
 1 

A validated heart-specific model for splice-disrupting variants in childhood heart disease 

 

Robert Lesurf, PhD1, Jeroen Breckpot, MD, PhD2, Jade Bouwmeester, BSc1, Nour Hanafi, MHSc3, 

Anjali Jain, MHSc3, Yijing Liang, MHSc3, Tanya Papaz, HBA4, Jane Lougheed, MD5, Tapas Mondal, 

MD6, Mahmoud Alsalehi, MD7, Luis Altamirano-Diaz, MD8, Erwin Oechslin, MD9, Enrique Audain, 

PhD10-12, Gregor Dombrowsky, MSc10-11, Alex V Postma, PhD13,14, Odilia I Woudstra, MD, PhD15, 

Berto J Bouma, MD, PhD16, Marc-Phillip Hitz, MD, PHD10-12, Connie R Bezzina, PhD17, Gillian Blue, 

PhD18,19, David S Winlaw, MBBS, MD, FRACS20, Seema Mital, MD1,21,22,* 

 

1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada 

2Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium 

3The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON, Canada 

4Division of Cardiology, Labatt Family Heart Centre, Department of Pediatrics, The Hospital for Sick 

Children, Toronto, ON, Canada 

5Division of Cardiology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada 

6Division of Cardiology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, 

Canada 

7Division of Cardiology, Department of Pediatrics, Kingston General Hospital, Kingston, ON, Canada 

8Division of Cardiology, Department of Pediatrics, London Health Sciences Centre, London, ON, 

Canada 

9Division of Cardiology, Toronto Adult Congenital Heart Disease Program at Peter Munk Cardiac 

Centre, Department of Medicine, University Health Network, and University of Toronto; Toronto, ON, 

Canada 

10School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, 

Germany 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.23.23298903doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.23.23298903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

11Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-

Holstein, Kiel, Germany 

12German Center for Cardiovascular Research (DZHK), Kiel, Germany 

13Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The 

Netherlands 

14Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The 

Netherlands 

15Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The 

Netherlands 

16Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands 

17Department of Clinical and Experimental Cardiology, Amsterdam University Medical Center, 

Amsterdam, The Netherlands 

18Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia 

19Sydney Medical School, The University of Sydney, Sydney, NSW, Australia 

20Heart Center, Ann and Robert H. Lurie Children’s Hospital of Chicago and Feinberg School of 

Medicine, Northwestern University, Evanston, IL, USA 

21Ted Rogers Centre for Heart Research, Toronto, ON, Canada 

22Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, 

Canada 

 

Corresponding Author: 

Seema Mital, MD 

Hospital for Sick Children, 

555 University Avenue, 

Toronto, Ontario M5G 1X8, Canada. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.23.23298903doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Tel: 416-813-7418; Fax: 416-813-5857 

*Email: seema.mital@sickkids.ca 

Twitter: @seema_mital 

 

Keywords: 

Congenital Heart Disease 

Genomics 

RNA splicing 

Non-canonical 

Machine Learning 

 

Word count (main text): 4,382  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.23.23298903doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

ABSTRACT 

Congenital heart disease (CHD) is the most common congenital anomaly. Non-canonical splice-

disrupting variants are not routinely evaluated by clinical tests. Algorithms including SpliceAI predict 

such variants, but are not specific to cardiac-expressed genes. Whole genome (WGS) (n=1083) and 

myocardial RNA-Sequencing (RNA-Seq) (n=114) of CHD cases was used to identify splice-disrupting 

variants. Using features of variants confirmed to affect splicing in myocardial RNA, we trained a 

machine learning model that outperformed SpliceAI for predicting cardiac-specific splice-disrupting 

variants (AUC 0.92 vs 0.66), and was independently validated in 43 cardiomyopathy probands (AUC 

0.88 vs 0.64). Application of this model to 971 CHD WGS samples identified 9% patients with splice-

disrupting variants in CHD genes. Forty-one% of predicted splice-disrupting variants were deeply 

intronic. The burden of variants in CHD genes was higher in cases compared with 2,570 controls. Our 

model improved genetic yield by identifying splice-disrupting variants that are not evaluated by routine 

tests.  
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INTRODUCTION 

Congenital heart disease (CHD) is the most common congenital anomaly, occurring in ~1% of live 

births1. Children with complex CHD account for a disproportionately high healthcare burden in society. 

Two common phenotypes of CHD include tetralogy of Fallot (TOF) and dextro-transposition of the 

great arteries (TGA). Although there is a strong familial and genetic association to CHD2, ~90% of 

sporadic cases with isolated CHD remain gene-elusive on conventional clinical testing that is typically 

limited to exons of known disease-associated genes3–5. 

 

Among cases where a genetic cause is identified, normal gene function can be disrupted through a 

variety of mechanisms, including missense variants, premature stop codons, insertions, deletions, or 

altered RNA splicing. Splice-disruptions may include the loss of wild-type splice junctions and/or the 

gain of ‘cryptic’ splice sites that create novel exon boundaries, ultimately resulting in disruptions to the 

normal pattern of RNA splicing which in turn lead to abnormal protein isoforms. Splice-disrupting 

variants can occur near existing canonical splice sites, in exons, or in deeply intronic regions.  

 

While canonical splice site variants can be identified using conventional sequencing workflows, splice-

disrupting variants outside of these sites are more difficult to identify with high confidence. Such non-

canonical splice-disrupting variants are reportedly pathogenic in up to 15% of patients with rare genetic 

disorders6 but cannot routinely be evaluated by conventional genetic testing. Recent reports have 

identified non-canonical splice-disrupting variants in CHD and other rare diseases primarily using in 

silico predictions in whole exome and whole genome sequencing data, followed by in vitro validation 

of their effect using minigene assays7–9. However, whole exome sequencing is unable to detect deeply 

intronic splice-disrupting variants, and minigene assays alone have technical limitations as a patient-

relevant functional assay. Further, current models are not specifically designed to identify cardiac 

specific splice-disrupting variants expressed in the human heart. The use of patient myocardium to 
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identify and validate aberrant splicing events has a strong potential to address this gap10. Recent 

American College of Medical Genetics and Genomics and the Association for Molecular Pathology 

(ACMG/AMP) framework emphasizes that the effect of splice-disrupting variants can be more 

accurately validated in patient-derived tissue samples11.  

 

Here we used whole genome sequencing (WGS) and myocardial RNA-Sequencing (RNA-Seq) to 

identify and validate cardiac specific splice disrupting variants and to develop a heart-specific model 

for canonical and non-canonical splice variants, which can be applied to patients with CHD. These 

included patients with two of the most common forms of cyanotic CHD i.e. tetralogy of Fallot (TOF) 

and transposition of the great arteries (TGA). In addition to identifying canonical splice-disrupting 

variants in known CHD-related genes in 0.5% cases, this approach identified putatively damaging non-

canonical splice-disrupting variants in 8% of isolated CHD, with deeply intronic variants representing 

41% of all high-confidence splice-disrupting variants in CHD genes. WGS was critical for the 

identification of variants that would not be captured by routine clinical genetic tests including exome 

sequencing12,13, while cardiac RNA sequencing (RNA-Seq) allowed for high specificity in the 

interpretation of splice-disrupting effects. This splice-disrupting variant discovery framework, coupled 

with a case-control burden analysis, provides a practical strategy for increasing the yield of pathogenic 

variants in known CHD genes. 

 

RESULTS 

 

Study cohort 

Our overall study included 1085 CHD probands, of which 856 had TOF and 229 had TGA (Table 1). 

Probands with a clinically and/or genetically diagnosed syndrome were excluded. Among these cases, 

708 cases were enrolled through the Heart Centre Biobank Registry at the Hospital for Sick Children 
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(Canada), 250 cases were enrolled through the Kids Heart BioBank at the Heart Centre for Children, 

The Children's Hospital at Westmead (Australia), and 127 cases were enrolled through the CONCOR 

registry at the Amsterdam Medical Center (Netherlands). CHD probands were subdivided into a 

Discovery cohort, which included 114 unrelated TOF probands with RNA-Seq data from right 

ventricular myocardium and WGS data derived from blood or saliva in 112 of the 114 probands, and an 

Extension cohort, which included 971 unrelated isolated CHD probands (742 TOF and 229 TGA) with 

WGS data. 18% of probands in the Discovery and Extension cohorts received one or more forms of 

prior clinical genetic testing, including cytogenetic, microarray, single gene polymerase chain reaction, 

gene panel, and/or whole exome sequencing, of which 1% of the cohort harbored pathogenic or likely 

pathogenic protein-coding variants in known CHD-related genes (1% TOF and 0% TGA). An 

independent cohort of 43 patients with cardiomyopathy in whom WGS and myocardial RNA-seq was 

available were used for model validation14. The collection and use of all biospecimens was approved by 

local or central Research Ethics Boards, written informed consent was obtained from all patients, 

parents or legal guardians, and study protocols adhered to the Declaration of Helsinki. 2,570 WGS 

samples from the Medical Genome Reference Bank15 were obtained for use as a Control cohort. 

 

Protein-coding variants in CHD genes 

We first analyzed WGS data to identify pathogenic or likely pathogenic variants in CHD-associated 

genes (Table 2). These included 99 Tier 1 CHD genes with moderate, strong, or definitive associations 

with CHD according to Clinical Genome Resource (ClinGen) criteria (17 isolated CHD genes, 82 

syndromic CHD genes)16, and 626 Tier 2 CHD genes with more limited association with CHD. Tier 2 

genes were identified using published literature, existing databases including Online Mendelian 

Inheritance in Man (OMIM)17, ClinGen18, and CHDgene19, their inclusion in clinical gene panels, and 

expert curation. CHD genes were further annotated by their mode of inheritance and haploinsufficiency 

intolerance. ACMG/AMP criteria20,21 were applied to protein-coding single nucleotide variants (SNVs), 
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insertion-deletions (indels), and copy number variants (CNVs) in CHD genes, yielding pathogenic 

variants in 5% of probands (5% TOF and 1% TGA) (Table 1). 

 

Discovery of splice-disrupting variants affecting cardiac-expressed genes 

We explored WGS data in the Discovery cohort for DNA SNVs and indels that were predicted with 

high sensitivity using SpliceAI22 to result in the loss of a wild-type splice junction and/or the gain of a 

novel cryptic splice site (SpliceAI Δ score ≥ 0.2). This identified 19,448 variants of which 9,610 were 

rare within the Discovery cohort i.e. found in no more than one sample (internal minor allele frequency 

(MAF) < 0.01). Among these, 427 (4%) occurred at canonical splice sites. Next, we searched for 

splice-disrupting events in patient myocardium by applying the in silico tool FRASER23 to myocardial 

RNA-Seq data which allows detection of not only alternative splicing but also intron retention events23. 

Across the RNA-seq data, 11,251 genes had a TPM expression ≥ 1 i.e. were expressed in cardiac tissue. 

We limited our selection of splice sites to those where reads from the donor and acceptor sites were 

aligned within the same gene, and either rarely were observed to be spliced together within the cohort 

(ψ/θ – Δψ/θ ≤ 0.1) or nearly always were observed to be spliced together (ψ/θ – Δψ/θ ≥ 0.9). 

Significant outlier splicing events within a sample were then defined as those having a false discovery 

rate < 0.2, an absolute Z-score ≥ 1, and an absolute Δψ/θ score ≥ 0.2, indicating that alternative splicing 

between two sites was observed 20% more or less often than expected. This yielded 695 significantly 

altered genes having affected splice junctions and/or intron-retention events with a high effect size. A 

median of 5 genes were affected per sample, and 80 genes were altered in more than one patient. 

 

We then classified the rare DNA variants identified in WGS data by whether or not they were 

associated with a matching significant outlier splicing event in myocardial RNA-Seq data from the 

same proband. This yielded 100 DNA variants that were associated with observable splice disruption in 

the myocardium i.e. confirmed splicing events (Table 3), and 9,406 DNA variants where a significant 
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tissue effect was not observed. 104 DNA variants were excluded due to an indeterminate association 

with an observed splicing event i.e. more than 100bp outside of a significantly altered splice 

donor/acceptor pair. Thirty-three of the confirmed splicing events occurred at canonical splice sites. An 

overview of our variant prioritization strategy is shown in Figure 1. A comparison of confirmed splice-

disrupting variants i.e. DNA variants associated with a splicing event in the myocardium, versus the 

remaining unconfirmed splice-disrupting variants revealed that true positive variants had higher 

SpliceAI Δ scores (p=7.5x10-27), affected genes with higher RNA expression (p=1.2x10-28), were less 

likely to occur in low complexity regions of the genome (p=0.01), and analogously were more likely to 

occur in non-repetitive regions of the genome (p=2.8x10-6). All confirmed variants were in genes with 

a median TPM expression > 0.9 in our cohort. 

 

Random forest model to predict cardiac relevant non-canonical splice-disrupting variants 

Utilizing features from the set of confirmed splicing events, we trained random forest models to predict 

whether variants identified in WGS data are associated with aberrant splicing in human myocardium. 

Model 1 included only SpliceAI Δ scores as input. While SpliceAI has been reported to have good 

accuracy for detecting splice-disrupting variants, it utilizes only the genomic sequence of pre-mRNA 

transcript as input, which does not take into account existing splice junction boundaries or the 

likelihood of false positive variant calls. We therefore trained a second model 2 which included not 

only SpliceAI delta scores but also the variant distance to the nearest annotated splice junction, the 

variant type (SNV or indel), and whether the variant occurred in a branchpoint region, low complexity 

region, and/or repetitive region. As these two models include only DNA variant features, they are not 

trained to predict organ-specific splicing validation that may be unique to cardiac-expressed genes. A 

third model 3 was thus trained and included all of the aforementioned DNA variant features in addition 

to the corresponding median gene expression TPM value in patient myocardial samples. Due to the 

imbalance between the number of confirmed vs unconfirmed putatively splice-disrupting variants, all 
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models were weighted to prioritize the selection of the confirmed class. The performance of all three 

models was internally assessed using five-fold cross validation. While all three models performed 

better than random, model 3 that included DNA variant and gene expression features provided highest 

performance accuracy (AUC=0.92 with five-fold cross-validation compared to 0.66 for model 1 and 

0.82 for model 2) (Figure 2). Although model 3 prioritized gene expression values, SpliceAI Δ scores 

and distance from the nearest existing annotated splice site as the features of highest importance, other 

aforementioned features also provided independent predictive information. Together, this suggests that 

location and type of DNA variants and the cardiac expression of the genes in which they are found can 

improve the selection of cardiac-relevant high-confidence splice disrupting variants. 

 

Independent validation of the random forest model in a cardiomyopathy cohort 

In order to externally validate variant selection by our random forest model, we investigated splice 

disrupting DNA variants in an independent cohort of 43 cardiomyopathy probands for whom both 

WGS and matching RNA-Seq profiles derived from the left ventricular myocardium were available14. 

We first selected SNVs and indels that were predicted with high sensitivity to result in the loss of a 

wild-type splice junction and/or the gain of a novel cryptic splice site (SpliceAI Δ score ≥ 0.2), and that 

were rare within this Validation cohort i.e. found in no more than one sample (MAF < 0.03). This 

identified 4,273 DNA variants across all genes, of which 529 were selected by the random forest model 

3. We next identified aberrant splicing events in the Validation cohort using FRASER. Using the 

previous thresholds (false discovery rate < 0.2, an absolute Z-score ≥ 1, an absolute Δψ/θ score ≥ 0.2, 

and ψ/θ – Δψ/θ ≤ 0.1 or ≥ 0.9) yielded 360 observations of significantly-altered splicing events with a 

high effect size. We applied our random forest models to these data and showed that model 3 

outperformed the other two models, with an area under the curve of 0.88 compared to 0.64 for model 1 

and 0.76 for model 2 (Figure 3). Confirmed splicing variants, as well as all variants selected by model 

3, are included in Table 4. While the smaller size of the Validation cohort limited the statistical power 
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to identify outlier splice disruption events within the cohort, the absolute Z-scores of the altered 

splicing events was significantly higher in events harboring matching DNA variants selected by model 

3 (p = 0.00041). We additionally investigated whether selected splice-disrupting DNA variants were 

associated with a reduction in gene expression, which may occur due to nonsense-mediated decay. 

Applying OUTRIDER24 to the Validation cohort, we observed that DNA variants selected by model 3 

were associated with significantly reduced gene expression compared with variants that were not 

selected by the random forest model (p = 0.00076, mean Z-score = -0.258 vs -0.061). Of note, model 3 

selected a pathogenic canonical splice site variant in a known cardiomyopathy gene, FLNC, previously 

reported by our group to be associated with reduced mRNA expression despite only a few RNA-Seq 

reads displaying abnormal splicing (presumably as a result of nonsense-mediated decay)14. Together 

these results confirm that our cardiac-specific random forest model improves the selection of putatively 

splice-disrupting variants in patients with childhood onset heart disease.  

 

High-confidence splice-disrupting variants in CHD genes in the Extension cohort 

Splice-disrupting variants in Tier 1 CHD genes: In addition to the splice-disrupting variants identified 

in the Discovery cohort, we applied random forest model 3 to identify high-confidence splice-

disrupting variants (SNVs and indels) in the Extension cohort of 971 patients with CHD (742 TOF, 229 

TGA) with only WGS data. A total of 52,390 putative splice-disrupting variants were identified 

genome-wide (SpliceAI Δ score ≥ 0.2), of which model 3 selected 7,049 variants. Filtering for variants 

that were rare in controls (gnomAD v2 allele frequency < 0.001 and gnomAD v3 PopMax allele 

frequency < 0.0001) yielded 4,529 variants in 2875 genes. These genes were enriched for a diverse set 

of Human Phenotype Ontology terms that included abnormal heart and muscle morphologies (Figure 

4, Table 5). We further narrowed our variant selection by limiting to those in a Tier 1 CHD gene with 

either a dominant mode of inheritance or homozygous in a gene with a recessive mode of inheritance. 

In total, we identified 32 high confidence splice-disrupting variants in 35 probands involving 22 Tier 1 
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genes (Figure 5, Table 6). Four variants were located at a canonical splice site, all of which were 

considered to be pathogenic/likely pathogenic by ACMG/AMP criteria. This included a splice donor 

variant in TBX20, which was validated by RNA-Seq (Figure 6). Intronic variants more than 10bp from 

existing splice sites accounted for 44% of high confidence Tier 1 splice-disrupting variants, many of 

which would not be detectable through panel or exome sequencing and would have been missed by 

applying only a high SpliceAI score cut-off. Of note, only one of these probands harbored additional 

pathogenic protein-coding variants in Tier 1 CHD genes to explain their CHD. None of these variants 

were observed in Discovery cohort samples, though two DNA variants in as many genes were observed 

in multiple unrelated probands in the Extension cohort.  

 

Splice-disrupting variants in Tier 2 CHD genes: In addition to splice-disrupting variants in Tier 1 CHD 

genes, we searched for high-confidence splice-disrupting variants in the Discovery and Extension 

cohorts, that were rare (gnomAD v2 allele frequency < 0.001 and gnomAD v3 PopMax allele 

frequency < 0.0001) and occurred in haploinsufficiency intolerant Tier 2 CHD genes (gnomAD v2 pLI 

≥ 0.9). This search yielded 58 variants in 34 genes among 61 probands (Table 6). Two of these variants 

were selected by model 3 in the Extension cohort and also observed in Discovery cohort samples, 

although neither appeared to validate with either aberrantly spliced RNA-Seq reads or reduced gene 

expression (Z-scores = -1.06 and 0.97). One pathogenic canonical splice site variant in the Tier 2 gene 

TBX1 (c.867+1G>A) was observed in WGS data but not in RNA-Seq data from the same patient. This 

gene had low expression within the Discovery cohort (TPM = 0.06), and further investigation revealed 

that no RNA-Seq reads were aligned to this splice donor site. This is consistent with data suggesting 

that TBX1 is primarily expressed in the developing rather than adult heart25. The relative positions of 

these 58 variants were also consistent with what was observed in Tier 1 CHD genes, whereby deeply 

intronic variants (>10bp from an existing splice site) accounted for 40% of all Tier 2 variants. For 48 of 
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58 variants, the most probable predicted effect was the creation of a new cryptic splice site rather than 

the loss of an existing splice junction.  

 

Genotype-phenotype correlation: We performed reverse phenotyping in probands harboring splice-

disrupting variants in syndromic genes and identified some patients that harbored extra-cardiac features 

consistent with a syndrome even though it had not been clinically diagnosed at the time of the study. 

For example, one patient had an intronic CHD7 c.5607+17A>G variant that was de novo with the 

patient demonstrating features consistent with CHARGE syndrome (Figure 6). This genetic finding 

triggered repeat genetic evaluation that led to confirmation of the diagnosis of CHARGE syndrome. A 

proband with classic TOF harboring a cryptic splice acceptor gain in the protein-coding region of 

EFTUD2 also displayed a delay in speech, and mild to moderate hearing loss, likely of middle ear 

function, which required clinical intervention. One TOF proband harboring a splice region variant in 

the Tier 2 gene ACTB (c.364-3C>G) had extracardiac anomalies including bifid uvula with submucosal 

cleft, dysmorphic features, and clinodactyly, consistent with expected phenotype associated with defect 

in this gene.  

 

One proband was observed to harbor intron retention in RNA-Seq for the KRAS gene, despite no 

candidate DNA variant being identified (Figure 7). This individual was found to have congenital 

malformations of the brain posterior fossa on reverse phenotyping, which may be consistent with a 

report of an activating KRAS mutation in a posterior fossa pilocytic astrocytoma26, and supports the 

pathogenicity of this alternative splicing event. An additional five significant splicing events in CHD 

genes were found without corresponding DNA variants (Figure 7, Table 3).  

 

Genome-wide burden of splice-disrupting variants in cases versus controls 

We compared the characteristics of splice-disrupting variants in CHD patients to controls without CHD 
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utilizing case-control burden analyses. We assessed the burden of rare (internal MAF < 0.01, gnomAD 

v2 allele frequency < 0.0001, and gnomAD v3 PopMax allele frequency < 0.0001), splice-disrupting 

(SpliceAI Δ score ≥ 0.2) high-confidence variants selected by our random forest model 3, in 971 

Extension cohort CHD cases vs 2,570 healthy controls with WGS. The use of a stringent gnomAD 

PopMax threshold ensured that differences in cohort ancestries did not drive differences in burden 

between cohorts. Moreover, both gnomAD v2 and v3 thresholds were used in order to account for 

differences in variant frequencies of reference genomes between the Extension and Control cohorts. 

Genome-wide, we did not observe a significant difference (p > 0.05) in variant burden in cases versus 

controls (Figure 8). However, there was a significantly higher burden in cases versus controls of 

splice-disrupting variants in all Tier 1-2 CHD genes (p = 0.011). On subgroup analysis, cases had a 

higher frequency of variants located at canonical splice sites, splice regions, protein-coding regions, 

and intronic regions of Tier 1 CHD genes, but these differences did not reach statistical significance. 

This may be due in part to the small variant numbers within gene sub-regions. While the Extension and 

Control cohorts had a similar proportion of male participants (57% and 49%, respectively), there was a 

lower proportion of samples of European descent in cases compared with controls (78% and 96%, 

respectively). To eliminate confounding related to ancestral differences between cases and controls, we 

further limited burden testing to individuals of European descent and observed similar trends, with a 

significantly higher burden of high-confidence splice-disrupting variants among CHD genes despite a 

reduced statistical power from the smaller sample size (p = 0.018). 

 

In summary, a heart-specific model identified high-confidence splice-disrupting variants in CHD genes 

at canonical splice sites in 1% all CHD cases and non-canonical variants in 8% cases, with splice-

disrupting variants accounting for 58% of putatively disease-causing variants in CHD cases (Figure 5). 

In particular, deeply intronic cryptic splice variants represented 41% of all DNA splicing variants in 

CHD genes.  
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DISCUSSION 

Our study applied whole genome sequencing coupled with myocardial RNA-Seq to identify and 

validate non-canonical splice-disrupting variants associated with CHD. Non-canonical splice-

disrupting variants in coding regions were enriched in cases compared to controls and were associated 

with altered myocardial gene splicing. The findings were leveraged to develop a machine learning 

model to predict cardiac-specific, high-confidence non-canonical splice variants. Together, this first of 

a kind model identified disease-associated splice-disrupting variants in 9% of CHD patients (58% of all 

pathogenic CHD associated variants), representing a significant expansion of the role of these variants 

in heart disease. 

 

RNA-Seq of patient myocardium enabled us to directly identify splice-disrupting events across the 

genomes of 114 TOF probands. By integrating these validated events with DNA variants obtained from 

WGS, we generated an in silico model that accurately predicted heart-specific splice-disrupting 

variants with greater accuracy than using DNA variant features alone. Application of the model to 971 

CHD WGS samples, in addition to the confirmed splice variants assessed in patient myocardium of 114 

cases, identified 3% of CHD cases that harbor non-canonical splice-disrupting variants in Tier 1 CHD 

genes. As nearly half (44%) of these variants were intronic, our combined use of RNA-Seq and WGS 

enabled the identification of putatively pathogenic variants that would not be detected by panel or 

exome sequencing, as intronic variants beyond ~50bp are not reliably found with these methods12,13. 

 

A recent whole exome sequencing study highlighted a role for splice-disrupting variants in CHD9. In 

particular, 2% of genome-wide, de novo, computationally-predicted splice-disrupting variants in CHD 

probands were validated by minigene assays. In addition, in a case-control burden analysis, an 

enrichment for rare splice region variants predicted to result in the loss of nearby existing splice 
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junctions among CHD genes was observed. Unfortunately, exome sequencing is unable to detect 

deeply intronic splice-disrupting variants12,13, and minigene assays alone have technical limitations 

since they are not cardiac specific, cannot test variants in repetitive regions, and often provide 

indeterminate results27,28. 

 

In this regard, our machine learning model was highly accurate for identifying non-canonical variants 

that result in confirmed splicing events specific to the human heart (AUC=0.92). When applied to a 

cohort with cardiomyopathy, the model was able to identify non-canonical variants that affect splicing 

in cardiomyopathy genes. This approach allowed us to recover deeply intronic cryptic splicing variants 

that cannot be captured by whole exome sequencing, and have not been previously reported. Of note, 

direct investigation of patient myocardium identified aberrant splicing events in CHD and other cardiac 

genes even when a causal DNA variant responsible for the effect could not be definitively confirmed. 

This may be due to the causal variant having a predicted SpliceAI Δ score below our minimum 

threshold (0.2), the variant affecting splicing at a greater distance than our maximum threshold 

(100bp), or somatic mosaicism resulting in variants in the heart that are undetectable in blood and/or 

saliva29. 

 

81% of predicted high-confidence Tier 1 CHD splice-disrupting variants occurred in genes with 

associations to syndromic disease that had not been clinically identified. Intriguingly, an intronic de 

novo variant in CHD7 was observed in a TOF proband who was negative on clinical genetic testing, 

and had no family history of heart disease (Figure 6). Pathogenic variants in CHD7 are associated with 

CHARGE syndrome, and this patient had phenotypic features consistent with this disease, supporting 

the pathogenicity of the detected high-confidence cryptic splicing variant. Crucially, a prediction model 

trained only on SpliceAI scores failed to select this variant, again reinforcing the value of using a heart-

specific prediction model. Additional splice-disrupting events were observed in the syndromic genes 
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EFTUD2 and KRAS (Figure 7), with patient phenotypes consistent with known genotype-phenotype 

associations. 

 

While at this time, most non-canonical splice-disrupting variants must be functionally validated in 

order to be considered pathogenic/likely pathogenic, our use of variant segregation and deep 

phenotyping meant that we were able to classify variants like the aforementioned CHD7 de novo 

variant as likely pathogenic. As computational tools continue to improve the accuracy of variant 

selection with specific effects on splicing, it may allow for more streamlined clinical reporting of such 

variants. Indeed, our results support and extend on the recently published ACMG/AMP framework for 

validating and reporting splice-disrupting variants, including those outside of canonical splice sites11. In 

particular, our findings reinforce the utility of using heart-specific models trained on patient 

myocardium to improve the accuracy of variant selection in CHD. Moreover, our observation that 

deeply intronic cryptic splice variants contribute to CHD highlight the necessity of including these 

types of variants in clinical tests.  

 

Our study had some limitations. While RNA-Seq of patient myocardium allowed us to directly identify 

altered splicing events in vivo, these types of events may sometimes lead to nonsense-mediated decay, 

thereby limiting the ability to detect them in patient tissue. As none of the Discovery or Validation 

cohort patients were treated with compounds to inhibit nonsense-mediated decay prior to resection of 

their myocardial tissue, some variants affecting splicing may therefore have been classified as having 

an unconfirmed splicing effect. Within our Discovery cohort, 22% of CHD genes had very low 

expression (TPM < 1). Similarly, CHD genes expressed during embryogenesis but not in mature 

patient myocardium may not have been detectable in our RNA-Seq data. While in vitro methods for the 

inhibition of nonsense-medicated decay can be used to validate splicing effects, they are not feasible to 

test for a large number of variants.  Another limitation is that short-read sequencing for both RNA-Seq 
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and WGS may have missed variants in homologous and low complexity regions, due to unreliable 

alignments in such regions. Similar studies performed with higher depth sequencing and/or long-read 

sequencing may further extend our ability to reliably detect splice-disrupting events in known and 

candidate CHD genes. Finally, while we attempted to control for differences in alignment and variant 

calling within our case-control burden analysis, we acknowledge the confounding effect of these 

differences when conducting burden analyses across different cohorts. 

 

In summary, our findings that non-canonical splice-disrupting variants contribute to the genetic 

etiology of CHD make a strong case for routine evaluation of intronic variants as well as to assess the 

splicing effect of variants in protein-coding regions. Our cardiac-specific bioinformatic model that 

utilizes both RNA-Seq and WGS-based variant annotation predicted with high confidence splice-

disrupting variants that make a significant contribution to the genetic basis of CHD.  

 

METHODS 

Study Cohorts 

Congenital heart disease (CHD) cases: The overall cohort included 1085 probands, of which 856 had 

TOF and 229 had TGA (Table 1). Among these cases, 479 TOF and 229 TGA were enrolled through 

the Heart Centre Biobank Registry at the Hospital for Sick Children (Ontario, Canada), 250 TOF were 

enrolled through the Kids Heart BioBank at the Heart Centre for Children, The Children’s Hospital at 

Westmead (Sydney, Australia), and 127 TOF were enrolled through the CONCOR registry at the 

Amsterdam Medical Center (Netherlands).  

The Discovery cohort included 114 unrelated tetralogy of Fallot (TOF) from Ontario. All probands had 

myocardium available; blood or saliva was also available for 112/114 probands.  

The Extension cohort included 971 unrelated TOF and TGA probands and 191 family members 

enrolled in the Heart Centre Biobank Registry from Ontario; the Kids Heart BioBank at the Heart 
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Centre for Children, The Children’s Hospital at Westmead (Sydney, Australia); and the nation-wide 

Dutch CONCOR registry at the Amsterdam Medical Center (Amsterdam, Netherlands). Blood or saliva 

derived DNA was available for all probands. 

The Validation cohort included 43 unrelated cardiomyopathy probands enrolled in the Heart Centre 

Biobank Registry at the Hospital for Sick Children (Ontario, Canada). All probands had myocardium, 

and blood or saliva, available. 

Collection and use of biospecimens through the registries was approved by local or central Research 

Ethics Boards and written informed consent was obtained from all patients and/or their parents/legal 

guardians and study protocols adhered to the Declaration of Helsinki.  

Controls: The control cohort included 2,570 whole genome sequencing (WGS) samples from the 

Medical Genome Reference Bank (MGRB)15. MGRB variants were obtained from the original 

publication, after alignment to GRCh37 and variant calling for all samples. Single nucleotide variants 

(SNVs) and insertion-deletions (indels) were converted to hg38 using LiftoverVcf 

(http://broadinstitute.github.io/picard). Control cohort characteristics are provided in Table 1. 

 

Whole genome sequencing 

WGS of CHD and cardiomyopathy cases was performed on high quality DNA from blood or saliva of 

probands and their family members using the Illumina HiSeq X or NovaSeq platform by The Centre for 

Applied Genomics (TCAG, The Hospital for Sick Children, Toronto), or Macrogen (South Korea). 

Illumina TruSeq DNA PCR-Free kits were used for library preparation. High-quality paired-end reads 

(2×150bp) were mapped to human genome reference sequence hg38 using one of two workflows as 

follows:  

 

Paired-end raw reads were trimmed and cleaned by trimmomatic v.0.3230, then mapped to human 

reference genome hg38 using bwa v.0.7.1531. The reference genome sequence and training datasets 
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were downloaded from the Genome Analysis Toolkit (GATK) resource bundle 

(ftp.broadinstitute.org/bundle)32. Mapped reads were realigned and calibrated by base quality score 

recalibration tools (GATK v4.1.2.0). HaplotypeCaller was used to generate genotype Variant Call 

Format (gVCF) files for each sample, then gVCF files for batches of samples were combined and joint-

called by using CombineGVCFs and GenotypeGVCFs tools. In order to filter out probable artifacts in 

the calls, SNVs and indels were recalibrated separately by variant quality score recalibration (VQSR) 

tools, and variants that passed VQSR truth sensitivity level 99.5 for SNPs and level 99.0 for indels 

were retained. The VariantFiltration tool was used to mark out the low Genotype Quality (GQ) SNV 

and indel sites whose GQ values were lower than 20 and read depths were lower than 10. Copy number 

variants (CNVs) were called as described in 33, using ERDS34 and CNVnator35. Structural variants 

(SVs) were called using Manta36 and Delly37. Sample ancestry and relatedness among family members 

was estimated and verified using somalier v0.2.1138 with default parameters. 

 

WGS data for the MGRB control cohort were generated as previously reported15. Briefly, DNA was 

extracted from blood and Illumina TruSeq Nano DNA High Throughput kits were used for library 

preparation. Reads were sequenced on Illumina HiSeq X, then aligned to the 1000 Genomes Phase 3 

decoyed version of build 37 of the human genome using GATK best practices. GATK HaplotypeCaller 

was used to generate gVCFs for SNVs and indels, then joint-called in a single batch using GATK 

GenotypeGVCFs. 

 

CHD gene list 

Tier 1 CHD genes were selected based on a moderate, strong, or definitive association with CHD 

according to ClinGen criteria16. We further annotated and categorized additional CHD genes using (1) 

published literature; (2) existing databases including Online Mendelian Inheritance in Man (OMIM)17, 

Clinical Genome Resource (ClinGen)18, and CHDgene19; (3) inclusion in clinical gene panels; and (4) 
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expert curation and classified genes with a limited evidence for association with CHD as Tier 2 genes. 

Canonical transcriptional isoforms were annotated using Matched Annotation from NCBI and EMBL-

EBI (MANE)39. Gene constraint annotations were obtained from gnomAD (v2)40 (Table 2). 

 

Interpretation of protein-coding and canonical splice site variants 

Variant interpretation for pathogenicity was performed using American College of Medical Genetics 

and Genomics and the Association for Molecular Pathology (ACMG/AMP) criteria20,21. SNVs and 

indels were first annotated for pathogenicity using InterVar v2.0.241. Variants with internal Human 

Gene Mutation Database (HGMD) Pro 201942 classifications of Disease-associated polymorphism with 

supporting functional evidence (DFP) were assigned a PS3 score, while variants with an internal 

classification of Disease-associated polymorphism (DP) or Disease causing mutation (DM) were 

assigned a PP5 score. Variants classified by InterVar as “Pathogenic” or “Likely pathogenic” and 

occurring in Tier 1 or Tier 2 CHD genes were subsequently manually reviewed. Gene inheritance and 

associated disease conditions were obtained from OMIM17. Variants in recessive genes were required 

to either have a homozygous or bi-allelic genotype. Ratios of observed/expected (o/e) loss-of-function 

(LoF) or missense variants for affected genes were obtained from the Genome Aggregation Database 

(gnomAD) v2.1.140. Population variant allele frequencies were obtained from gnomAD v3.1.2. Where 

possible, variant segregation among family members was considered. Variants in genes for dominant 

disorders had allele frequencies <0.01% for PM2, between 1% and 5% for BS1, and >5% for BA1. 

Variants in genes for recessive disorders had allele frequencies <0.1% for PM2, between 2% and 10% 

for BS1, >10% for BA1. The UCSC Genome Browser was used to investigate low mappability and 

RepeatMasker annotations43. Variant reads were manually inspected using the Integrative Genomics 

Viewer (IGV)44 to exclude any likely false positive variants with insufficient evidence or insufficient 

read coverage. Variants with a heterozygous genotype call and a variant allele fraction of less than 33% 

or greater than 66%, variants with <20x coverage, and variants with many mismatched bases in nearby 
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reads were excluded. ClinVar45,46 was used to search for any pre-existing classifications or other 

variants occurring at the same nucleotide or amino acid position. 

 

For CNVs and SVs, automatic filters were applied and variants were retained if they met the following 

criteria: (1) are absent from or present at 1% frequency or less in a database of CNVs/SVs, generated 

from Illumina HiSeqX sequencing data of parents of children with autism spectrum disorder at TCAG47 

and called by using the same methodology. (2) variants that overlapped with an exonic region, and (3) 

overlapped with a gene in the CHD genelist (with the exception of de novo variants which were 

assessed even if they did not overlap a CHD gene). To reduce the number of false positive CNVs, only 

variants called by both ERDS and CNVnator were retained. Each variant that passed these automatic 

filters was queried through the DECIPHER browser48. Variants that overlapped a substantial number of 

benign/population variants in DGV49 or gnomAD Structural Variants50 were not further considered, 

depending on the suspected mode of inheritance. Inversion breakpoints were queried through the 

UCSC genome browser51 – inversions whose breakpoints did not intersect CHD genes were not further 

considered. The remaining variants were visualized using either IGV44 or Samplot52, depending on 

their size and complexity, to confirm their authenticity. Variants that passed the above inspections 

proceeded to manual ACMG/AMP classification21. Intragenic CNVs/SVs were submitted to 

AutoPVS153, to automatically assign a PVS1 criterion for haploinsufficient genes (i.e. genes with a pLI 

score greater than or equal to 0.9, a ClinGen dosage curation indicating haploinsufficiency, or literature 

evidence supporting a loss-of-function pathogenic mechanism). Complex variants (called as dual DUP-

DEL, DUP-DEL-INV etc.) were only considered if there was phenotype support for the genes 

harboring them. We surveyed the literature and databases such as OMIM and ClinVar to identify 

similar CNVs/SVs reported in individuals with the phenotype of interest. Inheritance data if available 

was taken into account when classifying variants (whether the variant was de novo, parentally 
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inherited, or unknown), as per the aforementioned ACMG/AMP guidelines. Visualization was used to 

confirm inheritance calls.  

 

Detection of putatively splice-disrupting variants in WGS data 

Putatively splice-disrupting WGS SNVs and indels were identified using SpliceAI22. Exome 

annotations and splice junctions were similarly obtained from SpliceAI 

(https://github.com/Illumina/SpliceAI). Pre-computed masked SpliceAI delta scores were utilized 

where possible (https://basespace.illumina.com/projects/66029966), otherwise SpliceAI (v1.3.1) was 

used to generate masked delta scores with a maximum distance of 100bp between the variant and 

gained/lost splice site. Variants with a SpliceAI delta score ≥ 0.2 were retained and subsequently 

annotated with the predicted effect (VEP v10254), reported pathogenicity (ClinVar 2022-04-03 and 

HGMD Pro 2019), control allele frequency (gnomAD v3.1.2), gene constraint (gnomAD v2.1.1), 

genomic low complexity regions (https://github.com/lh3), genomic RepeatMasker regions 

(https://www.repeatmasker.org), and wild-type splicing branchpoints55,56. Ensembl RNA transcripts 

were further annotated as canonical by MANE v1.0 (MANE Select or MANE Plus Clinical)39.  

 

Myocardial RNA sequencing 

RNA sequencing (RNA-Seq) was performed on right ventricular myocardial samples available from 

114 unrelated TOF probands and 43 unrelated cardiomyopathy probands from SickKids Heart Centre 

Biobank. Myocardium was obtained from patients who had consented to biobanking from leftover 

tissue at the time of cardiac surgery and was immediately snap-frozen in the operating room and stored 

in liquid nitrogen. None of the patients received inhibitors of nonsense-mediated decay prior to tissue 

resection. Total RNA was extracted from myocardial samples using the RNeasy Mini kit (QIAGEN, 

Canada). RNA-Seq was performed using Illumina HiSeq 2500 or NovaSeq platforms at The Centre for 

Applied Genomics (TCAG, The Hospital for Sick Children, Toronto). Raw sequencing reads were 
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trimmed by Trimmomatic v0.3630 for quality trimming and adapter clipping. The remaining reads were 

aligned to the GRCh37 reference genome (1000 Genomes Project reference genome, hs37d5) using 

STAR (v2.6.1.c)57 with basic two-pass mode and Ensembl GTF (release version 87)58 was used for the 

annotation. Gene and transcript expression level quantification were prepared using RSEM (v1.2.22)59. 

 

Identification of aberrant splicing events in myocardial RNA-Seq data 

Aberrant splicing events were identified in RNA-Seq data using FRASER v1.8.123. Introns with 

unreliable detection were filtered out using the ‘filterExpressionAndVariability’ method with default 

parameters except for requiring a minimal read count of 15 in at least one sample. An ‘AE’ denoising 

autoencoder with a BB loss was used to fit the splicing models, with hyperparameters ψ5=14, ψ3=14, 

and θ=7 for the Discovery cohort and ψ5=5, ψ3=4, and θ=2 for the Validation cohort. Optimal 

hyperparameters were determined using the ‘optimHyperParams’ method. Splice events were 

annotated using biomaRt as part of the ‘annotateRanges’ method60. Observed events were considered to 

be significant with a false discovery rate < 0.2, an absolute Z-score ≥ 1, an absolute Δψ/θ score ≥ 0.2, 

and ψ/θ - Δψ/θ ≤ 0.1 or ≥ 0.9. Events annotated as not mapping to a gene or to multiple genes were 

excluded. All reported splicing events in CHD genes were visually inspected; ambiguous and apparent 

false positives were excluded. 

 

Gene expression outlier analysis in myocardial RNA-Seq data 

Gene expression outliers in RNA-Seq data were identified using OUTRIDER (v1.8.0)24. OUTRIDER 

was run on the Discovery (TOF) and Validation (CMP) cohorts separately. Low-expressed genes were 

first filtered out by selecting genes with at least 10 read counts in more than one-third of the input 

samples. Before fitting the input cohort to the OUTRIDER model, the optimal encoding dimension "q" 

was first determined by using the "findEncodingDim" method. The encoding dimension was estimated 
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to be 19 for the TOF model and 8 for the CMP model. Genes with a false discovery rate < 0.2 were 

considered as significant expression outliers. 

 

Generation of random forest models for selecting heart-specific splice-disrupting variants 

Genome-wide variants were classified by whether or not they were associated with confirmed splicing 

events by searching for matching significant events within ± 100bp of altered splicing boundaries 

called by FRASER. To test for the enrichment of univariate features that associate with variants that 

validated by FRASER, we used two-sided Mann-Whitney U tests for continuous variables and two-

sided Fisher’s exact tests for binary variables. The R package randomForest61 was used to create and 

test three machine learning models for the prediction of splice-disrupting variants. Model 1 used only 

SpliceAI Δ scores as input; model 2 included SpliceAI delta scores in addition to the variant distance to 

the nearest annotated splice junction, the variant type (SNV or indel), and whether the variant occurred 

in a branchpoint region, low complexity region, and/or repetitive region; model 3 included all of the 

aforementioned DNA variant features in addition to the corresponding median gene expression TPM 

value in RNA-Seq data. Training classes included 100 confirmed DNA variants versus 9,406 DNA 

variants without a confirmed effect on splicing. Variants with missing feature values were omitted by 

the models (i.e. missing values were not imputed). To account for the imbalance in the training class 

frequencies, variant class was inversely weighted by the corresponding number of observations in the 

training data. All models were internally evaluated for performance (AUC) using five-fold cross-

validation. The models were subsequently retrained on the entire Discovery cohort prior to its 

application to additional cohorts. 

 

Selection of high-confidence splice-disrupting variants using the optimal random forest model 

The optimal random forest model 3 was applied to WGS data from the Extension and Control cohorts 

in order to predict high-confidence splice-disrupting variants. Variants were further filtered to include 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.23.23298903doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

only those rare in gnomAD control populations (gnomAD v3 PopMax filtering allele frequency at 95% 

confidence < 0.0001), and visually inspected with likely false positive calls subsequently removed. For 

the case-control burden analysis, both gnomAD v2 and v3 statistics were used in order to account for 

different the reference genomes used to align the Extension (hg38) and Control (GRCh37) cohorts 

(gnomAD v2 exome allele frequency < 0.0001, gnomAD v2 genome allele frequency < 0.0001, and 

gnomAD v3 PopMax filtering allele frequency at 95% confidence < 0.0001). To further reduce 

possible false positive variant calls, variants were additionally limited to those that were rare and within 

both our Extension cohort (internal allele frequency < 0.01) and Control cohort (internal allele 

frequency < 0.01). P-values were calculated using a two-sided Fisher’s exact test. To reduce bias in 

odds ratios calculations and avoid “zero cells” in the contingency tables, 0.5 was added to each 

observed cell frequency (Haldane-Anscombe correction).  

 

Gene set analysis 

Enrichment analysis of gene sets was performed using g:Profiler core tool g:GOSt with default 

parameters62. Genes were input as Ensembl identifiers. An adjusted p-value threshold of 0.05 was used 

to determine significance. Adjusted p-values were calculated using the g:SCS (Set Counts and Sizes) 

method which considers dependencies between multiple tests by taking into account the overlap in 

functional terms63. 

 

Data analyses and visualizations 

All aforementioned statistical analyses, as well as data visualizations, were carried out using the R 

Programming Environment v4.1.2. Two-sided t-tests were used to compare the Z-scores of variants 

associated with RNA-Seq outlier splicing or expression events. Graphical data plots were created using 

the ggplot264 and pROC65 libraries. 
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DATA AVAILABILITY 

Sequencing data for the Discovery and Extension cohorts will be deposited in the European Genome-

Phenome Archive (EGA), and will be available for download upon approval by the Data Access 

Committee. Sequencing data for the cardiomyopathy Validation cohort is available in EGA under 

accession EGAS00001004929, and are available for download upon approval by the Data Access 

Committee. Control cohort MGRB data are available by controlled access in EGA under accession 

EGAS00001003511. Additional data generated or analyzed during this study are included in the 

supplementary information files, and additional raw data used for figures and results are available from 

the corresponding author on reasonable request. 
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FIGURES 

 

Figure 1. Schematic representation of the bioinformatics workflow to select high-confidence splice-

disrupting variants in the Discovery and Extension cohorts. Variant selection strategy is shown. The heart-

specific random forest model was independently validated on a set of 43 cardiomyopathy cases. This strategy 

ultimately yielded 32 high-confidence Tier 1 variants and 58 high-confidence Tier 2 variants. 

RNA-Seq, RNA sequencing; WGS, whole genome sequencing; FDR, false discovery rate; MAF, minor allele 

frequency; CHD, congenital heart disease 
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Figure 2. Performance of random forest models. Three types of models were designed and internal 

performance was assessed using five-fold cross-validation. Model 1 (a) and (b) used only SpliceAI scores, the 

Model 2 (c) and (d) used additional DNA variant features, and Model 3 (e) and (f) used all DNA features in 

addition to corresponding gene expression. The Gini coefficient is a measure for the probability that a specific 

feature is classified incorrectly when selected randomly. Area under the curves (AUC) are shown in (a), (c), and 

(e), while the relative importance of individual features are shown in (b), (d), and (f). 

0 20 40 60 80 100

Branchpoint

RepeatMasker

VarType

LCR

DSMax

WTDistance

0 10 20 30 40 50

WGS features in full data

MeanDecreaseGini

Branchpoint
RepeatMasker
VarType
LCR
WTDistance
DSMax
TpmMedian

0 20 40 60 80

All features and TPM in full data

MeanDecreaseGini

AUC = 0.92

AUC = 0.82

AUC = 0.66

Model 1

Model 2

Model 3

a

c

e

b

d

f

Gene expression

SpliceAI score

Distance

Low complexity region

SNV or indel

RepeatMasker region

Branchpoint region

Mean decrease in Gini coefficient

Mean decrease in Gini coefficient

SpliceAI score

Distance

Low complexity region

SNV or indel

RepeatMasker region

Branchpoint region

SpliceAI score

Mean decrease in Gini coefficient

SpliceAI in full data

Specificity

Se
ns
iti
vi
ty

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WGS features in full data

Specificity

Se
ns
iti
vi
ty

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All features and TPM in full data

Specificity

Se
ns
iti
vi
ty

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.23.23298903doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.23.23298903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Model performance and examples of high confidence splice-disrupting events in the 

cardiomyopathy Validation cohort (n = 43). The random forest models were validated in with Area under the 

curves (AUC) ranging from 0.64 to 0.88 (a-c).  
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Figure 4. Significantly enriched gene sets in the Extension cohort (n = 971). Significantly enriched Human 

Phenotype Ontology (HP) terms among genes affected by high-confidence splice-disrupting variants selected by 

model 3. 
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Figure 5. Summary of high-confidence splice-disrupting variant positions in CHD genes. 90 high 

confidence splice disrupting variants in CHD genes were identified in the Discovery (n=114) and Extension 

(n=971) cohorts. Variants were mapped to their closest annotated wild-type splice site within their 

corresponding gene. Canonical splice regions are highlighted in grey. (a) The frequency of variants with respect 

to relative positions. Intronic variants >10bp from a splice junction accounted for 41% of all variants. (b) 
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SpliceAI Δ scores of variants. Our heart-specific model 3 selected variants with a large range of scores. Overall 

findings of pathogenic protein-coding variants and splice-disrupting variants in CHD genes are summarized for 

(c) TOF and (d) TGA samples across both the Discovery and Extension cohorts. 

TOF, tetralogy of fallot; TGA, Transposition of the great arteries; SNV, single nucleotide variant; indel, 

insertion-deletion 
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Figure 6. High confidence splice-disrupting variants in CHD genes. Family pedigrees and aberrant splicing 

events were observed in example Tier 1 genes (a) TBX20 (Discovery cohort), (d) CHD7 (Extension cohort), and 

(e) EFTUD2 (Extension cohort), as well as the Tier 2 genes (b) CCDC174 (Discovery cohort), (c) CGNL1 

(Discovery cohort), and (e) ACTB (Extension cohort). Wild-type exon/intron boundaries below IGV screenshot 

are represented in black, and alternatively observed boundaries are represented in red. Arrows next to gene 

names represent reading direction. Purple arrows represent location of DNA splice-disrupting variant.  

TOF, tetralogy of fallot; ECA, extra cardiac anomalies.  
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Figure 7. Significantly altered splicing occurring in CHD genes without an identified DNA variant. 

Family pedigrees and aberrant splicing events were observed in the Discovery cohort in CHD gene examples 

including (a) KRAS, (b) ACTB, and (c) FBN2.  

TOF, tetralogy of fallot; ECA, extra cardiac anomalies. 
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Figure 8. Case-control burden of variants. Variants were filtered and selected using increasingly conservative 

thresholds. Odds ratios and 95% confidence intervals are shown comparing n=971 CHD cases vs 2,570 healthy 

controls. (a) All samples. (b) Only samples of European descent. 

CHD, congenital heart disease; pLI, probability of being loss-of-function intolerant 
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TABLES 

 

Table 1. Study cohort overview. Clinical characteristics of congenital heart disease probands in the Discovery 

and Extension cohorts (n=1,085), as well as characteristics of the cardiomyopathy Validation (n=43) and 

Medical Genome Reference Bank Control cohort (n=2,570). 

 

Table 2. CHD genes. Genes were categorized into Tier 1 (moderate to strong association with CHD) or Tier 2 

(limited association with CHD). Gene Median gene expression (Transcripts Per Million) was calculated for the 

entire Discovery cohort. Gene annotations and constraint metrics are additionally shown.  

 

Table 3. RNA outlier splicing events and confirmed associated DNA splice variants in CHD Discovery 

cohort (n=114). 100 rare (internal MAF < 0.01) genome-wide DNA splice-disrupting variants within the 

Discovery cohort were confirmed by myocardial RNA-Seq. In addition, six significant RNA splicing events 

were observed without a causative DNA splice-disrupting variant in Tier 1 CHD genes or haploinsufficiency-

intolerant (pLI≥0.9) Tier 2 CHD genes. All variant features used in random forest models are included. Clinical 

features of the proband harboring each RNA splicing event are additionally shown.  

 

Table 4. High-confidence DNA splice variants in the cardiomyopathy Validation cohort (n=43). All 

genome-wide high-confidence DNA variants in the Validation cohort selected by random forest model 3 are 

shown, along with confirmed variants that were not selected by the model. Variants are annotated by their 

matching splicing and gene expression outlier statistics obtained from FRASER and OUTRIDER, respectively. 

 

Table 5. Gene sets enriched for rare high-confidence splicing variants. All DNA variants selected by Model 

3 in the Extension cohort and that were rare in healthy controls (gnomAD v2 allele frequency < 0.001, gnomAD 

v3 PopMax allele frequency < 0.0001) were tested for enrichment in in Human Phenotype Ontology gene sets. 

Significantly enriched pathways (adjusted p < 0.05) are shown. 
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Table 6. High-confidence DNA splice variants in CHD genes in CHD Extension cohort (n=971). Rare 

(gnomAD v2 allele frequency < 0.001 and gnomAD v3 PopMax allele frequency < 0.0001) high-confidence 

splice-disrupting DNA variants in Tier 1 CHD genes or haploinsufficiency-intolerant (pLI≥0.9) Tier 2 CHD 

genes were identified in the Extension cohort. DNA variants were selected by random forest model 3 (Extension 

cohort), yielding an additional 31 variants in Tier 1 CHD genes and 58 variants in Tier 2 CHD genes. All 

variant features used in random forest models are included. Clinical features of the proband harboring each 

DNA variant are additionally shown.  
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