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Abstract 

Epidemic models often heavily simplify the dynamics of human-to-human contacts, but the 
resulting bias in outbreak dynamics – and hence requirements for control measures – remains 
unclear. Even if high-resolution temporal contact data were routinely used for modelling, the role 
of this temporal network structure towards outbreak control is not well characterised. We address 
this by assessing dynamic networks across varied social settings in three ways. Firstly, we 
characterised the distribution of retained contacts over consecutive timesteps by developing a 
novel metric, the “retention index”, which accounts for the change in the number of contacts over 
consecutive timesteps on a normalised scale with the extremes representing fully static and fully 
dynamic networks. Secondly, we described the repetition of contacts over the days by estimating 
the frequency of contact pairs occurring over the study duration. Thirdly, we distinguish the 
difference between ‘superspreader’ and infectious individuals driving ‘superspreading events’ by 
estimating the connectivity of an individual (i.e. individual has high connectivity in a timestep if he 
accounts for 80% of the contacts in the timestep) and the frequency of exhibiting high connectivity. 
Using 11 networks from 5 settings studied over 3–10 days, we estimated that more than 80% of 
the individuals in most settings were highly connected for only short periods. This suggests a 
challenge to identify ‘superspreaders’, and more individuals would need to be targeted as part of 
outbreak interventions to achieve the same reduction in transmission as predicted from a static 
network. Taking into account repeated contacts over multiple days, we estimated simple resource 
planning models might overestimate the number of contacts made by an infector by 20%–70%. 
In workplaces and schools, contacts in the same department accounted for most of the retained 
contacts. Hence, outbreak control measures would be better off targeting specific sub-populations 
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in these settings to reduce transmission. In contrast, no obvious type of contact dominated the 
retained contacts in hospitals, so reducing the risk of disease introduction is critical to avoid 
disrupting the interdependent work functions. This study identified key epidemiological properties 
of temporal networks that potentially shape outbreak dynamics and illustrated the need for 
incorporating such properties in outbreak simulations.    
 

Significance 

 
Directly transmitted infectious diseases spread through social contacts that can change over time. 
Modelling studies have largely focused on simplifying these contact patterns to predict outbreaks 
but the assumptions on contact patterns may bias results and, in turn, conclusions on the 
effectiveness of control measures. An ongoing challenge is, therefore, how to measure key 
properties of complex and dynamic networks to facilitate the development of network disease 
simulation models, which ensures that outbreak analysis is transparent and interpretable in the 
real-world context. To address this challenge, we analysed 11 networks from 5 different settings 
and developed new metrics to capture crucial epidemiological features of these networks. We 
showed that there is an inherent difficulty in identifying individual ‘superspreaders’ reliably in most 
networks. In addition, the key types of individuals driving transmission vary across settings, thus 
requiring different outbreak control measures to reduce disease transmission or the risk of 
introduction. Simple models to mimic disease transmission in temporal networks may not capture 
the repeated contacts over the days, and hence could incorrectly estimate the resources required 
for outbreak control. Our study characterised temporal network data in epidemiologically relevant 
ways and is a step towards developing simplified contact networks to capture real-world contact 
patterns for future outbreak simulation studies.   

Background 
 
Directly transmitted infections spread through human social contacts, but the dynamic and often 
high-dimensional nature of these networks has historically made them difficult to measure and 
interpret. As a result, epidemic models often implicitly approximate complex dynamic networks 
with simpler contact processes, including static networks (1, 2), branching processes (3) and 
compartmental models (4). These relatively simpler models of disease transmission have been 
well-studied, but it remains unclear how they compare with real-life temporal social networks, 
which exhibit a mix of repeated and occasional contacts (5, 6). As such, the assumptions in these 
simpler models could bias model outputs that are crucial for epidemic planning and response, 
from estimating the required resources for contact tracing and testing programmes to assessing 
the impact of social distancing measures and vaccine coverage (7–9). 
 
There has been recent progress in the collection of dynamic contact network data via proximity 
sensors (10, 11) or mobile devices (12). The automated nature of such data collection enabled 
large-scale deployment for contact tracing during the COVID-19 pandemic (11, 13). These 
devices work by exchanging radio frequency identification (RFID) signals within a calibrated 
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distance, enabling us to monitor contacts and map the emerging network structure. This can – in 
theory – enable us to interpret the transmission process on temporal networks. However, in 
practice most studies still tend to simplify the temporal network structure by extending static 
network properties, which depend on the characteristics such as population sizes (5), making it 
hard to compare findings across studies. Furthermore, it can be  challenging to tease out the 
effects of different network features on the transmission dynamics in models (5, 14, 15). Finally, 
temporal contact data in some studies was collected through self-reported contact dairies, which 
may be prone to recall bias (6, 14, 16). With the extensive data collected from automated devices, 
this is increasingly an opportunity to better compare contact structures and hence, the implications 
for key transmission processes. 
 
Using real-world temporal social data from over 4 million contact events collected across five 
settings (cruises, community, schools, hospital and workplaces), we quantified the impact of 
dynamic contacts on key epidemiological metrics driving person-to-person transmission across 
these varied social settings. As well as examining the range of bias introduced by common 
simplifying assumptions, we identify the extent to which it is possible to identify individuals linked 
to superspreading events reliably. To characterise time-varying properties of the real-life 
networks, we developed a new metric – the retention index – that allows complex dynamic 
networks to be summarised and compared in an epidemiologically meaningful manner. 
 

Methods 
Temporal contact network data 

 
We collated temporal contact network data from previously published studies across different 
settings, with contacts recorded using proximity sensors or mobile devices (Table 1). These 
devices were calibrated to record contacts between pairs of individuals within a specified radius 
on cruises and in a community or, alternatively face-to-face interactions in high schools, a hospital 
and workplaces. The radius approach is omnidirectional, while the face-to-face methods record a 
contact when the sensors face each other. For each network, we performed preliminary analysis 
to identify common types of contact, contact durations, and delays before the next contact occurs 
between a pair of individuals  (Table 1). Contact data from the cruises were recorded in 15-second 
intervals, while in all other networks, contacts were recorded in 5-minute- or 20-second intervals.  
 
To analyse the network properties, we first needed to choose a timescale for defining a ‘contact’ 
within each dataset. In our main analysis, we set the length of the timestep for each network 
based on the median delay in contact. The timestep was set at 15-min, or 1-hr for subsequent 
sensitivity analysis. We also performed additional sensitivity analysis, assuming the directed 
contact networks in the non-cruise settings were undirected. For the high school, hospital and 
workplace networks, a small timestep (e.g. 20-sec) would result in few repeated contacts over 
consecutive timesteps because the median delay between contact events was higher than the 
contact duration (Table 1). As such, the main analysis considered the contact patterns based on 
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timesteps defined for each network, while our sensitivity analysis standardised the timesteps 
across all networks. A contact is defined to occur within a timestep if it lasts for at least the median 
contact duration for respective networks (Table 1). At one theoretical extreme, networks may 
exhibit no variation over time, resulting in a static network, where the contacts remain the same 
over consecutive time steps; at the other extreme, we have fully dynamic networks, where every 
individual's contacts are drawn randomly at each time steps (Figure 1). When simulating the fully 
dynamic network across consecutive time steps, we retained the degree distribution of each 
individual observed in a time step but randomly rewired their contacts. This ensures that the fully 
dynamic network has the same degree distribution as the static network of the same time step. 
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Table 1 Characteristics of real-world contact networks 

Network setting Study date, 
observed days 

Types of contact Median contact 
duration (sec) 

Median delay in 
contact (sec) 

Remarks 
(references) 

Cruises, 
Singapore 

Nov 2020, 3d 
Nov 2020, 3d 
Jan 2021, 3d 
Feb 2021, 3d 
(i.e. four sailings 
with two in Nov 
2020) 

P: passenger 
C: crew 
 
P-P (same cabin) 
P-P (different cabin) 
C-C (same 
department) 
C-C (different 
department) 
P-C 

900 for all four 
sailings 
 

900 for all four 
sailings 

COVID-19 
restrictions 
onboard. 
Undirected 
network (11) 

Community, 
Haslemere,UK 

Oct 2017, 3d Household 
Non-household  
 

300 600 No data before 
0700 hrs and after 
2300 hrs. Directed 
network (12) 

High Schools, 
Marseilles, 
France 

Dec 2011, 4d 
Nov 2012, 7d 
Dec 2013, 5d 

Classmates 
Non-classmates 

20 for all three 
high school  

140 
120 
100 

No data over 
weekends. 
Directed network 
(16, 17) 

Hospital, 
Lyon, France 

Dec 2010, 5d Same department 
Different department 

20 140 Directed network 
(18) 

Workplaces, 
France 

Jun 2013, 10d 
2015, 10d  

Same department 
Different department 

20 for both 
workplaces  

220 
120 

No data over 
weekends. 
Directed network 
(19, 20) 
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Contact retention 

 
To explore how contacts were retained and changed over time, we defined the distribution of the 
number of retained contacts, 𝑟, over consecutive time steps, 𝑡 and 𝑡 + 1, in the network as follows: 
 

𝑃(𝑟!"#) = ) ) 𝑃(𝑟!"#	|	𝑘!	, 	𝑘!"#		)	𝑃(𝑘!"#	|	𝑘!	)	𝑃(𝑘!)
%&#

'!()

	
%&#

'!"#()

,								𝑟!"# ≤ 	𝑘!	, 	𝑘!"#	 
 

(1) 

 
where 𝑘! is the number of contacts (i.e. degree) in time step 𝑡 and 𝑁 is the number of individuals 
in a network. The maximum possible number of contacts an individual could make is 𝑁-1. For 
static or fully dynamic networks, where contacts are either fixed or made at random, 
	𝑃(𝑟!"#	|	𝑘!	, 	𝑘!"#		) of equation (1) is replaced with the binomial distribution as follows: 
 

𝑃(𝑟!"#) = & &
𝑘
𝑟!"#

𝑝$!"#(1 − 𝑝)%!&$!"# 	𝑃(𝑘!"#	|	𝑘!	)	𝑃(𝑘!)
(&#

%!)*

(&#

%!"#)*

 

 
(2) 

 
 
where 𝑘 is the minimum of 𝑘! and 𝑘!"# and 𝑝 is the binomial probability of preserving a contact 
between a pair of individuals. For static networks, 𝑝 = 1 and equation (2) simplifies as follows 
 

𝑃(𝑘!"#	|	𝑘!	) 	= 	1,								𝑘!"# = 𝑘!		 
 																				= 	0,								𝑘!"# ≠ 𝑘!	 

 
(3) 

𝑃(𝑟!"#) = 𝑃(𝑘!) (4) 

 
 
For fully dynamic networks with randomly made links, 𝑝 = '!"#

%&#
 and equation (2) is expressed as 

follows 

𝑃(𝑘!"#	|	𝑘!	) 	= 𝑃(𝑘!"#)	  
(5) 

𝑃(𝑟!"#) = & &
𝑘
𝑟!"#

𝑝$!"#(1 − 𝑝)%!&$!"# 	𝑃(𝑘!"#)	𝑃(𝑘!)
(&#

%!)*

(&#

%!"#)*

 
 

(6) 

 
By definition, we expect the highest mean number of retained contacts to be observed in static 
networks, 	�̅�*!+! , and the lowest in fully dynamic networks, 	�̅�,-.+. To quantify the mean number of 
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retained contacts in our collated temporal networks, 	�̅�!/01, we computed a scaled metric, defined 
as the ‘retention index’, as follows 
 

�̅� =
	�̅�𝑡𝑒𝑚𝑝 	− 	 	�̅�𝑑𝑦𝑛𝑎
	�̅�𝑠𝑡𝑎𝑡 	− 	 	�̅�𝑑𝑦𝑛𝑎

	  
(7) 

 
This metric (retention index) provides a standardised measure of where a network lies between 
the two theoretical extremes. If  �̅� → 1, the temporal network reflects a fully static (and hence fully 
predictable) structure; when �̅� 	→ 0, the temporal network reflects a fully dynamic (and hence non-
predictable) structure.  

Epidemiological metrics  

 
If contacts are retained over consecutive time steps, it will result in a longer duration of continuous 
contact and, hence, a higher risk of transmission. Under the assumption that infection does not 
change the individual’s contact patterns (e.g. for an infection that exhibits substantial 
asymptomatic or pre-symptomatic transmission), clustering of retained contacts would also limit 
further disease transmission by an infector if the contact is already infected. To identify predictors 
of contact retention over consecutive time steps, we estimated the proportion of repeated contacts 
occurring for each type of contact (Table 1). Besides evaluating the retention of contacts over 
consecutive time steps, we can also evaluate the repetition of contacts over different days by 
estimating the frequency distribution of contact encounters in days among all the contact pairs.  
 
We also assessed the bias introduced when assuming independence of contacts over the days. 
To do this, we estimated the difference between the cumulative unique contacts from the start to 
the day of interest, and the sum of unique contacts each day from the start to the day of interest. 
We estimated the relative difference in contacts to generalise the findings across different studies 
with different population sizes.  

Extent of superspreaders and superspreading events 

 
We defined potential ‘superspreaders’ as individuals frequently identified to account for the top 
80% of the contacts made or contact duration over the observed period (see example in next 
paragraph). We also define potential ‘superspreading events’ to be transmission driven by 
individuals less frequently identified to account for the top 80% of the contacts or contact duration 
over the observed period. The latter group of individuals typically forms few contacts. However, 
for a small proportion of the time, they have many or prolonged contacts and could 
disproportionately account for many transmission events in that time if they were infectious (21, 
22).  
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In each time step, we identified the individuals accounting for the top 80% of contacts or contact 
duration (i.e. highly connected individuals). The minimum and maximum proportion of time steps 
that an individual was identified in this top group could range between 0 to 1. For each incremental 
proportion of time, we estimated the proportion of the population identified for the corresponding 
time. To illustrate the extent of transmission events driven by superspreader or superspreading 
dynamics, we plot the cumulative proportion of the population identified for at least a given 
proportion of time. For example, we might identify a certain proportion of the population to be 
highly connected in at least half of the number of observed time steps. In this example, we could 
label this group as ‘superspreaders’. On the other hand, we might identify a certain proportion of 
the population to be highly connected but only in less than half of the number of observed time 
steps. We could label this group as individuals who drive ‘superspreading events’. 
 
To provide context of how the real-world networks compare with static and fully dynamic networks 
when visualising our results, we simulated a homogenous and an overdispersed network over 
different time steps to estimate the above metrics. In a homogenous network, expected 80% of 
the population accounts for 80% of the contacts (i.e. 𝑝;) 	= 0.8), while in an overdispersed 
network, this is less than 80% of the population (in this study, we used 50%, i.e. 𝑝;) 	= 0.5). For 
a static network, regardless of a homogeneous or an overdispersed network, the same proportion 
of the population was identified across all time steps by definition. For a fully dynamic network of 
varying time steps, the proportion of the population identified for each incremental proportion of 
time is approximately 𝑝;) raised to the power of 𝑠, where 𝑠 is the number of time steps 
corresponding to the proportion of time.  

Results 

Contact retention 

We found considerable variation in the retention index �̅� across different networks and over time. 
For example, cruise networks exhibited an  �̅� of 0.59 (IQR 0.52–0.81). This study was conducted 
under strict COVID-19 physical distancing and social gathering restrictions onboard the cruises 
(Figure 2A). As a result, most of the repeated contacts occurred among passengers who shared 
the same cabin and hence were in the same travelling group, and crew members of the same 
department (Figure 1B). We estimated an �̅� of less than 0.5 in only 12–24% of the observed time 
steps for the four cruise sailings, indicating that in a given time period, contacts are much more 
likely to be retained rather than new contacts being made. Between 30–60% of these time steps 
with lower �̅� occurred between 1200-1400 hrs and 1800-2000 hrs across the four cruise sailings. 
Passengers were likely to be engaged in dining during these periods and previous work showed 
that dining settings promote social contact (11). The seating arrangements or the movement 
patterns (e.g. buffet counters) facilitate increased mixing and interaction between passengers of 
different cabins (Figure 2B and Supplementary Figure 1). High values of �̅�	 were also observed at 
the start and end of each day, the result of contact between passengers from the same cabin.   
 
Pre-pandemic community networks from the UK exhibited an even higher �̅� of 0.73 (IQR 0.65–
0.81). About 40% of the contacts occurred before 0900 hrs and after 1700 hrs when the individual 
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is likely to be at home with household contacts (Figure 2A and B, and Supplementary Figure 1). 
In contrast, networks from schools, a hospital and workplaces showed lower �̅� of 0.58 (IQR 0.44–
0.69), 0.49 (IQR 0.36–0.64) and 0.50 (IQR 0.33–0.61) respectively. In these networks, �̅�	was 
below 0.5 for about half of the observed duration and changes in �̅� did not exhibit any time trends, 
unlike the cruise or community networks (Supplementary Figure 1). Moreover, at low and at high 
values of �̅�, there was no apparent variation in the type of retained contacts. We estimated that 
contacts made between classmates or individuals of the same department form the majority of 
the contacts in each time step for the high school network, about 60% for the hospital network 
and about 80% for the workplace networks. We observed similar proportions among the retained 
contacts (Figure 2B).  
 
The overall patterns in our analysis remained unchanged when we performed sensitivity analyses 
around choice of time step and contact definition. We obtained similar results when assuming 
undirected contacts in the non-cruise settings (Supplementary Figure 2), although when using 
fixed time steps of 15-min or 1-hr for all networks, the overall median 𝑟 of all networks was slightly 
lower than the main analysis. However, �̅�	in both the cruise and community networks remained 
higher than networks from schools, a hospital and workplaces (Supplementary Figure 3 and 4).   
 
Figure 1 Contacts made by an individual of interest (brown, centre) in a single time step with 
contacts retained from the previous time step (blue), contacts that were not retained from the 
previous time step (grey with black outline) and new contacts in current time step (red) for (A) fully 
static; (B) temporal; and (C) fully dynamic network. 
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Figure 2 Contacts patterns in different network settings, (a) ridgeline plot showing distribution of 
contact retention index, �̅�, over consecutive timesteps, (b) proportion of the type of retained 
contacts for respective	𝑟5 .  

 

Epidemiological metrics 

Although a longer study duration will in theory increase the probability of observing a repeated 
contact over multiple days, there was some agreement across different networks on the 
proportion of total measured contacts that occurred in one day out of all days in respective network 
studies. For studies conducted over three days, the proportion of total contacts that occurred over 
one-day was 86% (range 83–87%) in the cruises and 82% in the community (Figure 3A). For 
studies conducted over longer durations of up 10 days of recorded contacts, the proportion of 
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total contacts recorded in a given day was 57% (range 52–60%) in the high schools, 51% in the 
hospital and 47% (range 38–55%) in the workplace networks (Figure 3A). Across all the networks, 
over 75% of the contacts either occurred over one-day only or were repeated for less than half 
the study duration (Figure 3A).  
 
When planning outbreak control measures such as contact tracing, we need to consider the 
number of unique contacts made per infected individual. If we did not account for repeated 
contacts over the days and instead assumed the measured number of daily contacts would be 
made independently each day, we could overestimate the number of unique contacts. With the 
exception of the community network, we found that we would overestimate the unique contacts 
by 13–35% across all networks after three days of observation under this independence 
assumption (Figure 3B). For longer study duration in the schools, this difference between the total 
and unique contacts was 71% (IQR 35%–110%) after seven days; for workplaces, the difference 
rose to 73% (IQR 33%–130%) after ten days (Figure 3B).  
 
Figure 3 Contact pairs over the study duration in different networks, (A) cumulative distribution of 
contact encounters in days in pairs of contact. Study duration varied across networks and was 
normalised. For networks with the same study duration, such as the four cruises and three 
workplace networks, the distribution was represented by the median (lines) and range (shaded 
region). For networks with different study durations, such as the three high school networks, or a 
single network study, such as the community and hospital networks, the distribution of each 
network study was illustrated, (B) Median (shapes) and range (lines) of the relative difference in 
the number of unique contacts. 
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Extent of superspreaders and superspreading events 
 
Depending on the level of overdispersion of individual-level contacts in a network and the duration 
of observation, our ability to correctly predict highly connected individuals in a given time period 
will vary. For a homogenous static network, 80% of the population accounts for 80% of the 
contacts made. As such, 80% of the population would be identified as highly connected across 
all the time steps while the remaining 20% of the population would never be identified in this group 
(Figure 4, dotted lines). For a fully dynamic homogeneous network with 25 time steps, 80% of the 
population accounts for 80% of the contacts in each time step. Given changes in the network 
structure over the time steps, only 40% of the population would be identified for at least half the 
total number of time steps. For a fully dynamic overdispersed network with 10 time steps, 50% of 
the population accounts for 80% of the contacts in each timestep. Consequently, only 5% of the 
population would be identified in at least half the observations. We found that as networks 
transition from homogeneous to overdispersed, and as the duration of observation increases, the 
proportion of highly connected individuals that can be identified consistently is reduced. 
 
Real-world networks with higher levels of contact retention had a higher probability of correctly 
predicting frequent, highly connected individuals but these individuals only accounted for less 
than 30% of the population. These are individuals who account for the top 80% of the contact 
episodes for at least half of the number of observed time steps (i.e. potential superspreaders, top 
left region of each panel in Figure 4). In real-world cruise contact networks, 26% (range 22%–
29%) of the population were predicted to fall into this ‘potential superspreader’ category. The 
remaining population are individuals who have high connections but for short periods of time only. 
These are individuals who are likely to drive superspreading events (i.e. bottom right region of 
each panel in Figure 4). In particular, 44% (range 40%–48%) of the population were identified for 
less than a quarter of the observed time steps (Figure 4A). In the community network, 9% of the 
population would be predicted to be potential superspreaders while 81% of the population are 
likely to drive superspreading events for less than a quarter of the time (Figure 4A). The proportion 
of the population identified as potential superspreaders was less than 5% in the high school, 
hospital and workplace networks; the majority of the individuals would, if anything, drive 
superspreading events instead (Figure 4A). Similar trends were observed when analysing the 
proportion of the population that accounted for the top 80% of the contact duration (Figure 4B).  
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Figure 4 Proportion of superspreaders and superspreading events in respective networks, 
estimated based on (A) contact episodes or (B) contact duration. For reference, grey lines 
represent homogeneous static network (dotted), homogeneous dynamic network in 25 timesteps 
(dashed) and overdispersed dynamic network in 10 timesteps (dot dashed). Cutoff marks for the 
proportion of individuals in the cruise networks who were highly connected for more than half the 
total number of time steps (triangle) and those who were highly connected for less than a quarter 
of the time (dot) as shown. 
 

 

Discussion 
 
Using real-world contact data collected from a variety of settings over different days and 
population sizes, we assessed the key structural properties of temporal networks that drive 
transmission processes and, hence, influence the effectiveness of outbreak control measures. 
We estimated that most individuals in each social context had high levels of connectivity with 
others for less than a quarter of the study duration. Contact retention and the type of contacts 
driving this retention varied across settings, emphasising the need for tailored outbreak analysis 
and control strategies for different settings.  
 
In our analysis, we compared the properties of the real-world temporal networks relative to static 
and fully dynamic networks, normalised by the population size. This enabled us to contextualise 
our findings and allow for appropriate comparison across different networks. In particular, our 
study highlighted an inherent difficulty in predicting superspreaders over time across different 
settings (6). In cruise data, the high level of consistency in identifying highly connected individuals 
(i.e. 26% of the population identified to account for the top 80% of the contacts in more than half 
the total observed time steps) was likely influenced by the prevailing COVID-19 restrictions 
onboard during the study. Passengers and crews were encouraged to remain within their travel 
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or working groups and to practise physical distancing from other groups (11). However, the level 
of consistency in identifying highly connected individuals was generally low in all other networks. 
More than 80% of the population was identified to be highly connected for only a short period of 
the study duration. Targeting small groups of infectious individuals with high levels of connectivity 
has been shown to, in theory, produce an effective and efficient reduction in transmission, but 
such studies were largely based on static networks (23, 24). In contrast, our study showed that if 
we were to sample a network for a few days or a short period of time, and target individuals with 
high measured connectivity, this level of connectivity would generally turn out to be much lower if 
data collection were to be repeated in the near future. As such, when designing interventions to 
identify potential ‘superspreaders’, we would need to target a greater number of individuals than 
basic theory from static networks suggests in order to achieve the same reduction in transmission. 
 
When an outbreak occurs, outbreak control policies often target subpopulations rather than 
individuals given the lack of information on contact patterns (15). Across most social settings we 
analysed, contacts between individuals in the same social group (e.g. same cabin, department or 
school class) dominated interactions, even if retention of these contacts was variable. For high 
schools and workplaces, we estimated low contact retention even when most of these contacts 
were formed between individuals of the same class. This result corroborates previous findings 
indicating low levels of repeated contact among household contacts for those residing in 
dormitories (14).  
 
When implementing outbreak control policies, our results suggest it is important to consider if the 
priority is to reduce disease introductions, or reduce transmission if introduced to a locality, and 
thus, which is the appropriate individuals or subpopulations to target with restrictions. In schools 
and workplaces, the majority of close contacts were from individuals of the same department or 
class, implying that targeted rather than school- or workplace-wide closures could still help to 
minimise disruption to activities. This would be particularly relevant if disease prevalence in the 
wider population is low and the likelihood of introductions to other departments or classes is low. 
In contrast, for settings such as hospitals, contacts from both the same (e.g. nurse-nurse contacts) 
or different (e.g. patient-nurse contacts) departments are likely to be retained over consecutive 
time steps. This higher proportion of contacts between different departments is expected given 
the multi-faceted roles of healthcare workers (18). Thus, more stringent measures to reduce the 
risk of nosocomial outbreaks starting is highly important to avoid disruptions to hospital functions.  
 
While the use of detailed contact data to plan quarantine measures can provide an upper limit on 
the resources required (7, 9), our results suggest the occurrence of repeated contacts would 
mean that simple analysis, based on cross-sectional data collection that assumes independence 
of contacts, would generally overestimate the resources required for contact tracing each case. 
With the occurrence of pre-symptomatic transmission for SARS-CoV-2 (25, 26) and delays from 
symptoms onset to testing to isolation (27, 28), contact tracing would involve the identification of 
cases over 3–11 days and repeated contacts arising from regular daily activities would imply that 
the actual contacts made over this period are 20–70% lower than the sum of all the contact 
episodes recorded independently on each day.  
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There are some limitations to our study. First, we focused on the network and epidemiological 
metrics between pairs of contacts. We did not study the changes in clustering on temporal 
networks and overlay the dynamics of infectiousness profiles on these networks. As such, this 
limits our ability to make conclusions on the impact of temporal contacts on outbreak size, time to 
outbreak extinction and herd immunity thresholds. Nevertheless, the current study is a first step 
in characterising temporal networks. Our ‘retention index’, �̅�, quantifies the retention of contacts 
in temporal networks relative to static and highly dynamic networks. Furthermore, we analysed 
the type of contact pairs that are likely to be retained and highlighted the implications to control 
measures. Future studies could extend this metric to account for higher-order network properties. 
This would allow us to better understand the impact of time-varying contacts on disease 
transmission and study the feasibility of using simpler static networks or compartmental models.  
 
Second, different devices were used to measure the networks in different studies. They could 
either detect face-to-face interactions or RFID signals from all directions. As each device has a 
different calibration, the measured differences between the networks can be an outcome of the 
data collection process or due to inherent differences in the context setting. As such, in the main 
analysis, we defined the contact duration and delay between contacts based on the 
characteristics of each network (Table 1). In our sensitivity analysis, we standardise the duration 
and delay. The changes in �̅� for different networks were similar in both analyses. Hence, the 
impact of the device setting on the overall observed contact patterns was not expected to be 
significant. Thirdly, real-life contact typically exists in an open population and thus not every 
contact was captured in these network studies. If these missed contacts were to occur in specific 
sub-populations this may result in a shift in the proportion of retained contact types. Furthermore, 
the level of connectivity in missed contacts is unknown. As such, our analysis could over- or 
underestimate the proportion of superspreaders and superspreading events. However, our 
findings would remain valid if we assume that the missingness is independent of the level of 
connectivity and can occur in any subpopulation. 
 
Our analysis highlights the difficulty in identifying highly connected individuals unless real-world 
contacts are surveyed at high resolution over several days. However, we did find more 
consistency in contact patterns among specific settings and social groups. Hence, outbreak 
control measures that target key settings or at-risk subpopulations are likely to be more effective 
than targeting specific individuals if currently available data approaches continue to be used. 
Comparing the dynamics of such real-world temporal networks and corresponding outbreak data 
would further advance our understanding of the risk of different contacts in practice. 
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