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Abstract 
Background: Noncommunicable diseases (NCDs) continue to pose a significant health challenge 

globally, with hyperglycemia serving as a prominent indicator of potential diabetes. This study 

employed machine learning algorithms to predict hyperglycemia in a cohort of asymptomatic 

individuals and unraveled crucial predictors contributing to early risk identification. 

Methods: This dataset included an extensive array of clinical and demographic data obtained 

from 195 asymptomatic adults residing in a suburban community in Nigeria. The study conducted 

a thorough comparison of multiple machine learning algorithms to ascertain the most effective 

model for predicting hyperglycemia. Moreover, we explored feature importance to pinpoint 

correlates of high blood glucose levels within the cohort. 

Results: Elevated blood pressure and prehypertension were recorded in 8 (4%) and 18 (9%) 

individuals respectively.  Forty-one (21%) individuals presented with hypertension (HTN), of which 

34/41 (82.9%) were females. However, cohort-based gender adjustment showed that 34/118 

(28.81%) females and 7/77 (9.02%) males were hypertensive. Age-based analysis revealed an 

inverse relationship between normotension and age (r = -0.88; P < 0.05). Conversely HTN 

increased with age (r = 0.53; P < 0.05), peaking between 50-59 years. Isolated systolic 

hypertension (ISH) and isolated diastolic hypertension (IDH) were recorded in 16/195 (8.21%) and 

15/195 (7.69%) individuals respectively, with females recording higher prevalence of ISH 11/16 

(68.75%) while males reported a higher prevalence of IDH 11/15 (73.33%). Following class 

rebalancing, random forest classifier gave the best performance (Accuracy Score = 0.894; 

receiver operating characteristic-area under the curve (ROC-AUC) score = 0.893; F1 Score = 

0.894) of the 27 model classifiers. The feature selection model identified uric acid and age as 

pivotal variables associated with hyperglycemia. 

Conclusions: Random Forest classifier identified significant clinical correlates associated with 

hyperglycemia, offering valuable insights for early detection of diabetes and informing the design 

and deployment of therapeutic interventions. However, to achieve a more comprehensive 

understanding of each feature's contribution to blood glucose levels, modeling additional relevant 

clinical features in larger datasets could be beneficial.  
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Introduction 
Non-communicable diseases (NCDs) have become a significant public health concern in Africa 

[1]. Conditions like coronary artery disease, stroke, hypertension, and diabetes, which were once 

primarily associated with developed nations or affluence, have now become pervasive health 

challenges in developing countries and across diverse socio-economic strata [1]. The complex 

nature of NCDs underscores the need for a comprehensive approach to risk assessment, 

intervention and prevention. 

 

Suburban communities serve as a distinctive microcosm within an evolving landscape of diseases 

[2, 3]. These communities, characterized by the coexistence of traditional and modern lifestyles, 

grapple with risk factors that necessitate thorough examination [4]. The epidemiological shift from 

communicable to non-communicable diseases, coupled with limited healthcare resources 

especially in suburban parts of developing countries [5, 6], stresses the importance of this 

research. In addition, recent advancements in genetic research have elucidated the underlying 

mechanisms of various complex NCDs. The identification of individuals at an elevated genetic risk 

for NCDs has the potential to revolutionize the approach of healthcare stakeholders to disease 

management. However, the effective implementation of genetic screening for NCD risk analysis 

relies on a robust understanding of the baseline contributors prevalent in the target population [7, 

8]. This study provided a comprehensive description of the prevalence and intricate interplay of 

risk factors associated with NCDs, highlighting hypertension, obesity and diabetes. The specific 

focus was on undiagnosed asymptomatic individuals to elucidate the complex relationships of 

these health indicators within this population. 

 

Machine learning (ML) encompasses a diverse set of algorithms designed to extract patterns from 

data and establish associations between these patterns and discrete sample classes within the 

data. ML proves to be a valuable tool for identifying potential disease risk factors, elucidating 

etiology and interpreting complex pathological processes in the context of NCDs [9-11]. In this 

study, multiple ML algorithms were developed to predict elevated blood glucose levels in a cohort 

of undiagnosed asymptomatic individuals. The primary objective was to systematically compare 

the accuracies of supervised machine learning classifiers to identify the most effective model for 

predicting hyperglycemia. Leveraging the predictors in the dataset, we meticulously constructed 

and evaluated these models for the identification of significant features associated with potential 

diabetes in the population. 

 

This research serves as a critical foundation in advancing our understanding of the evolving 

landscape of NCDs. Furthermore, it contributes to the progression of precision medicine 
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approaches in disease management by leveraging the capabilities of machine learning in 

unraveling the intricate dynamics of hyperglycemia prediction and potentially informing tailored 

interventions for individuals at risk. 

 
Methods 
Participant recruitment and screening 

This study was carried out as part of a parallel community-based genetic screening of apparently 

healthy adults living in Ijede Community, Lagos, Nigeria. Ethical approval was obtained from the 

Institutional Review Board of the Nigerian Institute of Medical Research (IRB/21/074). Following 

informed consent, participants were recruited and 10ml of venous blood samples were collected per 

individual. Demographic information, body mass index (BMI), knowledge, attitude and practices were 

obtained from the participants. The study clinician further clerked participants for personal and family 

medical history as well as their smoking status. Exclusion criteria included pregnancy at the time of 

recruitment, placement on antihypertensive or antidiabetic chemotherapy, radiotherapy, current or 

previous hematologic or tumoral diseases and known chronic diseases. Participants underwent 

electrocardiogram (ECG) screening (SonoHealth, USA) to provide clues on heart defects or other 

heart-related problems. Hemoglobin electrophoresis was conducted to detect possible 

hemoglobinopathy in the participants [12]. In addition, random blood glucose concentrations (Guilin 

Royalze, China) and blood pressure (BP) values (Iston Mediq, USA) were determined to evaluate 

the presence or absence of prediabetes, diabetes, prehypertension (preHTN) or hypertension (HTN) 

onset in the participants. Individuals with screening tests outside normal ranges were advised to visit 

their healthcare specialists for further checks. Normal BP was described as systolic blood pressure 

(SBP) <120mmHg and diastolic blood pressure (DBP) <80 mmHg. Elevated BP was defined as SBP 

of 120–129 mmHg and DBP <80 mmHg, stage 1 hypertension (preHTN) as SBP ≥ 130-139 mmHg 

and DBP 80 – 89 mmHg and stage 2 HTN as SBP ≥140 and DBP ≥ 90 mmHg [13]. Isolated systolic 

hypertension (ISH) was described as SBP above 140 mmHg with diastolic blood pressure (DBP) of 

less than 90 mmHg [14]. Isolated diastolic hypertension (IDH) is an important subtype of hypertension 

defined as a systolic blood pressure (SBP) of <130 mm Hg and a diastolic blood pressure (DBP) of 

at least 80 mm Hg [15]. Prediabetes was defined as random blood glucose (RBG) concentration of 

140–199 mg/dl or fasting blood glucose of 100–125 mg/dl. Diabetes mellitus was defined as random 

blood glucose level of ≥200 mg/dl or fasting blood glucose of ≥126 mg/dl [16]. However, as all the 

participants reported they were not fasting, random blood glucose values were documented.  

 
Data analysis 

Data cleaning, exploratory analysis and feature engineering were performed in Google Colab (with 

Python 3.10). The target variable was specified as "blood glucose," where 1 indicated a RBG 
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concentration ≥140mg/dl and 0 indicated RBG concentration <140mg/dl. Independent variables 

included age (integer), sex (integer), BMI (float), smoking status (integer), ECG (float), hemoglobin 

(float), cholesterol (float), uric acid (float), systolic blood pressure (integer), diastolic blood pressure 

(integer), normal BP (integer), elevated BP (integer), preHTN (integer), HTN (integer), isolated 

systolic hypertension (integer), isolated diastolic hypertension (integer), prediabetes (integer), 

diabetes (integer), normal glucose (integer), abnormal ECG values (integer) and normal ECG values 

(integer). The dataset was checked and visualized for missingness using seaborn heatmap 

(Supplementary Figure 1). Missing values were replaced with column mean (for continuous variables) 

or mode (for categorical variables). Duplicate rows and outliers were dropped before encoding 

categorical variables and creating dummy variables. Subsequently, we created a heatmap of 

correlation of independent variables with target column in descending order. The cleaned dataset 

was then scaled for subsequent training of machine learning models. P-value < 0.05 was considered 

statistically significant. 

 
Machine learning models and deployment as public API 
The study adopted 27 supervised classification algorithms and compared their accuracies to identify the 

best performing model for predicting high blood glucose which was defined in this study as random 

blood glucose (RBG) concentration ≥140mg/dl (Figure 1). Specifically, after installation and importation 

of Sci-Kit Learn libraries [17], we carried out data cleaning, exploration and scaling to improve the 

efficiency of our model (Supplementary Methods). Imbalances in the distribution of hyperglycemia cases 

and non-cases within the dataset might affect the model's performance. Addressing this imbalance and 

validating the model on balanced datasets could enhance its robustness. To address class imbalance 

in the outcome variable (blood glucose level), we adopted synthetic minority over-sampling technique 

(SMOTE). SMOTE tackled the underrepresentation of the minority class) and rebalanced the class 

distribution for equitability [18]. After resampling, we split the data into training and test sets at ratio 

80:20 respectively, using the train_test_split function in Sci-Kit Learn. We went further to rank the 

performances of the machine learning algorithms using LazyPredict to obtain the weighted average of 

the F1 and accuracy scores as well as the receiver operating characteristic-area under the curve (ROC-

AUC) score. For hyperparameter optimization, we adopted GridSearchCV 

(https://github.com/oyebolakolapo/Machine-Learning-Prediction-of-Elevated-Blood-Glucose-in-a-

Cohort-of-Apparently-Healthy-Adults). The grid search technique constructs many versions of the model 

with all possible combinations of hyperparameters to return the best one [19]. Subsequently, we 

determined feature importance to provide insight into which features are most associated with elevated 

blood glucose level using the best performing model. To operationalize the best performing model 

generated at scale, the training file was stored as a serialized pickle file. Subsequently, we used Fast 

application programming interface (Fast API) in Google Colab [20], to make an inference call from the 
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model using the predict () function and generated our API. Pyngrok was used to open secure tunnels 

from public URL to local host. 

 

Results 
Cohort description 
Two hundred participants aged 18-83 years were enrolled into the cohort. However, after hemoglobin 

electrophoresis screening, five individuals were found to possess the HbSS/HbSC genotypes and were 

excluded from further analysis. Enlisted individuals consisted of 118 females and 77 males (Figure 2; 

Supplementary Figure 2). 

Correlation analysis 
Participants were categorized into six age groups: 18-29; 30-39; 30-49; 50-59; 60-69 and =>70 years. 

Elevated blood pressure and preHTN were recorded in 8 (4%) and 18 (9%) individuals respectively 

(Figure 3).  Forty-one (21%) of the cohort (n = 195) presented with HTN, of which 34/41 (82.9%) were 

females (Supplementary Figure 3). Age-based analysis revealed an inverse relationship between 

normotension and age (r = -0.88; P < 0.05). Consistently, HTN increased with age (r = 0.53; P < 0.05), 

peaking between 50-59 years (Figure 4). ISH and IDH were recorded in 16/195 (8.21%) and 15/195 

(7.69%) individuals respectively, with females recording higher prevalence of ISH 11/16 (68.75%) while 

males reported a higher prevalence of IDH 11/15 (73.33%) (Supplementary Figure 4). There was a 

positive correlation between ISH and participants’ age (r = 0.86; P < 0.05), whereas IDH was inversely 

correlated with age (r = -0.71) (Figure 5). We went further to examine the heart rates of the participants 

and observed an age-dependent increase in the percentage of participants with abnormal ECG values 

peaking between 60-69 years (Figure 6). However, no significant difference was observed in the ECG 

values of male and female participants (𝑋! = 0.1257, P > 0.05) (Supplementary Figure 5). Random 

blood glucose value between 140 - 199mg/dl (prediabetes) was detected in 22 (11.58%) participants, 

while diabetes was suspected in five (2.63%) individuals (Figure 7). An inverse relationship (r = -0.81; 

P < 0.05) was observed between age and normal glucose level, whereas the frequency of prediabetes 

(r = 0.63; P < 0.05) and suspected diabetes (r = 0.58; P < 0.05) seemed to increase with age 

(Supplementary Figure 6). Meanwhile, a correlation matrix between each independent variable and the 

target column (blood glucose level) showed that age had the highest ranking even though the correlation 

coefficient was weak (Figure 8; Supplementary Figure 7).  

Model evaluation 
Following data cleaning, transformation (Supplementary Figure 8) and observation of a class imbalance 

in the target variable (Supplementary Figure 9), whereby the raw dataset demonstrated that 83.6% of 

the participants had normal blood glucose {0} while 16.4% had high blood glucose level {1}, rebalancing 

was established with SMOTE to yield an even representation of both categories of blood glucose level 

(Counter ({0: 163, 1: 163}). When the performance of each classifier was tested, the reports showed 
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Random Forest Classifier (Figures 9 and 10) gave the best accuracy (Accuracy Score = 0.894; ROC-

AUC score = 0.891; F1 Score = 0.893)  followed by Extra Trees (Accuracy Score = 0.879; ROC-AUC 

score = 0.875; F1 Score = 0.878) and XGB classifiers (Accuracy Score = 0.864; ROC-AUC score = 

0.862; F1 Score = 0.863), respectively (Figure 9B; Table 1). 

 
Table 1: Performance of model classifiers following SMOTE rebalancing. 

Model Accuracy Balanced 
Accuracy 

ROC AUC F1 Score Time Taken 

RandomForestClassifier 0.8939393939 0.8907834101 0.8907834101 0.8934222654 0.183555603 
ExtraTreesClassifier 0.8787878788 0.8746543779 0.8746543779 0.8778841537 0.1532819271 
XGBClassifier 0.8636363636 0.8622119816 0.8622119816 0.8634789362 0.06385040283 
NuSVC 0.8636363636 0.8622119816 0.8622119816 0.8634789362 0.01609992981 
LGBMClassifier 0.8484848485 0.8479262673 0.8479262673 0.8484848485 0.09533619881 
LabelPropagation 0.8484848485 0.8442396313 0.8442396313 0.8473551922 0.01989364624 
LabelSpreading 0.8484848485 0.8442396313 0.8442396313 0.8473551922 0.03365707397 
BaggingClassifier 0.8333333333 0.8299539171 0.8299539171 0.8325207027 0.04491662979 
KNeighborsClassifier 0.8333333333 0.8262672811 0.8262672811 0.8303030303 0.01888203621 
DecisionTreeClassifier 0.803030303 0.8013824885 0.8013824885 0.8028029079 0.01473617554 
AdaBoostClassifier 0.7575757576 0.7548387097 0.7548387097 0.7569023569 0.125483036 
ExtraTreeClassifier 0.7424242424 0.7405529954 0.7405529954 0.7421268795 0.01395106316 
SVC 0.7272727273 0.7299539171 0.7299539171 0.7272727273 0.01601076126 
SGDClassifier 0.696969697 0.6921658986 0.6921658986 0.6947103844 0.01456356049 
RidgeClassifierCV 0.696969697 0.6995391705 0.6995391705 0.696969697 0.01888251305 
LinearDiscriminantAnalysis 0.6818181818 0.6852534562 0.6852534562 0.6814528755 0.01936411858 
RidgeClassifier 0.6818181818 0.6852534562 0.6852534562 0.6814528755 0.01605606079 
LinearSVC 0.6818181818 0.6834101382 0.6834101382 0.6820373656 0.04712438583 
CalibratedClassifierCV 0.6666666667 0.669124424 0.669124424 0.6666666667 0.09294962883 
QuadraticDiscriminantAnalysis 0.6515151515 0.6603686636 0.6603686636 0.6452849836 0.01543951035 
LogisticRegression 0.6212121212 0.6225806452 0.6225806452 0.6214730543 0.0338010788 
BernoulliNB 0.6212121212 0.6188940092 0.6188940092 0.6207748228 0.01476740837 
Perceptron 0.5909090909 0.5958525346 0.5958525346 0.5889328063 0.0122988224 
GaussianNB 0.5303030303 0.5405529954 0.5405529954 0.5174481659 0.01833105087 
PassiveAggressiveClassifier 0.5151515152 0.5244239631 0.5244239631 0.5043068147 0.01719117165 
NearestCentroid 0.5151515152 0.5188940092 0.5188940092 0.5138146168 0.01381254196 
DummyClassifier 0.4696969697 0.5 0.5 0.3002186817 0.01414322853 
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Feature importance 
To determine the importance of each variable (feature) to the outcome (blood glucose level), we carried 

out random forest feature analysis. The importance of a feature is calculated based on how much the 

tree nodes that use that feature reduce impurity across all trees in the forest. The key findings show that 

uric acid and age are the most important features associated with elevated blood glucose (Figure 11), 

followed by systolic blood pressure and body mass index (BMI). 

 
Discussion 
Noncommunicable diseases, such as cancer, cardiovascular diseases, and diabetes, are progressively 

becoming the primary causes of mortality in sub-Saharan Africa [21]. This epidemiological shift is 

primarily attributed to limitations in implementing crucial control measures, such as prevention and early 

detection [1]. This research focuses on exploring key clinical indices of NCDs in asymptomatic 

individuals. Specifically, the study employs various machine learning algorithms to predict 

hyperglycemia to enable early identification of individuals at a particular risk of developing diabetes. The 

application of machine learning in disease prediction is now well-established for its immense potential 

in analyzing complex datasets and uncovering patterns that may elude human detection [22]. 

 

Hypertension Dynamics and Age-Related Patterns 

The study identified suspected hypertension in 21% of study participants, underscoring the urgency of 

addressing hypertension as a major health challenge in the country. Furthermore, a notable increase in 

the prevalence of hypertension with advancing age was observed. However, the investigation into 

hypertension subtypes revealed a dual phenomenon: a pronounced increase in systolic hypertension 

with age and a concomitant reduction in diastolic hypertension. Several factors may contribute to the 

observed age-related increase in systolic hypertension. Physiological changes, alterations in vascular 

reactivity, and lifestyle factors could play decisive roles in driving the upward trajectory of systolic blood 

pressure with advancing age [23, 24]. In contrast, the age-related reduction in diastolic hypertension 

may be associated with changes in arterial compliance, heart rate dynamics, or other physiological 

adaptations over the aging process [25]. Recognizing these dual dynamics holds significant clinical 

implications, necessitating tailored screening protocols and interventions to address the unique 

challenges posed by hypertension in different age groups. 

 

Moreover, a gender disparity was observed, with systolic hypertension being more prevalent in females 

while diastolic hypertension was more common in males. This gender difference may be linked to heart 

rate variability or hormonal influences, particularly fluctuations in estrogen levels in females. 

Understanding how blood vessels respond to changes in pressure and the potential impact on systolic 

blood pressure is crucial in deciphering these gender disparities [26-28]. Therefore, tailoring screening 
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protocols and interventions to address the unique challenges posed by hypertension in different age 

groups and genders is essential to mitigate the overall burden of this condition. 

 

 

Age-Dependent Patterns in ECG Findings 

Electrocardiography is a pivotal tool for assessing cardiac health, and its interpretation can provide 

valuable insights into cardiovascular conditions. Our investigation revealed a remarkable age-

dependent pattern in abnormal ECG values, reaching a peak at 70 years. Advancing age often coincides 

with a myriad of physiological changes, including alterations in cardiac structure and function [29-31]. A 

comprehensive exploration of these factors is essential for delineating the intricate relationship between 

aging and abnormal ECG findings. 

 

Prevalence of Prediabetes and Diabetes in Apparently Healthy Individuals 

The global burden of diabetes is well-documented [32-34], but our investigation into supposedly healthy 

individuals has unearthed a concerning revelation. Despite outward appearances of health, there exists 

a relatively high prevalence of suspected prediabetes and diabetes in the cohort. This underscores the 

importance of probing beyond outward health markers to understand latent metabolic landscape [35-

38]. This prompts a reevaluation of health screening protocols to incorporate metabolic parameters in 

apparently healthy populations. Early detection and intervention strategies should be tailored to 

encompass metabolic assessments, providing an opportunity for targeted preventive measures and 

lifestyle modifications. 

 

Machine Learning Algorithm Selection 

In the realm of predictive modeling, selecting the most effective machine learning algorithm is 

paramount. Our study, aimed at evaluating various algorithms, revealed insightful findings regarding 

their predictive performance. Upon meticulous evaluation, Random Forest emerged as the top-

performing algorithm, consistently delivering the highest accuracy among the tested models. The 

success of the Random Forest algorithm can be attributed to its ensemble learning nature [39, 40], 

which harnesses the collective power of multiple decision trees. This enables robustness against 

overfitting, enhanced generalization, and effective handling of complex datasets with diverse features. 

The observed superiority of Random Forest in our study has profound implications for future 

applications, suggesting its applicability across diverse datasets and underscoring its potential as a 

reliable choice for achieving high predictive accuracy. 
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Feature Importance Analysis: Uric Acid and Age as Predictors 

In the pursuit of understanding the intricate determinants of hyperglycemia, our study employed a robust 

feature importance analysis, with compelling results showcasing uric acid and age as the most influential 

predictors. Uric acid's prominence as a predictor of hyperglycemia adds a unique dimension to our 

understanding of metabolic health. While traditionally associated with conditions like gout, our findings 

suggest a potential link between uric acid levels and hyperglycemia, urging further exploration into the 

underlying physiological mechanisms. The identification of age as a key predictor aligns with existing 

knowledge regarding the age-associated risk of hyperglycemia [40-42]. Our findings reinforce the 

significance of age as a robust indicator, reflecting the cumulative impact of aging processes on 

metabolic health and glucose regulation. The recognition of uric acid and age as pivotal predictors holds 

significant clinical implications. Healthcare practitioners can leverage these findings to enhance risk 

assessment strategies for hyperglycemia. Incorporating uric acid measurements and age 

considerations into routine screenings may facilitate early identification of individuals at heightened risk, 

enabling proactive interventions. While our study sheds light on the importance of uric acid and age, 

further research is warranted to unravel the intricate relationships and mechanisms underlying these 

associations. Longitudinal studies exploring the dynamic interplay between uric acid, age and 

hyperglycemia can deepen our understanding and inform targeted interventions. 

 

Limitations and Future Directions 

While our study provides valuable insights into predicting hyperglycemia using machine learning in 

undiagnosed individuals, it is essential to acknowledge certain limitations that may impact interpretation. 

The size of our cohort may limit the generalizability of our results. A larger and more diverse sample 

could enhance the external validity of the predictive model. Furthermore, the study did not account for 

potential variations in clinical practice, including differences in diagnostic criteria. For instance, the study 

did not take into consideration orthostatic hypotension, a fall in SBP of at least 20 mm Hg or a DBP fall 

of at least 10 mm Hg within three minutes of standing, especially in older individuals [14]. Although seats 

were provided to participants, we could not accurately document how long participants had been 

standing before attending the screening. Besides, phenomena such as postprandial hypotension (a 

reduction in BP after meals, a common cause of syncope and falls in healthy and hypertensive elderly 

individuals), circadian BP variability, and white-coat (non-sustained) hypertension, especially in the 

elderly were not factored into the analyses [43-45]. Incorporating standardized criteria across diverse 

healthcare settings could enhance our model's clinical applicability. In addition, the study did not dissect 

the influence of ethnicity and genetics on hyperglycemia [46, 47]. Future research could explore these 

aspects to provide a more comprehensive understanding of predictive factors. Since the dataset 

primarily comprises information from a specific geographic location or demographic group, extrapolating 

the findings to other populations requires caution as regional variations in lifestyle, genetics, and 
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healthcare practices may influence the performance of the predictive model. Moreover, the cross-

sectional nature of our study limits our ability to establish causation or assess changes over time. As 

such, longitudinal studies could be beneficial to understand the dynamic nature of hyperglycemia 

predictors. The model's performance was evaluated on the same dataset used for training, raising the 

potential for overfitting. External validation on an independent dataset is required to assess its 

generalizability and reliability in real-world scenarios. Lastly, the importance of a feature in a Random 

Forest model does not necessarily mean a causal relationship and other models might find different 

results if additional features are introduced. In essence, future approaches are expected to 

accommodate more features and larger datasets. This will account for the deployment of built and 

containerized models as publicly accessible web apps. In all, this present study has expounded the 
potential of machine learning for early disease detection, risk assessment strategies, proactive 

interventions and targeted therapeutic design. 

 

Conclusions 
This study makes a substantial contribution to the expanding domain of predictive modeling and offers 

promising implications for enhancing early detection and personalized risk assessment, particularly in 

the context of hyperglycemia and its potential association with diabetes. The research has not only 

brought to light the prevalence of undiagnosed hypertension, isolated systolic and diastolic hypertension 

but has also highlighted factors associated with elevated blood glucose within the population. The 

findings of this study emphasize the significance of regular screening, effective intervention strategies 

and targeted therapeutic designs. Collectively, the results contribute to the overarching endeavor to 

enhance healthcare outcomes through proactive and tailored approaches. 

 
Data Availability 
All relevant data are within the manuscript and its Supporting File.The Google Colab Python Script used 

for data analysis and machine learning has been deposited in our GitHub page 

https://github.com/oyebolakolapo/Machine-Learning-Prediction-of-Elevated-Blood-Glucose-in-a-

Cohort-of-Apparently-Healthy-Adults. 
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Figure 9: Accuracy scores of machine learning classifiers (A) before class rebalancing with SMOTE 

Figure 10: Random Forest confusion matrix indicating model quality 
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Figure 1: Machine learning model development 
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Figure 2: Participant recruitment and screening 
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Figure 3: Blood pressure values in the cohort (BP = Blood Pressure; HTN = Hypertension) 
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Figure 4: Age-based analysis of blood pressure in the cohort 
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Figure 5: Age-based analysis of isolated systolic hypertension (ISH) and isolated diastolic 

hypertension (IDH) in the cohort 
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Figure 6: Age-based electrocardiogram (ECG) analysis 
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Figure 7: Blood glucose levels in the cohort 
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Figure 8: Correlation matrix of independent variables with the outcome variable 
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Figure 9: Accuracy scores of machine learning classifiers (A) before class rebalancing with SMOTE 
(B) after class rebalancing with SMOTE 
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Figure 10: Random Forest confusion matrix indicating model quality. 
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Figure 11: Blood glucose risk predictors 
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