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Abstract 32 

Computable or electronic phenotypes of patient conditions are becoming more commonplace in 33 

quality improvement and clinical research. During phenotyping algorithm validation, standard 34 

classification performance measures (i.e., sensitivity, specificity, positive predictive value, 35 

negative predictive value, and accuracy) are commonly employed.  When validation is 36 

performed on a randomly sampled patient population, direct estimates of these measures are 37 

valid. However, it is common that studies will sample patients conditional on the algorithm 38 

result, leading to a form of bias known as verification bias. The presence of verification bias 39 

requires adjustment of performance measure estimates to account for this sampling bias. Herein, 40 

we describe the appropriate formulae for valid estimates of sensitivity, specificity, and accuracy 41 

to account for verification bias.  We additionally present an online tool to adjust algorithm 42 

performance measures for verification bias by directly taking the sampling strategy into 43 

consideration and recommend use of this tool to properly estimate algorithm performance for 44 

phenotyping validation studies.   45 
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Introduction 46 

Computable phenotypes of patient conditions are becoming more commonplace in quality 47 

improvement and clinical research.1 These phenotypes are algorithmically derived from data 48 

sources such as electronic health record (EHR), insurance claims, or centers for Medicare and 49 

Medicaid Services data, and can empower research and improve patient care.2,3 Algorithm 50 

performance measures, such as sensitivity, specificity, and positive and negative predictive 51 

values (PPV and NPV) are common measures of validity obtained by comparing the algorithm 52 

result to a “gold standard” (e.g. manual chart review).  A common validation study design 53 

strategy when the condition of interest has low prevalence is to sample based on the algorithm 54 

result (e.g. 50 predicted cases and 50 predicted non-cases).4,5 This strategy is both cost-effective 55 

and statistically efficient by enriching for likely true positives and improving the expected 56 

precision of positive-class performance measures (e.g., sensitivity, PPV).  However, this 57 

sampling strategy also results in a form of selection bias known as verification bias, which is 58 

commonly encountered in diagnostic test evaluation.6-8  Under these conditions, estimates of 59 

sensitivity, specificity, and accuracy can be biased if the sampling design is not taken into 60 

consideration. Herein, we illustrate the effects of verification bias on performance estimation 61 

through an example validation study and develop a user-friendly online tool to facilitate 62 

adjustment of performance measures under these validation study scenarios. 63 

Methods  64 

Given that EHR-based phenotyping algorithms can be prone to error, it is often of interest to 65 

characterize classification performance relative to ground truth based on manual chart 66 

abstraction. Formulae for defining these performance measures adjusting estimates of sensitivity 67 

and specificity for verification bias are available in Figure 1. Detailed explanations of these 68 
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derivations, along with formulae for calculating corresponding asymptotic CI’s, are provided by Begg and 69 

Greenes.9  70 

 71 

Validation Study Sampling Design 72 

For phenotyping algorithms, the total number of patients with available classification results 73 

tends to be very large due to ease of implementation (e.g., the entire patient population at a 74 

medical institution).  Given the potential laborious nature of chart review, algorithm validation 75 

studies are often performed on a relatively small subset of the total population. When the 76 

expected prevalence of the disease condition is low (i.e., less than 10%), validation studies may 77 

have correspondingly low precision for estimating sensitivity and PPV if patients are randomly 78 

sampled from the population.  For example, for a disease with prevalence of 2%, in a random 79 

sample of 500 patients we expect 10 positive disease patients, on average.  Even at a true 80 

algorithm sensitivity of 90% (i.e., 9/10 cases correctly identified), the Wilson score 95% 81 

confidence interval (CI) would be [0.596,0.995].  In contrast, 90% specificity would correspond 82 

to a 95% confidence interval of [0.870,0.925].  This disparity in precision can be mitigated by 83 

oversampling subjects predicted by the algorithm as a positive case (e.g., 1:1 sampling based on 84 

predicted disease status), leading to a more balanced representation of true disease cases and 85 

unaffected non-cases within the validation sample. 86 

Naïve and Adjusted Validation Performance 87 

While the sampling strategy defined above leads to more statistically efficient estimation of 88 

algorithm performance, sampling patients for the validation study based on algorithm-classified 89 

disease status can lead to biased estimation of performance measures.  Referred to as 90 
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“verification” or “work-up” bias, unadjusted analyses of the resulting validation 2x2 contingency 91 

table can specifically lead to overestimated sensitivity while simultaneously underestimating 92 

specificity.  However, since NPV and PPV correspond to probabilities conditional on predicted 93 

statuses, these estimates remain valid under this conditional sampling scheme.   94 

Example Validation Study 95 

Consider the illustrative example of a validation study where a phenotyping algorithm is 96 

applied to a source population of 1,100 patients, corresponding to 100 patients classified as 97 

positive and 1000 patients as negative. From this cohort, 50 predicted cases and 50 predicted 98 

non-cases were selected for phenotyping algorithm validation.  The manual abstraction yielded a 99 

2x2 contingency table with counts of 49 true positives, 1 false positive, 3 false negatives, and 47 100 

true negatives.  101 

Simulation Analysis 102 

To further illustrate the impact of verification bias on sensitivity and specificity estimates across 103 

a broad range of realistic study conditions, we conducted a simple simulation study for a disease 104 

with estimated true prevalence between 1% and 50%; true NPV of 0.90, 0.95, and 0.99; and true 105 

PPV of 0.70, 0.80, and 0.90. For validation, we considered a balanced study design, such that 106 

equal numbers of predicted cases and non-cases are selected for chart abstraction. We then 107 

calculated the expected bias of naive estimates of sensitivity and specificity relative to 108 

appropriately adjusted estimates based on expected values of true positive rate (TPR), false 109 

positive rate (FPR), true negative rate (TNR), and false negative rate (FNR) in the validation 110 

study. 111 

Online Tool 112 
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We used Microsoft Visual Studio Code (version 1.78.0) and Python (version 3.10) with the 113 

Streamlit package (version 1.13.0) to create a simple tool to calculate sensitivity, specificity, 114 

PPV, NPV, and accuracy of a phenotyping algorithm based on chart validation.  The tool is 115 

freely available at: https://bit.ly/3tMTJiE. 116 

Results 117 

The 2x2 contingency table of the example validation study along with projected counts from the 118 

total source cohort are presented in Table 1, while respective performance measure analyses 119 

corresponding to unadjusted and verification-bias adjusted estimates are presented in Table 2.   120 

Unadjusted performance estimates for the hypothesized phenotyping algorithm corresponded to 121 

0.942 sensitivity, 0.979 specificity, and 0.960 accuracy. The disease prevalence in the validation 122 

study sample was 0.520, whereas the true prevalence in the source population was 0.091. After 123 

adjusting for verification bias, the updated performance measures for the algorithm corresponded 124 

to 0.620 sensitivity, 0.999 specificity, and 0.944 accuracy.  125 

 Results from our simulation study are presented in Figure 2.  These results illustrate the 126 

substantial positive bias for sensitivity estimation that may be observed as disease prevalence 127 

decreases toward zero when analyzing the unadjusted validation study confusion matrix results.  128 

This bias relationship is attenuated as the NPV approaches 1.00, but still yields extreme bias at 129 

lower prevalence values.  For specificity (Figure 2B), we observe similar trends of increased 130 

absolute bias with decreased prevalence.  However, the magnitude of this bias remains largely 131 

consistent across realistically high values of NPV considered for the simulation study, with lower 132 

PPV leading to moderate increases in bias.  Of note, these results represented expected biases, 133 

and actual results may vary based on sizes of the total population and sampling cohort due to 134 

sampling variability. 135 
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Discussion 136 

 The provided example demonstrates the performance metrics of an algorithm and how 137 

much they can change when one does not randomly sample from the source population for 138 

algorithm validation. Oversampling of algorithm-positive cases for validation can bias model 139 

performance measures, leading to inflated sensitivity and accuracy estimates. The bias can be 140 

mitigated by considering the prevalence of disease in the source population and adjusting the 141 

calculations to account for the difference.  142 

While sampling conditional on predicted disease status will lead to valid direct estimates 143 

of PPV and NPV, these measures are themselves a function of disease prevalence.  Thus, they 144 

are not necessarily intrinsic properties of a phenotyping algorithm, and should be interpreted 145 

with caution as disease prevalence may vary across validation populations.10  Likewise, 146 

alternative performance measures that are in part functions of sensitivity and/or specificity, such 147 

as F1-score and positive/negative likelihood ratios, will also likely be biased and require similar 148 

corrections.  Stratified study designs can also be adopted when there are covariates that may 149 

correlate with differential algorithm performance, and we refer the reader to appropriate 150 

references for how to address adjustment under these conditions.6,9 151 

For accurate adjustment and algorithm calibration, the source population should be 152 

defined prior to application of an algorithm. Ideally, a very high percentage of the source 153 

population will be characterized by the algorithm: if a high percentage of patients are not 154 

classified as either disease positive or negative by the algorithm, then the performance metrics of 155 

the algorithm will be difficult to interpret and this will significantly increase the difficulty of 156 

cross-institutional validation.11-13  157 
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This tool will enable clinicians, informaticists, and data scientists to appropriately 158 

characterize performance of computable phenotype algorithms. 159 
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Tables 195 

Table 1: 2x2 contingency table definitions for phenotyping validation. 196 

 Validation Study Source Population 

 Chart (+) Chart (-) Total Disease No Disease Total  
Algorithm (+) 49 1 50 98 2 100 
Algorithm (-)  3 47 50 60 940 1000 
Total 52 48 100 158 942 1100 
 197 

 198 

Table 2: Comparison of classification performance measures based on unadjusted analysis of the 199 

validation study table and verification bias adjusted estimates.  Note that PPV and NPV are 200 

identical across both analyses. 201 

Measures Naïve  Bias-Adjusted 
Prevalence 0.520  0.091  
Accuracy 0.960  0.944  
PPV (95% CI) 0.980 [0.895,0.999] - - 
NPV (95% CI) 0.940 [0.838,0.979] - - 
Sensitivity (95% CI) 0.942 [0.844,0.980] 0.620 [0.553,0.683] 
Specificity (95% CI) 0.979 [0.891,0.999] 0.998 [0.997,0.998] 
 202 

  203 
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Figures 204 

Figure 1. 205 

 206 
A.  Mathematical definition of performance measures: 207 
Five primary performance measures of interest: 208 
 209 
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b) Adjusted estimates of sensitivity and specificity correcting for verification bias  217 
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 219 

Legend 220 

Consider a phenotyping algorithm for predicting the presence of a given disease condition based on a 221 

patient’s EHR data. We designate � � �0,1� to be the true underlying disease status for a given patient 222 

and � � �0,1� to be the predicted disease status by the algorithm, such that 0 and 1 respectively denote 223 

unaffected and affected disease statuses.  For disease phenotyping on a patient cohort of size 	, the 224 

classification results can be summarized using a standard 2x2 contingency table, which tabulates patient 225 

classifications of disease relative to true disease status into four distinct categories:  true positives (TP), 226 

true negatives (TN), false positives (FP), and false negatives (FN), as indicated in Table 1.  Counts in the 227 

equations above can be replaced by corresponding rates by simply factoring out 	 (e.g., the true positive 228 

rate 
�� 
��

�
 Pr ��  1, �  1�).   Given that unbiased estimates of test positive and negative rates, 229 

�� and ��, are available from the algorithm classifications for the original source cohort, the expected 230 

rates of TPR, TNR, FPR, and FNR in the source cohort can actually be calculated as simple functions of 231 

these parameters and the PPV and NPV estimates from the validation study.  For example, recall from 232 

above that TPR can be framed as the joint probability Pr ��  1, �  1�.  Since Pr��  1, �  1� 233 

Pr��  1|�  1� � Pr ��  1� by basic rules of conditional probability, and Pr��  1|�  1�  ��� 234 

and Pr��  1�  �� per our definitions above, it follows that 
��  ��� � ��  235 

  236 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.11.22.23298913doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298913


12 

 

Figure 2: Simulation study results demonstrating expected biases for sensitivity and specificity 237 

under verification bias for various values of true PPV, true NPV, and disease prevalence. 238 

 239 
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