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Summary

Background Human mobility is expected to be a critical factor in the geographic diffusion of
infectious diseases, and this assumption led to the implementation of social distancing policies
during the early fight against the COVID-19 emergency in the United States. Yet, because of
substantial data gaps in the past, what still eludes our understanding are the following questions:
1) How does mobility contribute to the spread of infection within the United States at local,
regional, and national scales? 2) How do seasonality and shifts in behavior affect mobility
over time? 3) At what geographic level is mobility homogeneous across the United States?
Addressing these questions is critical to developing accurate transmission models, predicting
the spatial propagation of disease across scales, and understanding the optimal geographical
and temporal scale for the implementation of control policies.

Methods We address this problem using high-resolution human mobility data measured via
mobile app usage. We compute the daily connectivity network between US counties to under-
stand the spatial clustering and temporal stability of mobility patterns. We then integrate our
mobility data into a spatially explicit transmission model to reproduce the national invasion of
the first wave of SARS-CoV-2 in the US, and characterize the impact of the spatio-temporal
scale of mobility data on disease predictions.

Findings Temporally, we observe that intercounty connectivity is annually stable, and was
unperturbed by mobility restrictions during the early phase of the COVID-19 pandemic, despite
significant changes in overall activity. Spatially, we identify 104 geographic clusters of US
counties that are highly connected by mobility within the cluster and more sparsely connected
to counties outside the cluster. Together, these results suggest that intercounty connectivity
in the US is relatively static across time and is highly connected at the sub-state level. We
find that the stability in temporal patterns allows static mobility data to effectively capture
infection dynamics. On the other hand, spatial uniformity at the sub-state (cluster)-scale does
not capture spatial dynamics; instead, mobility data at the county-scale is necessary to better
predict spatial disease diffusion.

Interpretation Our work demonstrates that intercounty mobility was negligibly affected out-
side the lockdown period of Spring 2020, explaining the broad spatial distribution of COVID-19
outbreaks in the US during the early phase of the pandemic. Such geographically dispersed
outbreaks place a significant strain on national public health resources and necessitate complex
metapopulation modeling approaches for predicting disease dynamics and control design. We
thus inform the design of such metapopulation models to balance high disease predictability
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with low data requirements.

Introduction

Human mobility plays a crucial role in the spread of respiratory diseases [17, 41]. The combina-
tion of regional travel and local commuting represents the spatial connectivity between locations,
serving as the main driver in the geographic diffusion of infectious diseases. Characterizing the
spatial dynamics of pathogen transmission is, therefore, intricately tied to unraveling human
mobility patterns. Such a task has proven to be challenging due to the inherent complexity and
privacy-related limitations on collecting mobility data [7]. Over the past few decades, researchers
have extensively relied on mobility data obtained from census records, surveys, transportation
statistics, commuting data, and international air traffic data. Such datasets have widely con-
tributed to a better understanding of human mobility patterns and their impact on the epidemic
spread [1, 6, 3, 11, 39, 2, 33], but can be limited in their resolution or scale. More recently, this
gap has been filled by the use of mobile phone data [10, 14], primarily based on phone records,
but no such data has been available in the United States.

The global health crisis triggered by COVID-19 has underscored the critical need for swift access
to mobility to help mitigate the spread of the virus. The urgency of the situation prompted an
unprecedented sharing of data by private companies worldwide, through legally and ethically
compliant agreements. This data was based on mobile location-based app usage and thus
provided incomparable access to high-resolution, large-scale, and near-real-time mobility data
and has expanded human mobility science [37], and computational epidemiology [19, 18]. The
availability of this data has especially represented a shift in US public health and it has been used
to inform epidemic models and reveal the impact of mitigation strategies on behavior[27, 38, 35,
32, 20, 26, 15, 25]. While the association between mobility patterns and COVID-19 transmission
in the USA has been extensively studied, no studies have been devoted to assessing when the
underlying mobility network needs to be embedded into models to characterize epidemic spread.

Moreover, the effects of control measures on human mobility at mesoscale (i.e., intermediate
or regional level of geographical granularity) and long-range (i.e., entire countries, continents),
as well as the most suitable geographical and temporal granularity for implementing these
measures, still lack clarity. This gap in understanding the characteristic spatio-temporal scale
of mobility not only limits target control policies but also our ability to model transmission
dynamics effectively. To date, mobility data have been integrated into epidemic models without
due consideration for the optimal geographical (e.g. municipalities, regions, states) and temporal
resolution (e.g., day, week, month) required to accurately capture epidemic spread. The level
of granularity used in these models has consistently been dictated by a priori assessments from
data providers [28, 34].

To address these gaps, we aim to characterize the spatiotemporal characteristic scale of human
mobility in the United States, for the periods before and after the pandemic emergency by using
mobile phone data. Furthermore, to assess if mobility was relevant in the spread of COVID-19
and which mobility scale drove the invasion, we integrate mobility data into spatially-explicit
transmission models to reproduce the national invasion of the first wave of SARS-CoV-2 in the
US. More specifically, we observe the daily intercounty connectivity in the US in time and space.
To assess the role of mobility, we evaluate how the predictability of the model depends on the
underlying mobility data scale, and how model predictive power is impacted by not accounting
for fine-grain mobility.
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Methods

Our study has two objectives: i) to characterize the temporal and spatial scale of variation in the
connectivity between U.S. counties influenced by human mobility and ii) to inform metapopula-
tion models with mobility data at different scales, thereby informing the scale of data required
for epidemic predictability. To achieve this, we analyze human mobility data measured via mo-
bile app usage across spatial and temporal scales. We then integrate these mobility data into
an epidemic model parameterized with national COVID-19 public health data to evaluate the
performance of the model at different scales of mobility to predict epidemic spatial invasion.

Characterizing intercounty connectivity with mobility data

We access data from SafeGraph [45] (now called Advan Patterns), which collects and shares
mobility data based on location-based mobile app usage. In particular, we use the daily Social
Distancing dataset provided by Safegraph (see Supplementary Information for dataset selection),
and use information on the number of mobile devices with a home in an origin census block group
that visit a given destination census block group or staying in the origin one for at least a minute.
Data span the period from January 2019 to April 2021 on a daily timescale. We aggregate the
data to the US county level to capture a common geographic scale for disease surveillance
and public health decision-making. To address the spatial and temporal heterogeneity in the
observed devices obsi within each county i (Figure S1), we developed a correction factor:

γi(t) =

(
obsi(t)

popi

)
(1)

where popi is the population in the county i. To reduce sampling biases, we exclude the bottom
25% of counties by population size, running all analyses on 2327 geographical counties within
the continental US of a population size greater than 11,000.

After rescaling for the correction factor, to quantify intercounty connectivity monthly, we nor-
malize the number of visits between an origin and destination county by the daily total number
of visits originating in the origin county. We then compute the average daily visits each month
from Jan 2019 to March 2021 for all pairs of counties. In Figure 1A is shown for illustrative
proposes the spatial connectivity network computed in March 2020. We therefore obtain a
time-evolving connectivity network between US counties, in which the links represent the daily
coupling probabilities pij between any pair i and j of US counties. pij is normalized as follows:∑

i̸=j pij+pii = 1. A comparison between the monthly and daily dataset provided by SafeGraph
is reported in Figure S2.

Early phase of COVID-19 in the US

The initial confirmed case of COVID-19 in the United States was reported in Washington
state on January 21, and within a few weeks, local transmission was established. Guidelines
advocating for social distancing and the avoidance of gatherings were released on March 16.
During the early stages of the COVID-19 pandemic, while most European countries implemented
national restrictions, lockdowns and stay-at-home orders in the United States -like in Chile -
were implemented locally and at diverse times. The peak of lockdowns was in April 2020,
when more than 40 states had issued some form of stay-at-home or shelter-in-place order [16].
However, the spatial spread of COVID-19 was not contained, and at the end of June 2020, most
US counties reported COVID-19 cases. Facing a rebound of cases in the fall of 2020, social
distancing was recommended (but not mandated) to maintain epidemic activity at low levels.

COVID disease incidence data was derived from CDC data [empty citation]. In this work,
we use COVID-19-related daily new reported cases and the time of arrival in any US county,
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i.e. the day when at least 10 cases have been reported in that area. daily new reported cases
and time of arrivals have been corrected by county accounting for undereporting. We estimate
the level of ascertainment using reported data on COVID-19 cases and fatalities globally, as
described in [russell“˙reconstructing“˙2020]. (Figure 1 B-C).

A C

B

Figure 1: Data sources and epidemic context. (A) Mobility data. Figure shows the spatial connectivity network
between US counties on March, 2020. Only links with top 1% of coupling probability are shown. (B-C) Public
health data. (B) Color coded map shows the corrected time of arrival by county i.e. the time when at least
10 infected cases are reported. Black colored counties are counties that have been infected before March, 15.
(C) Black dots show the corrected number of infected counties over time. A county is considered infected if it
reports at least 10 confirmed COVID-19 cases. Grey dots show the observed number of infected counties over
time. A county is considered infected if it reports at least 10 confirmed COVID-19 cases.Orange solid line shows
the daily number of new confirmed cases nationally, while the orange dotted line shows the real number of cases
accounting for underreporting.

Describing temporal and spatial variability in the mobility network

We examine the monthly network structure to evaluate the temporal dynamics of mobility
patterns. We quantify the degree by county i.e. the number of connections (edges) the counties
in the network have to other counties. We also define link persistence as the probability that
links between counties that exist with non-zero mobility during the month of 2019 remain
present in the same month during 2020 and 2021.

We also fitted a gravity model to the intercounty connectivity network for each month. For
technical details and model performance, see Supplementary Information (SI).

To detect the different geographical communities generated by human mobility patterns, we
performed a community detection analysis using the stochastic InfoMap algorithm [13]. We
aim to identify regions where within movements occur more frequently compared to movements
to other regions. To account for stochasticity, we use a bootstrap resampling method (see SI
for details).
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The classification of urban and rural areas was determined based on the NCHS Urban-Rural
Classification Scheme for counties [31].

All network analyses were done using Python’s networkX library, and the gravity model fitting
was done using the Python scikit-mobility library.

Incorporating human mobility into infectious disease models

We used a stochastic non-Markovian transmission model with a metapopulation structure at the
US county level [44]. In each county, the model accounted for disease transmission proportional
to (i) infected residents not moving (ii) infected visitors coming from other counties and (iii)
returning residents previously infected in other counties. The resulting force of infection in the
county i is defined as follows:

λi = λii +
∑
i̸=j

λv
ji +

∑
i̸=j

λr
ij with


λii = βp2ii

Ii
N̂i

λv
ji = βpiipji

Ij

N̂i

λr
ij = βpij

Îj

N̂j

(2)

where pij is the coupling probability between patches i and j extracted from the intercounty con-
nectivity network. The effective population, and effective number of infections, are respectively
defined as follows:

N̂i = piiNi +
∑
i̸=j

pjiNj (3)

Îi = piiIi +
∑
i̸=j

pjiIj (4)

We considered SEIR (Susceptible - Exposed - Infectious - Recovered) epidemic dynamics specific
to COVID-19. Epidemics parameters are informed by [29].

The detailed mathematical framework, model calibration and implementation details can be
found in the Supplement.

Inference framework and Goodness of fit

To effectively calibrate the epidemic pathway, we utilize national-level data on the count of
counties with a minimum of 10 reported infected cases over time (see Figure 1C). The calibration
process was conducted within the time frame spanning March 14, 2020, to Sept 15, 2020, a period
during which all counties had reported instances of infection. During this process, we derive the
parameter estimates βpre−LD for the time interval from March 15 to March 31, and βpost−LD

for the period from March 31 to May 15, 2020. Inference is based on maximum likelihood,
assuming a Poisson distribution to model the reported number of infected cases over time.

To assess model performance, we computed the goodness of fit to compare the estimated invasion
probability pi,inv(t) with the observed early phase COVID-19 spatial invasion. pi,inv(t) denotes
the likelihood for a county i in a day t to report at least 10 infected cases in the simulation [9].
The goodness of fit is defined as follows:

G(t) =
∑
i

Iilogpi,inv(t))+

(1− Ii) log (1− pi, inv(t))

(5)

Ii = 1 if the county i have been at least 10 infected cases at the day t, and Ii = 0 otherwise.
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Comparing models across geographical scales

In designing the metapopulation structure across various spatial scales, we maintain the spatial
scale of the model at the county level. This approach enables us to make meaningful comparisons
of the results across different scales. To specify a metapopulation model at a spatial scale R
(e.g., cluster, state), we randomize the mobility links that occur among all counties within a
patch at scale R, preserving the number of links. We then set the coupling probabilities for the
connected counties within each patch R equal to the average coupling probability of the links
within the patch, as follows:

pRij =

(∑N
l,k∈R plk

N

)
(6)

with i, j ∈ R, while the coupling probabilities across patches are not changed.

Results

Human mobility is expected to be a pivotal driver in infectious disease transmission. Under-
standing the impact of mobility on infection spread at local, regional, and national scales is
therefore imperative for precision in transmission models, predicting disease spread, and op-
timizing targeted control strategies. By analyzing US county-level spatial connectivity using
mobile phone data, we assess the temporal and geographical variability of human mobility and
identify the geographical scale that drove the early phase of COVID-19 spatial invasion. As
we address public health questions, we reveal the characteristic scale to design metapopulation
modeling.

Temporal stability of the intercounty connectivity network

Limited changes in mobility are observed from January 2019 to March 2021, except for a
significant impact localized to April 2020 (Figure 2A). This notable transition coincided with
the implementation of lockdown measures, causing a nationwide decline in mobility from roughly
45 million daily visits to about 25 million visits post-lockdown enforcement. The mobility shock
extended throughout the month, encompassing a transitional period (Figure 2A-B). Analyzing
the temporal evolution of the intercounty connectivity network, we discovered a consistent
seasonal pattern in the degree distribution and the persistence of mobility connections. Local
variations were observed, only in April 2020, with a 23% reduction in degree and a 26% reduction
in link persistence, respectively. Surprisingly, no variation was observed in November 2020,
despite the strong recommendations for social distancing ahead of the winter surge of SARS-
CoV-2. The reduction in Rural-Urban connections is particularly pronounced, with a 25%
decrease compared to the pre-reduction value in February 2020. This decrease stabilized in
May and beyond. Notably, Urban-Urban connections exhibited greater resilience over time
when compared to connections involving rural areas. Moreover, while coupling probabilities
stay consistent over the study period (Figure 1C), the likelihood of staying in the home location
exhibited larger variability (See SI).

In spite of sporadic extreme events leading to local variability, the intercounty connectivity
network demonstrated temporal stability and exhibited a high level of predictability through a
gravity fit model as shown in Figure S7-9. Indeed, the Spearman coefficient between the original
and modeled intercounty connectivity network remains constant over time, averaging 0.55.

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298916doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298916
http://creativecommons.org/licenses/by-nc/4.0/


A B C

Figure 2: Temporal stability in intercounty mobility. (A) The monthly degree distribution of the inter-
county network show significant variability but are consistent across months. (B) The persistence probability of
links is illustrated, denoting the likelihood that a connection existing in 2019 remains present in 2020 and 2021.
The plot provides a breakdown for different link types: urban-urban (UU), urban-rural (UR), rural-urban (RU),
and rural-rural (RR) links. (C) Distribution of coupling probabilities in the connectivity network by month. We
highlighted in darkred i) April, 2020 (LD) that represents the peak time of number of US states in lockdown,
and November, 2020 (SD) that represents the period when social distancing recommendations were in place.

Spatial stability of the intercounty connectivity network

To identify the geographic scale at which mobility is highly connected, we detect clusters of
counties that are more connected via mobility within the cluster than outside the clusters,
we use a network community detection algorithm. Our hypothesis was that this partitioning
of the US would be at a geographic scale larger than 3143 US counties but smaller than 50
US states or 10 HHS regions. Indeed, we find that based on human mobility, the US can be
partitioned into around 100 regions that split most US states into multiple clusters (Figure 3).
We also find that these clusters are highly spatially contiguous and respect state boundaries
(with a similarity measured by normalized mutual information (NMI) as 0.82). Furthermore,
these regions demonstrate stability over time (NMI = 0.95) despite the perturbations of the
early phases of the COVID pandemic (Figure 3B and in Figure S9-10). Thus, we identify a
persistent geographic partitioning of the US in which clusters are more connected within than
between, and hypothesize that the relevance of mobility to the spatial diffusion of infectious
diseases occurs at a mesoscale.

Implications for metapopulation disease models

After analyzing the stability of mobility patterns in both space and time, we evaluated how the
spatiotemporal scale of human mobility affects our ability to effectively model metapopulation
dynamics of disease. To address this, we integrate the connectivity network into a spatially
explicit metapopulation model, with the goal of simulating the national spread of the initial
wave of SARS-CoV-2 in the US. To understand the role of the geographic scale of mobility on
disease dynamics, we integrate networks into the disease model that always at the US county
level, but are homogenized at different spatial scales to represent missing information at different
scales. To investigate the influence of temporal scale on model effectiveness, we inform the model
with either a time-evolving connectivity network or a static connectivity network representing
mobility from March, 2020 (without loss of generalizability given the temporal stability of the
network we discuss above). In all cases, we measured goodness of fit by comparing the model
predicted time of arrival of disease in a county to the observed time of arrival of the disease.

In Figure 4A, we demonstrate that a metapopulation disease model informed by a county-
level intercounty connectivity network is highly predictive of observed early COVID-19 spatial
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US HHS regionsUS statesUS countiesA

B

Clusters, April 2019 Clusters, April 2020 Clusters, July 2020

Figure 3: Analysis of Spatial Stability. (A) Geographical subdivisions at the county and state levels within the US,
as well as the division into HHS (Health and Human Services) regions, used for health administration purposes.
(B) We partition the intercounty mobility network so that each cluster of counties is more strongly connected to
each other via mobility than to counties in other clusters. We find highly consistent partioning based on mobility
networks from April 2019, April 2020 (during the mandated lockdown period of the early COVID pandemic) and
July 2020 (after the lockdown period of the early COVID pandemic). Clusters are colored to delineate cluster
boundaries and do not represent any other information. Counties colored in gray have populations of fewer than
11,000 inhabitants and are excluded from the analysis.

diffusion. Relative to an Erdős–Rényi random intercounty connectivity network, the empirical
mobility network has a stronger goodness of fit throughout the early phase of the pandemic. This
emphasizes the crucial role of human mobility in the spatial spread of the initial SARS-CoV-2
wave and underscores the necessity of accessing mobility data for constructing more reliable
models. Additionally, we find that the spatial invasion predicted by a static mobility network
is highly consistent with the prediction from a time-varying mobility network, suggesting that
static mobility data is sufficient to accurately reproduce epidemic spatial heterogeneity.

In Figure 4B, we demonstrate the impact of the spatial scale of metapopulation structures on
predictions of spatial diffusion. We compared the ability of county-level mobility data to predict
spatial invasion, relative to mobility data at three spatial scales: US HHS regions, US states,
and mobility data-based clusters (as defined in Figure 3). When comparing spatial scales, we
find that all scenarios perform very similiarly to the random network. These results suggest
that the state, cluster and HHS region-level mobility data lack the necessary granularity and
fail to provide adequate insights into the diversity of mobility patterns.

Discussion

Since the onset of the COVID-19 pandemic, mobile phone data has played a crucial role in
addressing the public health crisis [27, 38, 35, 32, 20, 26, 34, 22, 43, 40, 29, 21, 19, 18]. During
this period, numerous network operators and private enterprises have made considerable efforts
to swiftly share their data within the confines of legal regulations. Consequently, researchers
worldwide have embarked on working with this data, monitoring human behavior caused by
containment measures and adaptive responses to the epidemic, and utilizing it to enhance
epidemic models in order to increase their reliability. [22, 43, 40, 29, 26, 21, 20, 34].

While static mobility data have predominantly been analyzed and integrated into models over
the past decades [4, 5, 6], the current accessibility to real-time human behavior data prompts an
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BA

Figure 4: Implications of temporal and spatial scale of mobility data for prediction with metapop-
ulation disease models. (A) The goodness of fit (median and 95% confidence interval) for time of arrivals for
metapopulation models at a county level, informed by a time-evolving intercounty connectivity network, a static
intercounty connectivity network, and a random intercounty network. (B) Solid lines show the goodness of the fit
(median and 95% confidence interval) for metapopulation models informed with state-, cluster-, and HHS level
mobility data.

essential investigation into the optimal scenarios for utilizing this dynamic information versus
relying solely on static representations of reality [30]. Equally important is the exploration
of the characteristic mobility scale to comprehensively capture the intricate coupling between
different locations, a consideration with potential implications for target control policies to
reduce epidemic activity, and for improving epidemic model forecasting. Furthermore, numerous
researchers have emphasized the pressing necessity to implement standardized strategies that
facilitate rapid data access while upholding stringent data privacy measures [12].

To answer this gap in the literature, in this study, we investigate the spatial connectivity of
US counties during the early phase of the COVID-19 pandemic using high-resolution real-time
human mobility data obtained from mobile phone usage. Our findings reveal significant insights
into the dynamics of human mobility and their implications for infectious disease modeling. In
contrast to findings from other countries (e.g., France [22], India [23], Germany [24]), we observe
that despite the implementation of local social distancing measures and lockdowns, intercounty
connectivity remained largely unperturbed, leading to rapid geographic diffusion of SARS-
CoV-2. Mobility patterns experience only marginal changes before and after the early-stage
COVID-19 pandemic in March-April 2020. The most notable disruption occurred during the
first lockdown period in April 2020, when mobility sharply declined. However, this reduction
was short-lived, and mobility patterns quickly rebounded. Notably, even during periods of
social distancing recommendations, the mobility network remains relatively stable. Assuming
the lockdown represents the most extreme form of mobility disruption, the temporal stability
findings suggest that global human mobility demonstrates resilience against short-term changes.

We also assess the spatial stability of the intercounty connectivity network by detecting spatial
communities based on mobility patterns. Our results indicate that mobility-driven clusters
align closely with state boundaries, reflecting the influence of administrative and geographical
factors on human movement, accordingly with [8, 36]. These clusters exhibited remarkable
stability over time, reinforcing the idea that spatial mobility patterns are deeply ingrained and
relatively resistant to abrupt changes. The fact that mobility patterns are highly correlated
with state boundaries suggests that state-level structures could be effective for designing target
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public health interventions based on travel reductions. Our findings underscore the importance
of considering mobility patterns when designing interventions, resource allocation, and disease
control strategies.

As shown in the context of COVID-19 pandemic in France [29], we also demonstrated that
incorporating high-resolution human mobility data is crucial for accurately capturing the spatial
spread of infectious diseases. Our findings indicate that county-level, daily mobility data offer
the most accurate representation of the spatial spread of disease in the US. Notably, static
county-level mobility data achieves similar model performance to real-time data, suggesting
that an undisturbed representation of reality is adequate for reproducing spatial spread. More
interestingly, our exploration of various spatial scales for metapopulation models underscores
the significance of aligning the model’s structure with the inherent spatial scale of human
mobility. While county-level mobility data yields the most accurate depiction, mobility data-
based clusters, US states and HHS regions don’t capture the heterogeneity of the COVID-19
geographical diffusion.

While our study provides valuable insights, it is not without limitations. Our work focused
on the early phase of the pandemic, during which response measures (e.g., social distancing,
closures, (lack of) masking) were largely homogeneous in the US, and pharmaceutical mea-
sures (e.g., vaccination, antivrials) were not available; thus these findings are not generaliz-
able to later stages. Furthermore, we assume homogeneity within US counties. Addition-
ally, Safegraph mobility data, like all mobile phone datasets, exhibits sampling biases. On-
going efforts to comprehend these biases are crucial for developing better correction methods
[coston“˙leveraging“˙2021]. An independent analysis by Safegraph revealed the underrep-
resentation of older and non-white individuals in POI-specific analyses, though the panel is
representative of race, education, and income [coston“˙leveraging“˙2021, 42].

While characterizing the key role of mobility in the spatial invasion of the COVID-19 pandemic
in the US, our study sheds light on the global stability of human mobility patterns, and the
relevant information needed to design a reliable predictive model. This result may be specific
to countries such as the US in which mobility restrictions were not stringent, specified for
intercounty mobility, nor enforced. Metapopulation models that incorporate accurate mobility
data can provide valuable insights into disease dynamics and enhance our ability to predict
and control the spread of future infectious disease outbreaks. Moreover, standardized data
extraction and sharing we introduced might help facilitate the timelines associated with legal
agreements for data sharing, which do not always align with the rapid spread of epidemics, thus
diminishing the feasibility of timely responses to such outbreaks.
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[1] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani. The role of the airline trans-
portation network in the prediction and predictability of global epidemics. en. Proceedings
of the National Academy of Sciences of the United States of America, 103(7):2015–2020,
Feb. 2006. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.0510525103. url: http:
//www.pnas.org/content/103/7/2015 (visited on 01/11/2018).

[2] C. Viboud, O. N. Bjørnstad, D. L. Smith, L. Simonsen, M. A. Miller, and B. T. Grenfell.
Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science, 312(5772):447–
451, Apr. 2006. doi: 10.1126/science.1125237. url: https://www.science.org/doi/

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298916doi: medRxiv preprint 

https://doi.org/10.1073/pnas.0510525103
http://www.pnas.org/content/103/7/2015
http://www.pnas.org/content/103/7/2015
https://doi.org/10.1126/science.1125237
https://www.science.org/doi/full/10.1126/science.1125237
https://www.science.org/doi/full/10.1126/science.1125237
https://doi.org/10.1101/2023.11.22.23298916
http://creativecommons.org/licenses/by-nc/4.0/


full/10.1126/science.1125237 (visited on 11/02/2023). Publisher: American Associa-
tion for the Advancement of Science.

[3] V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron, and A. Vespignani. Modeling the
worldwide spread of pandemic influenza: baseline case and containment interventions.
eng. PLoS medicine, 4(1):e13, Jan. 2007. issn: 1549-1676. doi: 10.1371/journal.pmed.
0040013.
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S. Vaux, C. Campèse, S. Bernard-Stoecklin, and V. Colizza. Underdetection of cases of
COVID-19 in France threatens epidemic control. en. Nature, 590(7844):134–139, Feb.
2021. issn: 1476-4687. doi: 10.1038/s41586-020-03095-6. url: https://www.nature.
com/articles/s41586-020-03095-6 (visited on 06/30/2023). Number: 7844 Publisher:
Nature Publishing Group.

[30] R. E. Baker, A. S. Mahmud, I. F. Miller, M. Rajeev, F. Rasambainarivo, B. L. Rice, S.
Takahashi, A. J. Tatem, C. E. Wagner, L.-F. Wang, A. Wesolowski, and C. J. E. Metcalf.
Infectious disease in an era of global change. Nature Reviews. Microbiology, 20(4):193–205,
2022. issn: 1740-1526. doi: 10.1038/s41579-021-00639-z. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC8513385/ (visited on 09/01/2023).

[31] Data Access - Urban Rural Classification Scheme for Counties. en-us, Oct. 2022. url:
https://www.cdc.gov/nchs/data_access/urban_rural.htm (visited on 01/25/2023).

[32] K. Sparks, J. Moehl, E. Weber, C. Brelsford, and A. Rose. Shifting temporal dynam-
ics of human mobility in the United States. Journal of Transport Geography, 99:103295,
Feb. 2022. issn: 0966-6923. doi: 10.1016/j.jtrangeo.2022.103295. url: https:
//www.sciencedirect.com/science/article/pii/S0966692322000187 (visited on
09/01/2023).

[33] E. Valdano, J. T. Okano, V. Colizza, H. K. Mitonga, and S. Blower. Use of mobile phone
data in HIV epidemic control. English. The Lancet HIV, 9(12):e820–e821, Dec. 2022. issn:
2352-3018. doi: 10.1016/S2352-3018(22)00332-0. url: https://www.thelancet.
com/journals/lanhiv/article/PIIS2352-3018(22)00332-0/fulltext (visited on
12/15/2023). Publisher: Elsevier.

[34] M. Zhang, S. Wang, T. Hu, X. Fu, X. Wang, Y. Hu, B. Halloran, Z. Li, Y. Cui, H. Liu, Z.
Liu, and S. Bao. Human mobility and COVID-19 transmission: a systematic review and fu-
ture directions. Annals of GIS, 28(4):501–514, Oct. 2022. issn: 1947-5683. doi: 10.1080/
19475683.2022.2041725. url: https://doi.org/10.1080/19475683.2022.2041725
(visited on 09/01/2023). Publisher: Taylor & Francis eprint: https://doi.org/10.1080/19475683.2022.2041725.

13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298916doi: medRxiv preprint 

https://doi.org/10.1073/pnas.2012326117
https://doi.org/10.1073/pnas.2012326117
https://www.pnas.org/doi/abs/10.1073/pnas.2012326117
https://doi.org/10.1016/S1473-3099(20)30861-6
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30861-6/fulltext
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30861-6/fulltext
https://doi.org/10.1038/s41586-020-2923-3
https://www.nature.com/articles/s41586-020-2923-3
https://doi.org/10.2196/24591
https://www.jmir.org/2021/1/e24591
https://theses.hal.science/tel-04099742
https://doi.org/10.1038/s41586-020-03095-6
https://www.nature.com/articles/s41586-020-03095-6
https://www.nature.com/articles/s41586-020-03095-6
https://doi.org/10.1038/s41579-021-00639-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513385/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513385/
https://www.cdc.gov/nchs/data_access/urban_rural.htm
https://doi.org/10.1016/j.jtrangeo.2022.103295
https://www.sciencedirect.com/science/article/pii/S0966692322000187
https://www.sciencedirect.com/science/article/pii/S0966692322000187
https://doi.org/10.1016/S2352-3018(22)00332-0
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(22)00332-0/fulltext
https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(22)00332-0/fulltext
https://doi.org/10.1080/19475683.2022.2041725
https://doi.org/10.1080/19475683.2022.2041725
https://doi.org/10.1080/19475683.2022.2041725
https://doi.org/10.1101/2023.11.22.23298916
http://creativecommons.org/licenses/by-nc/4.0/


[35] R. Arambepola, K. L. Schaber, C. Schluth, A. T. Huang, A. B. Labrique, S. H. Mehta,
S. S. Solomon, D. A. T. Cummings, and A. Wesolowski. Fine scale human mobility
changes within 26 US cities in 2020 in response to the COVID-19 pandemic were as-
sociated with distance and income. en. PLOS Global Public Health, 3(7):e0002151, 2023.
issn: 2767-3375. doi: 10.1371/journal.pgph.0002151. url: https://journals.plos.
org/globalpublichealth/article?id=10.1371/journal.pgph.0002151 (visited on
09/01/2023). Publisher: Public Library of Science.

[36] B. Klein, H. Hartle, M. Shrestha, A. C. Zenteno, D. B. S. Cordera, J. R. Nicolas-Carlock,
A. I. Bento, B. M. Althouse, B. Gutierrez, M. Escalera-Zamudio, A. Reyes-Sandoval,
O. G. Pybus, A. Vespignani, J. A. Diaz-Quiñonez, S. V. Scarpino, and M. U. G. Krae-
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