maternal (n=5), postnatal 98 

(n=6), electrolyte (n=4), hematological (n=24), hormone (n=4), infection (n=14), 99 

kidney-related (n=4), liver-related (n=8), metabolism (n=6), protein (n=5), and 100 

urinalysis (n=24). To have a better visualization of trait distribution and pairwise 101 

association, we provided a convoluted figure for displaying the frequency of 102 

quantitative traits (histogram), the category of binary traits (bar plot), the relationship 103 

between two quantitative traits (scatter chart), one quantitative trait and one binary trait 104 

(box plot), two binary traits (2*2 contingency table), and the results of statistical 105 

inference for testing the corresponding correlations (Supplementary Figure S2). The 106 

chromosome-based Circos plot presenting the GWAS results of phenotypes with 107 

significant signals was provided in Figure 2a. The genomic inflation factors (λgc) for 108 
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estimating the amount of GWAS test statistics inflation were presented in bar plots 109 

(Figure 2b). The λgc’s of all phenotypes were around 1, meaning no evidence of inflation 110 

and the GWAS results were reasonable. The individual Manhattan plots were provided 111 

in Supplementary Figure S3. For known and novel loci, we colored blank and red, 112 

respectively.  113 

At the genome-wide significance threshold of 5e-08, we identified 407 trait-locus 114 

associations involved with 66 traits (Table 1, Supplementary Table S1), the vast 115 

majority (75.18%) of which were previously reported and biologically related. For 116 

example, the fat mass- and obesity-associated (FTO) gene with the women’s BMI, C-117 

reactive protein and its encoded gene CRP, calcium (Ca) and gene CASR (Calcium 118 

Sensing Receptor), the total/direct bilirubin and the members of UDP 119 

glucuronosyltransferase Family 1 (e.g., UGT1A6, UGT1A8), the vitamin D level and its 120 

associated gene GC (GC Vitamin D Binding Protein), etc. In addition, 101 trait-locus 121 

associations involved with 37 traits were identified for the first time, for example, the 122 

novel locus for blood urea nitrogen is IGF1, insulin-like growth factor 1, whose 123 

encoded protein is similar to insulin in function and structure and involved in mediating 124 

growth and development24. 125 

When we considered the study-wide significance threshold of 4.81e-10 (=5e-126 

8/104), 272 trait-locus associations involved with 56 traits were still significant. Among 127 

them, 205 (75.37%) were previously reported and 67 associations were novel. To name 128 

a couple of novel ones: the gene ABO is associated with free triiodothyronine (p-value= 129 

2.69e-31) and is previously reported to be associated with thyroid stimulating hormone 130 

measurement25; FBXL20 is associated with urinary glucose and is formerly identified 131 

to play a role in kidney function7,26; SLCO1B3 is associated with urobilinogen, 132 

SLCO1B3 encodes a transmembrane receptor that plays a role in bile acid and bilirubin 133 

transport24; BIN2 is associated with platelet size deviation width, previous GWAS 134 

studies have linked it with platelet count27,28; JMJD1C is associated with aspartate 135 

aminotransferase, it was identified to be associated with liver fibrosis measurement29, 136 

liver volume30, and liver enzyme31. 137 

In addition, we added phenotypes currently not documented in the GWAS catalog 138 
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and identified their associated variants, such as platelet larger cell ratio (P-LCR), red 139 

cell distribution width-standard deviation (RDW-SD), red cell distribution width-140 

coefficient of variation (RDW-CV), mucus in urine, and prealbumin, etc. Among them, 141 

P-LCR had the maximum number of associated loci (n=26), including PEAR1, TEC, 142 

STK38, CD36, JMJD1C, BIN2, etc. All these genes were previously identified to be 143 

associated with platelet count and mean platelet volume32,33. In detail, PEAR1 is a type 144 

of platelet receptor, CD36 encodes a protein that is a major glycoprotein on the platelet 145 

surface and acts as a receptor for platelet-responsive proteins24. We identified nine loci 146 

associated with RDW-SD, including CCT3, SLC12A2, ADGRF5, ABO, CNNM2, PRC1, 147 

and SLC14A1, which have been previously reported to be associated with RDW27,32. 148 

We identified seven prealbumin-related loci, including TTR, GCKR, HGFAC, HNF1A, 149 

and LINC01229, in which TTR encodes a transthyretin protein, a type of prealbumin, 150 

and transports thyroid hormones in plasma and cerebrospinal fluid, and HNF1A 151 

encodes a protein that is a transcription factor required for the expression of several 152 

liver-specific genes and an albumin proximal factor24. Mucus in urine is associated with 153 

UMOD (p-value = 1.28e-17), which was previously identified to be associated with 154 

urinary uromodulin in the European population34 and its encoded protein was most 155 

abundant in mammalian urine. 156 

We also discovered some potentially pregnancy-specific associations. In detail, 157 

ESR1 with fasting serum glucose, hemoglobin, hematocrit, and several types of 158 

leukocytosis (white blood cell, neutrophils, lymphocytes). The protein encoded by 159 

ESR1 (Estrogen Receptor 1) regulates the transcription of many genes that play a role 160 

in gestation, metabolism, sexual development, growth, and other reproductive 161 

functions24. We suspect that, during the special pregnancy period, significant changes 162 

in hormonal levels have highlighted the associations between ESR1 and pregnancy 163 

phenotypes. For blood urea nitrogen, we found a novel gene ZSCAN31, which encodes 164 

a protein containing multiple zinc finger motifs and may be involved in the 165 

development of multiple embryonic organs35. We also identified the novel association 166 

between ABCB4 with γ-glutamyl transferase. The protein encoded by ABCB4 is a 167 

member of the superfamily of ATP-binding cassette transporters and may involve the 168 
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transport of phospholipids from the liver into bile. A previous study demonstrated that 169 

the splicing mutations in ABCB4 can cause intrahepatic cholestasis of pregnancy in 170 

women with high γ-glutamyl transferase36. 171 

To detect the pleiotropy effects of the significant loci, we counted the number of 172 

their identified times (Supplementary Table S2), and a few interesting findings were 173 

observed. Among all associations, the loci MED24/PSMD3/CSF3/THRA (CHR17: 174 

39,980,807-40,093,867) were identified the most. The associated phenotypes all belong 175 

to the leukocyte group, such as neutrophils, eosinophils, and basophils. The following 176 

genes are ESR1, ABO, and JMJD1C. Among them, ESR1 was identified to be associated 177 

with fasting serum glucose, white blood cell counts, neutrophils counts and ratio, 178 

lymphocytes ratio, hemoglobin, and hematocrit; all ESR1-trait associations were novel 179 

findings. The gene ABO was associated with alkaline phosphatase, mean corpuscular 180 

hemoglobin concentration, mean corpuscular volume, thyroid-stimulating hormone, 181 

free triiodothyronine, and red blood cell distribution width-standard deviation; the 182 

former four associations were known, while the latter two were novel. For gene 183 

JMJD1C, the known associated phenotypes included γ-glutamyl transferase, platelet 184 

count, platelet size deviation width, and mean platelet volume; while newly identified 185 

associated traits were platelet larger cell ratio and aspartate aminotransferase. We used 186 

the phenome-wide association study (PheWAS) Manhattan plots to show the 187 

associations between one genetic variant and different phenotypes (Figure 3). 188 

The number of identified loci and calculated heritability for each phenotype were 189 

provided in Figure 2c. The heritability analysis showed that there were 51 phenotypes 190 

with heritability of 10% or more, with SE less than 5% in 36 of them. The results were 191 

quite consistent with that of GWAS and most of the phenotypes with high heritability 192 

belonged to hematological, followed by liver-related, kidney-related, infection, and the 193 

lowest was urinalysis. Among the phenotypes with SE less than 5%, platelet larger cell 194 

ratio (P-LCR) had the largest heritability of 32.0%. The heritability of maternal height 195 

and BMI were 30.0% and 26.8%, respectively, which were 26.0% and 0.2% less than 196 

previously reported results37,38. The main reason is that the coverage of ultra-low depth 197 

sequencing data is only 0.6%-1% of the entire genome, resulting in many undetected 198 
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variants. Even after high-quality genotype imputation, only about 2 million SNPs were 199 

included in the analysis after the quality control, thus the explained variation of the 200 

phenotype is lower than that of high-depth sequencing data.  201 

 202 

Pathway enrichment analysis. The detailed results for all phenotypes were provided 203 

in Supplementary Table S3. We also listed the most significant pathway for each 204 

phenotype in Figure 4. At an empirical p-value less than 1e-04, 24 phenotypes had at 205 

least one significant pathway. Among them, the lymphocyte count had the maximum 206 

number of 14 associated pathways, followed by eosinophil percentage, eosinophil count, 207 

and γ-glutamyl transferase.  208 

We found that the most important associated pathways belonging to the same 209 

category were often the same or similar. For example, pathways associated with the 210 

number and percentage of leukocytes included inflammatory molecular signaling 211 

pathways (e.g., BioCarta IL17 pathway), cytokine pathways involved in adaptive 212 

inflammatory host defense and cell growth (e.g., KEGG cytokine-cytokine receptor 213 

interaction), and epidermal growth factor receptor gene (EGFR) involved in pathways 214 

associated with a variety of human diseases (e.g., BioCarta EGFR SMRTE pathway). 215 

For glucose levels, such as serum glucose and oral glucose tolerance test measurements, 216 

the associated pathways were related to the development of pancreatic islet B cells 217 

(Reactome regulation of beta cell development), type II diabetes (KEGG maturity-onset 218 

diabetes of the young), and hormones (Reactome peptide hormone biosynthesis), all of 219 

which played important roles in glucose metabolism. Notable pathways associated with 220 

globulin, albumin ratio, and total protein are mainly immune-related pathways, such as 221 

BioCarta TALL1 pathway, KEGG intestinal immune network for IGA production, and 222 

KEGG primary immunodeficiency.  223 

In addition, for a single phenotype, the most relevant pathway for bile acids is 224 

Reactome bile acid and bile salt metabolism, which mainly describes the synthesis and 225 

metabolism of bile acids and bile salts; the most significant pathway for platelet counts 226 

is Reactome hemostasis, which describes the physiological response of the body to 227 

hemostasis, including vasoconstriction, platelet thrombosis, and fibrin clot formation. 228 
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The enriched pathway for total and direct bilirubin levels are Reactome glucuronidation 229 

and KEGG pentose and glucuronate interconversions, which are involved in bilirubin 230 

metabolism. For fasting glucose levels in OGTT test, the enriched pathway is Reactome 231 

regulation of gene expression in beta cells, which is associated with beta cells and 232 

insulin synthesis. 233 

Besides these previously known functional pathways, we also uncovered several 234 

candidate ones that might act in performing biological functions in phenotypes. The 235 

most significant pathway for birthweight is Reactome signaling by NODAL. The 236 

NODAL gene encodes a TGF-beta (transforming growth factor-beta) superfamily of 237 

proteins, which regulates early embryonic development and plays important roles in the 238 

maintenance of human embryonic stem cell pluripotency and placental development. 239 

The related pathways for maternal height included BioCarta GH pathway, Reactome 240 

growth hormone receptor signaling, and Reactome prolactin receptor signaling. The 241 

former two pathways were about growth hormones and played a major role in 242 

regulating growth during childhood and adolescence. A deficiency in growth hormone 243 

signaling can cause dwarfism. Interestingly, we found that prolactin receptor signaling 244 

also achieved molecular function in maternal height. Prolactin is a hormone secreted 245 

mainly by the anterior pituitary gland and regulates the development of the mammary 246 

gland and lactation. Whether this pathway plays a role specifically in female height 247 

requires further investigation.  Among the few top functional pathways related to a twin 248 

pregnancy, we observed Reactome cell cycle checkpoints and Reactome mitotic G1-249 

G1/S phases. The formation process of identical twins is mitotic, and we speculate that 250 

these two pathways play an important role in twin pregnancy. 251 

 252 

Partitioning heritability analysis. The majority of the partitioning heritability results 253 

recapitulate our known biology knowledge (Figure 5, Supplementary Figure S5, 254 

Supplementary Table S4): leukocyte phenotypes (basophils, eosinophils, lymphocytes, 255 

monocytes) exhibit blood/immune cell-type enrichments; liver-related phenotypes 256 

(aspartate aminotransferase, total bilirubin, direct bilirubin, alkaline phosphatase, 257 

alanine aminotransferase) exhibit, liver, CNS, and blood/immune enrichments; virus 258 
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infection-related phenotypes (HBsAb, HBcAb, HBeAb, HBeAg, Anti-HCV) exhibit 259 

blood/immune cell-type enrichments. For a particular phenotype, maternal height 260 

exhibits musculoskeletal/connective enrichment; leukocyte esterase in urine exhibits 261 

blood/immune cell-type enrichment; urine clarity exhibits bladder enrichment; blood 262 

urea nitrogen exhibits urinary bladder cell-type enrichment; thyroid-stimulating 263 

hormone exhibits thyroid enrichment.  264 

In addition to the aforementioned trait-tissue/cell-type relevance, we also noticed a 265 

few other interesting ones (Figure 5, Supplementary Table S4), which were closely 266 

related to pregnancy. The twin pregnancy exhibits embryoid bodies cell-type 267 

enrichment. The birth-type cesarean section exhibits fallopian tube cell-type enrichment. 268 

The birth weight and birth height exhibited ovary and embryonic stem cell enrichments. 269 

Previous research reported that birthweight was a relation to maternal ovarian size39,40. 270 

 271 

Replication in GWAS of pregnancy phenotypes. As a replication strategy, we 272 

compared our GWAS results with three companion works to discover shared signals 273 

[cite]. For simplicity, we denote our work as PP (pregnancy phenotype), and the 274 

companion works are MM (maternal metabolite), NM (neonatal metabolite), and EHR 275 

(electronic health record). In total, we found 210 shared significant SNPs that were 276 

composed of 18 loci linking 19 representative pairs of possibly correlated traits 277 

(Supplementary Table S5). Some of the findings are well-established, such as 278 

PP:Vitamin_D─MM:Vitamin_D3 with GC gene (PP4 = 99.9%)41-43, PP:MCH─MM: 279 

Element_Fe with TMPRSS6 gene (PP4 = 100%)11,44,45, and PP:BMI─EHR:Obesity with 280 

FTO gene (PP4 = 96.7%)46-49, where MCH is mean corpuscular hemoglobin. Here, PP4 281 

indicates posterior probability of H4: one common causal variant of two GWAS studies. 282 

Some discoveries are novel but convincing, such as PP:Prealbumin─MM:Vitamin_A 283 

with GCKR gene (PP4 = 99.5%), PP:CR─MM:Vitamin_A with GCKR (PP4 = 98.6%), 284 

PP:MCH─NM:C2 with MARCH8 gene (PP4 = 98.9%), PP:CR─MM:Element_Mg 285 

with CASP9 gene (PP4 = 95.6%), PP:UA─MM:Element_Mg with DNAJC16 gene 286 

(PP4 = 99.2%), and PP:FT4─MM:Element_I with SERPINA7/PWWP3B (nearest) gene 287 

in X chromosome (PP4 = 94.3%), where CR is serum creatinine, C2 is acetylcarnitine, 288 
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UA is urine acid, and FT4 is free thyroxine. Specifically, prealbumin was initially 289 

discovered to function as a transport protein for thyroxine and vitamin A, and an 290 

intronic variant (rs780094) on GCKR was found as a significant positive association 291 

with vitamin A50, suggesting the likely association of prealbumin and GCKR. An early 292 

study reported that in the US population, vitamin A and CR were positively correlated 293 

with each other51, while CR was associated with GCKR11,52. Several studies have shown 294 

that higher magnesium levels were associated with lower risk of hyperuricaemia53,54, 295 

while urine acid had significant gene DNAJC1627,55. The plots for visualizing genetic 296 

colocalization analysis of two GWAS results from this study and the companion works 297 

were provided in Figure 6 and Supplementary Figure S6. The replication study 298 

validated our GWAS findings. 299 

  300 
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Methods 301 

Study subjects. All the subjects were recruited from Wuhan Children's Hospital, 302 

Wuhan city, Hubei province, China during their pregnancy routine tests between 2015 303 

to 2020. Wuhan is the most populous city in Central China. This study was approved 304 

by the Institutional Review Boards at Wuhan Children's Hospital and BGI-Shenzhen 305 

and also approved by the Human Genetic Resources Administration of China. 306 

 307 

Genotype and imputation. The genotype data were generated when pregnant women 308 

underwent NIPT screening from around the 12th week of pregnancy onwards. In detail, 309 

5ml peripheral venous blood was collected and stored at -80 Celsius degrees in EDTA-310 

anticoagulated tubes. Plasma samples from pregnant women were sent to BGI-Wuhan 311 

for next-generation high-throughput sequencing, and genotype data with an ultra-low 312 

sequencing depth of 0.06X to 0.1X were obtained for each subject. FASTP software 313 

was used to remove read regions of low quality and potential adaptor sequences56. For 314 

genome alignment, single-end reads (35bp) were aligned to the human reference 315 

genome (GRCh38/hg38) using the BWA algorithm57. Then, we used the BaseVar 316 

algorithm to call SNPs and STITCH to impute the missing genotypes58. Finally, we 317 

filtered out samples if the sequencing depth was lower than 0.05X or the mapping rate 318 

was less than 90%.  319 

To evaluate the genotype imputation performance, we used 30 randomly selected 320 

Han Chinese from the 1000 Genomes Project with 30X sequencing coverage 321 

(downloaded from https://www.internationalgenome.org/data-portal/data-322 

collection/30x-grch38) as a true set, down-sampled to 0.1X sequencing depth, and 323 

imputed with the true NIPT genotype data by using STITCH. The imputation accuracy 324 

was computed as Pearson’s correlation coefficient between the 30X true set and the 325 

imputed genotype. In addition to this assessment, we evaluated the imputation 326 

performance by comparing the imputed and true genotypes of three variants in two 327 

genes (MTHFR and MTRR), which were involved in the folic acid metabolism. In the 328 

obstetrical clinic, these three variants were often tested for folate metabolism ability in 329 
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pregnant women. Mutation carriers in these variants may have a higher risk of 330 

miscarriages or birth defects59.  331 

 332 

Phenotype. A wide spectrum of traits was measured during the pregnancy routine tests, 333 

including basic maternal information, postnatal outcome, and laboratory measurements. 334 

The basic maternal information includes pregnant women’s age, height, weight, and 335 

blood pressure. The postnatal outcome includes gestational week, delivery method, 336 

birth weight, and birth length. The laboratory measurements include various serum and 337 

urinary laboratory tests, such as hematology tests, liver function, urine sediment 338 

analysis, and viral infections. Since the body will undergo some adaptive or 339 

pathological changes as pregnancy progresses, pregnant women need to take some 340 

examinations more than once and see if the relevant indicators are normal. Multiple 341 

examinations during the entire pregnancy period produced multiple records. For 342 

quantitative traits, we took an average of multiple measurements, and for binary traits, 343 

we treated as positive once a positive result was observed. Detailed characteristics for 344 

each trait are shown in Table 1.  345 

 346 

Genome-wide association analyses. For each quantitative trait, we performed a 347 

GWAS analysis by fitting a linear regression model; and for a binary trait, we fitted a 348 

logistic model. This was achieved in PLINK 2.0 using the command line –glm60. The 349 

imputed genotype was measured in a dosage ranging from 0 to 2. The biallelic variants 350 

with minor allele frequency (MAF) > 0.05, Hardy-Weinberg equilibrium (HWE) p-351 

value > 1e-6, and genotype missing rate < 0.1 were used in the GWAS analyses. The 352 

covariates adjusted in the model include women’s age and the first five principal 353 

components (PCs). We set a genome-wide significance threshold of 5e-08 and a study-354 

wide significance threshold of 4.81e-10 (=5e-8/104) by performing Bonferroni 355 

adjustment.  356 

We defined an associated locus with a window size of 1MB based on its physical 357 

position in the genome and counted the number of loci associated with the phenotype. 358 

For a locus, if all SNPs it contains were less than 500 kb away from the reported trait-359 
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associated SNPs in the GWAS catalog as of September 2022 360 

(https://www.ebi.ac.uk/gwas/), we defined this locus as known, and vice versa as novel. 361 

The genomic inflation factors (λgc) were then calculated in R61. With the GWAS 362 

summary statistics of each trait, we used LD score regression (LDSC)62 to estimate its 363 

heritability and confounding bias. 364 

 365 

Pathway enrichment analysis. We used Pascal to calculate gene and pathway scores 366 

on summary data from GWAS63. In particular, Pascal used the reference population to 367 

calculate LD information, and the reference population used in this case was the Asian 368 

population (1000 genome phase 3 Asian population). Pascal used three external 369 

databases to define the gene set of each pathway, including BIOCARTA64, KEGG 370 

(Kyoto Encyclopedia of Genes and Genomes)65, and REACTOME66, with 1,077 gene 371 

sets. The window size set for this experiment was 50kb, and the significance of the path 372 

was evaluated using the empirical score. We used 1e-4 as the significance threshold. 373 

 374 

Partitioning heritability analysis. We applied stratified LD score regression67 to 375 

estimate the polygenic contributions of functional categories to heritability in each trait. 376 

We used 205 cell-type-specific annotations with gene expression data from the 377 

Genotype-Tissue Expression (GTEx) project68 and Franke lab dataset69,70. The 205 378 

tissues and cell types were classified into nine categories, including adipose, 379 

blood/immune, cardiovascular, central nervous system (CNS), digestive, endocrine, 380 

liver, musculoskeletal/connective, and others. This classification is referenced to 381 

Finucane et al.71. The multi-tissue microarray gene expression file is 382 

“Multi_tissue_gene_expr.EAS” containing both the GTEx dataset and the Franke lab 383 

dataset with East Asian populations. The baseline model LD score was 384 

1000G_Phase3_EAS.    385 

 386 

Replication study of GWAS candidate loci. Ideally, the replication study of GWAS 387 

should be re-running the association inference conducted on independent samples from 388 
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the same population, while the sample size should be as large as or larger than the 389 

discovery sample. However, an independent dataset or GWAS summary statistics of the 390 

studied pregnancy phenotypes are largely not accessible in Chines or East Asian women. 391 

As an alternative to this, we compared the identified SNP-trait associations in three 392 

companion works, which performed GWAS analysis for maternal metabolites [cite], 393 

neonatal metabolites [cite], and electronic health records for both pregnant women and 394 

newborns [cite], respectively. Specifically, we searched for shared genome-wide 395 

significant SNPs between our work and each of the external work. If any, we defined a 396 

genomic region of 1-Mb with 500-kb on each side of the lead SNP and performed 397 

colocalization analysis in R:coloc to test whether the two traits shared distinct or same 398 

causal variants72. 399 

  400 
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Discussion 401 

Pregnancy is a special period experienced by women, in which regular maternal 402 

examinations generate a large amount of systematic clinical data, however, there are 403 

few genetic studies targeting these pregnancy phenotypes. In recent years, with the 404 

popularity of noninvasive prenatal genetic testing technology, it has become possible to 405 

obtain high-throughput maternal genotype data. In this study, based on the genotype 406 

data of nearly 40,000 pregnant women with non-invasive prenatal genetic testing, we 407 

performed molecular biology analysis of hundreds of clinical maternal phenotypes and 408 

successfully replicated 75.18% of the trait-locus associations and also mined 101 novel 409 

loci involved with 37 phenotypes at the genome-wide significance threshold; the gene-410 

set enrichment analysis not only further confirmed the phenotype-related pathways of 411 

action, but also discovered several pregnancy-specific associations; the results of 412 

heritability and partitioning heritability quantified the influence of genetic factors and 413 

highlighted valuable relevant tissue/cell types functioning in each phenotype.  414 

 Although our study provided an important reference and data resource for studying 415 

pregnancy phenotypes and complications, there are still several limitations. First, even 416 

though the genotype dataset was available in nearly 40,000 samples and the pregnancy 417 

traits were collected from over 30,000 women, the effective sample size in GWAS 418 

analysis was only around 20,000 after matching the genotype and phenotype datasets. 419 

The GWAS analysis requires larger sample sizes to achieve sufficient statistical power. 420 

Thus, we aim to collect more samples for performing larger-scale genetic studies in the 421 

future. Second, our phenotypes were all limited to clinical information and laboratory 422 

test indicators, and there is a lack of maternal disorders and adverse postnatal outcomes. 423 

Obtaining information on diseases diagnosed in the electronic medical record (EMR) 424 

system for pregnant women and analyzing them with pregnancy laboratory indicators 425 

such as genetic correlation73 and causal inference are our further research directions.  426 

As the growing of NIPT sequencing data, we expect more and larger genetic studies 427 

on maternal- and neonatal-related traits and diseases, the genome-wide association 428 

results would provide valuable reference and shed light on maternal and child health 429 

care. A systematic cataloguing and summarization of these associations would be highly 430 
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effective for researchers to find what they need. Several websites have been developed 431 

as a collection of GWAS summary datasets studied on a wide variety of phenotypes and 432 

also available for researchers to browse and download, for example, the GWAS Catalog 433 

(https://www.ebi.ac.uk/gwas/home), the MRC Integrative Epidemiology Unit (IEU; 434 

https://gwas.mrcieu.ac.uk/), the PheWeb archive (https://pheweb.sph.umich.edu/), and 435 

the BioBank Japan PheWeb (https://pheweb.jp/). To offer a searchable, visualizable, 436 

and openly accessible database of pregnancy-related SNP-trait associations, we are 437 

currently building a free online website for sharing and visualizing the GWAS results 438 

reported by this work, study of maternal metabolites [cite], neonatal metabolites [cite], 439 

and EHR of maternal and neonatal [cite]. We anticipate that the website could play a 440 

fundamental role in studying genetic susceptibility of maternal/postnatal-related 441 

phenotypes and providing useful resources for scientists, clinicians, and other users 442 

worldwide. 443 
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Figure 1. The information on imputed genetic variants 

 

Notes: a) the SNP density plot of imputed variants, b) the genotype imputation accuracy 

calculated by Pearson’s correlation between high-coverage sequencing data and 

imputed dosage, and c) the boxplot visualization and Pearson’s correlation between 

imputed and true genotypes of two variants on gene MTHFR (rs1801131 and rs1801133) 

and one variant on gene MTRR (rs1801394).  
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Figure 2. Overview of the identified trait-locus associations 

 

Notes: a) the circos plot presents the identified trait-locus associations, from inner to 

outer circle, different colors repretent different phenotype categories, b) the genomic 

inflation factors (λgc) for each phenotype, and c)  the bar plot (left) provides the 

number of identified trait-associated loci for each trait, grouped by phenotype 

categories; and the bar plot (right) provides the heritability value for each phenotype. 
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Figure 3. PheWAS Manhattan plots 

 

Notes: the GWAS associations for four listed SNPs and phenotypes in different 

categories. The yellow dashed line indicates -log10(1e-06) and the red dashed line 

indicates -log10(5e-08).  
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Figure 4. The gene-set enrichment analysis based on SNP-based GWAS results 

 

Notes: The x-axis represents the -log10 transformed empirical p-values for pathways. 

The most significantly associated pathway with each trait was labeled. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2023. ; https://doi.org/10.1101/2023.11.23.23298979doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Results of the partitioning heritability analysis for selected traits 

 

Notes: Each point represents a tissue/cell type from either the GTEx data set or the 

Franke lab data set. Large points pass the p-value < 5% cutoff, –log10(P)=1.30. 
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Figure 6. The genetic colocalization analysis of our study and the companion works  

 

Notes: a-b) plots for visualizing colocalization analysis for pairs of phenotypes from 

this study and the companion works, where PP is pregnancy phenotypes, MM is 

maternal metabolites, NM is neonatal metabolites, CR is serum creatinine, prealbumin, 

VA is vitamin A, MCH is mean corpuscular hemoglobin, MCV is mean corpuscular 

volume, and C2 is acetylcarnitine.  
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Table 1. Overview of the studied pregnancy phenotypes 

 
Category Trait Abbreviation N Number of loci Number of Novel loci Genome-wide novel gene Study-wide novel gene 

Maternal Body mass index BMI 17,605 4 0 None None 

Pre-pregnancy weight PreWeight 17,609 3 0 None None 

Maternal height pHeight 17,620 8 0 None None 

Diastolic blood pressure DBP 17,642 2 0 None None 

Systolic blood pressure SBP 17,642 0 0 None None 

Postnatal Head circumference at birth HC 2,990 0 0 None None 

Length at birth bHeight 20,663 0 0 None None 

Weight at birth bWeight 20,668 0 0 None None 

Delivery type BirType 20,849 0 0 None None 

Gestational age GA 20,885 0 0 None None 

Twin pregnancy ts 20,887 1 1 chr4:18823201 None 

Electrolyte Calcium Ca 5,457 1 0 None None 

Chloride CL 5,460 0 0 None None 

Potassium K 5,460 0 0 None None 

Sodium Na 5,460 0 0 None None 

Hematological Basophil count BASO 18,761 11 0 None None 

Basophil percentage BASO% 18,761 8 0 None None 

Eosinophil count EOS 18,761 6 0 None None 

Eosinophil percentage EOS% 18,761 8 0 None None 

Lymphocyte count LYM 18,761 5 1 chr17:35229013 None 

Lymphocyte percentage LYM% 18,761 7 2 R3HDM1, ESR1 ESR1 

Monocyte count MONO 18,761 14 0 None None 

Monocyte percentage MONO% 18,761 12 0 None None 

Neutrophil count NEU 18,761 8 2 EGF, ESR1 EGF, ESR1 

Neutrophil percentage NEU% 18,761 7 1 ESR1 ESR1 

Plateletcrit PCT 18,786 8 1 ZNF787 ZNF787 

platelet larger cell ratio P-LCR 18,841 26 26 PEAR1, DNM3, 
chr1:198823512, 

chr3:56815027, KIAA0232, 
TEC, RPL7P22, CARMIL1, 

STK38, CD36, 
chr7:106712411, CAPZA2, 
ZFPM2, ASAP1, DOCK8, 

JMJD1C, chr12:6184308, 
FAR2, BIN2, LAMP1, 
DLGAP5, PLEKHO2, 

CD226, SIRPD, ATP5F1E, 
LINC01637 

PEAR1, DNM3, chr1:198823512, 
KIAA0232, RPL7P22, CARMIL1, 
STK38, CD36, chr7:106712411, 

ZFPM2, ASAP1, DOCK8, 
JMJD1C, chr12:6184308, FAR2, 

BIN2, LAMP1, DLGAP5, 
PLEKHO2, CD226, 

chr20:1945078, ATP5F1E, 
LINC01637 

Mean platelet volume MPV 18,900 26 0 None None 

Platelet size deviation width PDW 18,900 27 4 RPL7P22, CD36, BIN2, 
chr20:54074364 

CD36, BIN2 

Red cell distribution width-
standard deviation 

RDW-SD 18,934 9 9 CCT3, LINC01184, 
ADGRF5, chr6:135097497, 

ABO, CNNM2, PRC1, 

AXIN1, SLC14A1 

CCT3, LINC01184, 
chr6:135097497, ABO, PRC1, 

AXIN1, SLC14A1 

Hematocrit HCT 18,990 2 1 ESR1 None 

Hemoglobin HGB 18,990 3 1 ESR1 None 

Mean corpuscular hemoglobin MCH 18,990 14 0 None None 

Mean corpuscular hemoglobin 
concentration 

MCHC 18,990 7 0 None None 

Mean corpuscular volume MCV 18,990 14 0 None None 

Platelet count PLT 18,990 14 0 None None 

Red blood cell count RBC 18,990 4 0 None None 

Red cell distribution width-
coefficient of variation 

RDW-CV 18,990 7 7 CCT3, LINC01184, 
CSNK1A1, USP49, PRC1, 

C18orf25, TMPRSS6 

CCT3, LINC01184, USP49, 
PRC1, TMPRSS6 

White blood cell count WBC 18,990 9 1 ESR1 ESR1 

Hormone β-
human chorionic gonadotropin 

β-hCG 5,839 0 0 None None 

Free thyroxine FT4 15,241 1 1 chrX:106056358 None 

Free triiodothyronine FT3 15,241 1 1 ABO ABO 

Thyroid-stimulating hormone TSH 15,350 15 0 None None 

Infection Herpes simplex virus type 2 
specific IgG antibody 

HSV-2 IgG 3,695 0 0 None None 

Herpes simplex virus type 2 
specific IgM antibody 

HSV-2 IgM 3,695 0 0 None None 

Cytomegalovirus IgG 
antibody 

CMV IgG 4,020 0 0 None None 

Cytomegalovirus IgM 
antibody 

CMV IgM 4,020 2 2 chr6:164602849, SLC22A6 None 

Toxoplasma gondii IgG 
antibody 

TOX IgG 4,125 0 0 None None 

Toxoplasma gondii IgM 
antibody 

TOX IgM 4,125 1 1 chr3:110125664 None 

Rubella IgG antibody Rub IgG 4,324 0 0 None None 

Rubella IgM antibody Rub IgM 5,716 0 0 None None 

C-reactive protein CRP 9,795 2 0 None None 

Hepatitis B core antibody HBcAb 15,259 0 0 None None 

Hepatitis B envelope antibody HBeAb 15,259 0 0 None None 

Hepatitis B envelope antigen HBeAg 15,259 0 0 None None 

Hepatitis B surface antibody HBsAb 15,259 1 0 None None 

Hepatitis C virus antibody Anti-HCV 15,596 0 0 None None 

Kidney-related Cystatin C CysC 17,489 2 0 None None 

Blood urea nitrogen BUN 17,603 9 2 ZSCAN31, IGF1 None 

Serum creatinine Cr 17,603 6 1 HELLPAR HELLPAR 

Uric acid UA 17,603 6 0 None None 

Liver-related Total bile acid TBA 13,357 2 1 SLC39A9 SLC39A9 

Alanine aminotransferase ALT 17,721 0 0 None None 

Alkaline phosphatase ALP 17,721 3 1 chr2:232390130 None 

Aspartate aminotransferase AST 17,721 3 2 JMJD1C, CDH3 JMJD1C 

Direct bilirubin DBIL 17,721 2 0 None None 
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Prealbumin PA 17,721 7 7 GCKR, RGS12, 
chr11:67562271, HNF1A-
AS1, LINC01229, TTR, 

chr20:40555309 

GCKR, RGS12, HNF1A-AS1, 
LINC01229, TTR, 
chr20:40555309 

Total bilirubin TBIL 17,721 3 0 None None 

γ-glutamyl transferase GGT 17,721 10 3 DYNC2LI1, ABCB4, AUH ABCB4 

Metabolism Hemoglobin A1c HbA1C 2,008 0 0 None None 

Vitamin D Vit D 3,091 1 0 
  

Oral glucose tolerance test-2 
hour 

OGTT2h 14,760 4 4 CDKAL1, chr9:4291435, 
chr10:69215297, MTNR1B 

CDKAL1, chr9:4291435, 
MTNR1B 

Oral glucose tolerance test-1 
hour 

OGTT1h 14,790 5 5 CDKAL1, chr7:128212012, 
chr9:4307369, KIF11, 

MTNR1B 

CDKAL1, KIF11, MTNR1B 

Oral glucose tolerance test-

fasting 

OGTT0h 14,889 9 1 ESR1 None 

Blood glucose GLU 15,124 8 0 None None 

Protein Ferritin Ferr 9,374 1 1 chr18:14735484 None 

Albumin ALB 17,721 1 0 None None 

Albumin/globulin ratio AGR 17,721 6 1 chr14:105508504 chr14:105508504 

Globulin GLB 17,721 8 4 ELL2, chr14:105508522, 
FXR2, BCL2 

chr14:105508522, FXR2 

Total protein TP 17,721 3 0 None None 

Urinalysis Casts in urine CAST_U 18,655 0 0 None None 

Epithelial cell count in urine EC_U 18,655 0 0 None None 

Urine conductivity Cond 18,655 0 0 None None 

Crystals in Urine X'TAL_U 18,656 0 0 None None 

Lysed red blood cell 
percentage in urine 

Lysed RBC(%) 18,656 0 0 None None 

Small round epithelial cells in 

urine 

SRC_U 18,656 1 1 chr2:185847594 None 

Unlysed red blood cell 
percentage in urine 

Unlysed 
RBC(%) 

18,656 0 0 None None 

Urinary tract infection UTI 18,656 0 0 None None 

Protein in urine PRO 18,711 0 0 None None 

Bacteria count in urine BACT_U 18,714 0 0 None None 

Bilirubin in urine BIL 18,714 0 0 None None 

Blood in urine BLD 18,714 1 1 chr16:58057133 None 

Ketones in urine KET 18,714 0 0 None None 

Leukocytes esterase in urine LEU 18,714 0 0 None None 

Nitrites in urine NIT 18,714 1 1 chr21:23745039 chr21:23745039 

Red blood cell count in urine RBC_U 18,714 0 0 None None 

Urine clarity Clarity 18,714 0 0 None None 

Urine glucose GLU_U 18,714 2 1 FBXL20 FBXL20 

Urine PH level pH 18,714 2 0 None None 

Urine specific gravity SG 18,714 0 0 None None 

Urobilinogen UBG 18,714 1 1 SLCO1B3 SLCO1B3 

White blood cell count in 
urine 

WBC_U 18,714 1 1 SLC10A7 None 

Fibers in urine FIBERS 18,715 1 1 PDILT PDILT 

Yeast-like cell in urine YLC 18,715 0 0 None None 
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Supplementary Figures: 

 

Supplementary Figure S1. The number of available samples for each trait 

Supplementary Figure S2. The visualization of trait distribution and pairwise 

association 

Supplementary Figure S3. The Manhattan plots of all studied traits 

Supplementary Figure S4. The heatmap of partitioning heritability results 

Supplementary Figure S5. The results of partitioning heritability for traits that were 

not listed in the main text 

Supplementary Figure S6. The genetic colocalization analysis of trait pairs that were 

not listed in the main text 
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