- 1 Authors: Hwayeon Danielle Shin^{a,b}, Emily Hamovitch^a, Evgenia Gatov^a, Madison
- 2 MacKinnon^{a,c}, Luma Samawi^{a,d}, Rhonda Boateng^a, Kevin Thorpe^a, Melanie
- 3 Barwick^{a,d,e}
- 4

5 **Affiliations**

- a. Institute of Health Policy, Management, and Evaluation, University of Toronto,
 Toronto, Canada
- 8 b. Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health,
 9 Toronto, Canada
- 10 c. The Centre for Addiction and Mental Health, Toronto, Canada
- 11 d. Child Health Evaluative Sciences, The Peter Gilgan Centre for Research and
- 12 Learning, The Hospital for Sick Children, Toronto, ON, Canada
- 13 e. Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- 14

15 *Correspondence to:*

- 16 Hwayeon Danielle Shin
- 17 RN MScN PhD(c)
- 18 <u>hdanielle.shin@mail.utoronto.ca</u>
- 19
- 20 Conflicts of Interest
- 21 There are no conflicts to declare.
- 22

The NASSS (Non-Adoption, Abandonment, Scale-Up, Spread and Sustainability) framework use over time: A scoping review

26

27 Abstract

28 **Background:** The Non-adoption, Abandonment, Scale-up, Spread,

29 Sustainability (NASSS) framework (2017) was established as an evidence-based,

30 theory-informed tool to predict and evaluate the success of implementing health

- 31 and care technologies. While the NASSS is gaining popularity, its use has not been
- 32 systematically described. Literature reviews on the applications of popular
- 33 implementation frameworks such as RE-AIM and CFIR have enabled their
- 34 advancement in the implementation science field. Similarly, we sought to advance
- 35 the science of implementation and application of theories, models, and frameworks
- 36 (TMFs) in research by exploring the application of the NASSS in the five years since
- 37 its inception.
- 38 **Objective:** We aim to understand the characteristics of studies that used the NASSS,
 39 how it was used, and the lessons learned from its application.
- 40 **Methods:** We conducted a scoping review following the Joanna Briggs Institute
- 41 methodology. We searched the following databases on December 20, 2022: Ovid
- 42 MEDLINE, EMBASE, PsychINFO, CINAHL, Scopus, Web of Science, and LISTA. We
- 43 used typologies and frameworks to characterize evidence to address our aim.
- 44 **Results:** This review included 57 studies, which were a mix of qualitative (n=28),
- 45 mixed/multi-methods (n=13), case studies (n=6), observational (n=3), experimental
- 46 (n=3), and other designs (e.g., quality improvement) (n=4). The four most common
- 47 types of digital applications being implemented were telemedicine/virtual care
- 48 (n=24), personal health devices (n=10), digital interventions, such as internet
- 49 Cognitive Behavioural Therapies (n=10), and knowledge generation applications
- 50 (n=9). Studies used the NASSS to inform study design (n=9), data collection (n=35),
- 51 analysis (n=41), data presentation (n=33), and interpretation (n=39). Most studies
- 52 applied the NASSS retrospectively to implementation (n=33). The remainder
- 53 applied the NASSS prospectively (n=15) or concurrently (n=8) with implementation.
- 54 We also collated reported barriers and enablers to implementation. We found the
- 55 most reported barriers fell within the Organization and Adopter System domains,
- and the most frequently reported enablers fell within the Value Proposition domain.
- 57 Eighteen studies highlighted the NASSS as a valuable and practical resource,
- 58 particularly for unravelling complexities, comprehending implementation context,
- 59 understanding contextual relevance in implementing health technology, and
- 60 recognizing the NASSS' adaptable nature to cater to researchers' requirements.
- 61 **Conclusions:** Most studies used the NASSS retrospectively, which may be attributed
- 62 to the framework's novelty. However, this finding highlights the need for
- 63 prospective and concurrent application of the NASSS within the implementation

It is made available under a CC-BY 4.0 International license .

- 64 process. In addition, almost all included studies reported multiple domains as
- 65 barriers and enablers to implementation, indicating that implementation is a highly
- 66 complex process that requires careful preparation to ensure implementation
- 67 success. Finally, we identified a need for better reporting when using the NASSS in
- 68 implementation research to contribute to the collective knowledge in the field.
- 69 Keywords: Scoping Review; Implementation Science; NASSS

70 Introduction

- 71 Healthcare technology innovations hold considerable promise for enhancing patient
- 72 outcomes and service efficiency, but they frequently remain confined to small-scale
- 73 demonstration initiatives [1–5]. Moreover, current evidence indicates a prevalent
- 74 pattern of non-adoption and abandonment of healthcare technology innovations by
- 75 their intended users, with limited success in integrating these innovations into
- 76 regular practice or expanding their implementation to different contexts [6]. This
- challenge is especially evident in complex healthcare settings, where the
- 78 multifaceted nature of the innovations and the environment can create barriers to
- 79 successful implementation [7].
- 80 Healthcare is described as a complex adaptive system, discouraging simplistic linear
- 81 cause-and-effect reasoning [8,9]. Instead, there is a growing recognition of the need
- 82 to emphasize dynamic processes while implementing healthcare practices. This
- 83 change in perspective reflects an understanding that healthcare is influenced by
- 84 multifaceted interactions and feedback loops that cannot be adequately explained
- 85 by linear models alone. In response to this evolving perspective, the Non-Adoption,
- 86 Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework was
- 87 introduced in 2017 [10]. NASSS was developed as an evidence-based and theory-
- 88 informed approach to enhance the ability to predict and assess the success of
- 89 implementing innovative technologies in the healthcare context [10]. Related
- 90 complexity assessment tools (NASSS-CAT) were developed in 2020 to enhance
- 91 understanding, guide monitoring, and facilitate research on technology projects in
- healthcare or social care settings through stakeholder discussions [11].
- 93 The NASSS encompasses seven distinct domains: 1) Illness/Condition; 2)
- 94 Technology; 3) Value Proposition; 4) Adopter System; 5) Organization(s); 6) Wider
- 95 Context; and 7) Embedding and Adaptation Over Time [10]. Each domain can be
- 96 categorized as simple, complicated, or complex [10]. The greater the complexity
- 97 observed within these domains, the more obstacles will likely arise, hindering the
- 98 successful adoption, scale-up, spread, and sustainability of innovative health and
- care technologies [10]. The NASSS framework considers the intricate web of
- 100 dynamic interactions that influence the adoption and outcomes of innovations and
- 101 aims to provide a more comprehensive and accessible tool for evaluating and
- 102 improving the implementation of healthcare innovations [10].
- 103 Although new, the NASSS framework has been well-received. The seminal paper has
- 104 had nearly 750 citations at the time of writing, as reported in the Journal of Medical
- 105 Internet Research [10]. The surge in interest reflects the widespread adoption of the

It is made available under a CC-BY 4.0 International license .

- 106 NASSS, which has been utilized prospectively and retrospectively to assess patient-
- 107 oriented technologies and tools for decision-making purposes [12,13]. Despite its
- 108 popularity, there has been a lack of systematic documentation regarding the use of
- 109 the NASSS framework following its release. Likewise, a comprehensive analysis of
- 110 the framework's contributions and the insights derived from its application has not
- 111 been conducted systematically.
- 112 The applications of popular implementation theories, models, and frameworks
- 113 (TMFs), such as the Reach, Effectiveness, Adoption, Implementation, and
- 114 Maintenance (RE-AIM) and Consolidated Framework for Implementation Research
- 115 (CFIR), have been well documented in the literature. For example, there have been
- several literature reviews [14,15] on using RE-AIM since its inception in 1999.
- 117 These reviews have described and assessed the application of the RE-AIM and have
- 118 enabled the advancement of the framework (i.e., enhanced RE-AIM/Pragmatic
- 119 Robust Implementation and Sustainability Model (PRISM) 2019) as well as its novel
- 120 application, such as an opportunity to use the RE-AIM in combination with the
- 121 Pragmatic Explanatory Continuum Indicator Summary (PRECIS) model [14,15].
- 122 Similarly, we aim to contribute to the field of implementation science by exploring
- 123 the NASSS applications to date and identifying opportunities to advance the
- 124 framework. A scoping review is the selected method and was deemed most
- 125 appropriate because our primary objective is to provide a breadth of literature
- 126 currently available on the NASSS application [16]. A preliminary search of
- 127 PROSPERO, MEDLINE, the Cochrane Database of Systematic Reviews, Open Science
- 128 Framework, and JBI Evidence Synthesis was conducted in October 2022. No current
- 129 or in-progress scoping or systematic reviews on the topic were identified.

130 **Review questions**

- 131 1. What are the characteristics of studies that used the NASSS?
- 132 2. How has the NASSS been used in the identified studies, including, but not limited
- 133 to, timing within implementation, depth of application, and use in combination with
- 134 other tools (e.g., the NASSS-CAT)?
- 135 3. What are the author-reported lessons learned from applying the NASSS?

136 Inclusion criteria

137 Concept

- 138 This review included all studies that used the NASSS framework and/or NASSS-CAT
- 139 in their design. Studies that only referred to the framework without application (e.g.,
- 140 citing in the introduction and/or discussion) were excluded.

141 **Context and population**

- 142 There were no exclusion criteria for population and context. Any studies conducted
- 143 in any context with any population were considered for inclusion. However, due to

It is made available under a CC-BY 4.0 International license .

- 144 the available resources in our research team, only English-language publications
- 145 were included.

146 **Type of sources**

- 147 This review included all research designs (e.g., quantitative, observational,
- 148 qualitative, and mixed methods). We also considered peer-reviewed and grey
- 149 literature, including conference proceedings and dissertations, but we included only
- 150 empirical studies. Reference lists in non-empirical literature (e.g., reviews) were
- screened to identify relevant primary studies. Only literature published since 2017,
- 152 the year of the publication of the seminal NASSS framework paper, was included.

153 Methods

- 154 This scoping review was conducted following the Joanna Briggs Institute (JBI)
- 155 methodology for scoping reviews [17,18], and the manuscript was prepared in line
- 156 with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- 157 extension for Scoping Reviews (PRISMA-ScR) [19]. Our *a priori* protocol [20] was
- 158 registered on the Open Science Framework.

159 Search strategy

- 160 In collaboration with a health sciences librarian and following the Peer Review of
- 161 Electronic Search Strategies (PRESS) guideline [21], a comprehensive search
- 162 strategy was developed to locate relevant scholarly literature using multiple
- 163 bibliographic databases. This scoping review followed a three-step search strategy
- 164 outlined in the JBI methodology. Firstly, an initial limited search of MEDLINE was
- 165 undertaken to identify articles on the topic. Secondly, the text words in the titles and
- 166 abstracts of relevant articles and the index terms used to describe the articles were
- 167 used to develop a complete search strategy. Then, the entire search strategy,
- 168 including all identified keywords and index terms, was adapted for each included
- 169 information source and our search was undertaken on December 20, 2022, on the
- 170 following databases: Ovid MEDLINE, EMBASE, PsychINFO, CINAHL, Scopus, Web of
- 171 Science, and Library, Information Science and Technology Abstracts (LISTA).
- 172 Thirdly, reference lists of relevant reviews were screened to identify eligible
- 173 empirical studies. The full search strategies are provided in Supporting Information
- 174 1. Since the NASSS framework was first published in 2017, databases have been
- searched from 2017 onwards. In addition to a scholarly database search, a forward
- 176 citation search [22] was used in Scopus and Web of Science on October 13 and 17,
- 177 2022, to complement our database searches. The main steps in this forward citation
- 178 search included using citation indexes to identify studies that cite the original NASSS
- paper published in 2017. This search strategy helped to identify papers that our
- 180 search strategy might have missed.

181 Study/Source of evidence selection

- 182 Following the search, all identified records were collated and uploaded into the
- 183 Covidence [23], and duplicates were automatically removed. Then, five random

It is made available under a CC-BY 4.0 International license .

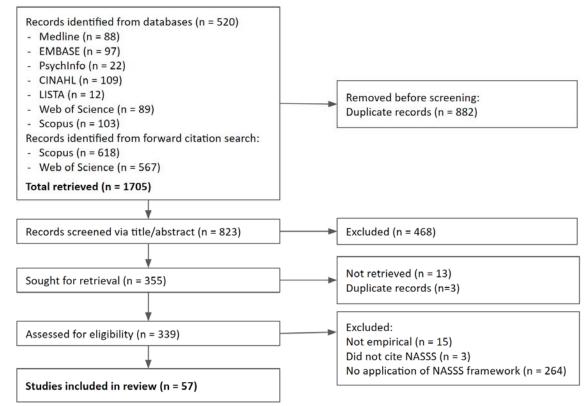
184 articles were selected for our pilot testing, and all five reviewers on the team 185 independently assessed the titles and abstracts against the inclusion criteria. While 186 our pilot testing generally went smoothly, we encountered a need for clarification 187 regarding what constitutes NASSS application. After a team discussion, we clarified 188 that simply citing the NASSS was insufficient for inclusion; instead, the work should 189 incorporate the NASSS or NASSS-CAT tool into some aspect of the study design to 190 ensure consistency in our screening decision-making process, which is often not 191 mentioned in the abstract. Therefore, the team decided to err on the side of caution 192 during the screening phase. After pilot testing for the calibration exercise, the 193 remaining titles and abstracts were screened by sets of two independent reviewers 194 (HDS, EG, MM, EH, LS, RB). Potentially relevant papers were retrieved in full, and 195 their citation details were imported into the Covidence [23]. Two independent 196 reviewers assessed full texts (HDS, EG, MM, EH, LS, RB). Full-text studies that did not 197 meet the inclusion criteria were excluded, and reasons for their exclusion were 198 documented. Any reviewer disagreements were resolved through discussion or with 199 a third reviewer. Scoping reviews typically do not necessitate methodological

200 evaluation [18]; therefore, critical appraisal was omitted.

201 Data extraction

- 202 Data were extracted from papers by sets of two independent reviewers (HDS, EH,
- 203 EG, MM, RB, LS) using a data extraction tool developed in collaboration with the
- 204 research team. We extracted the following information: general characteristics of
- 205 the paper, intervention characteristics, description of the NASSS framework
- 206 application, reported implementation barriers and facilitators, and study conclusion
- 207 and author-reported lessons learned from applying the NASSS. Any reviewer
- 208 disagreements were resolved through discussion or with a third reviewer. See
- 209 Supporting Information 2 for our data extraction tool.

210 Data analysis and presentation


- 211 A descriptive, analytical approach was used to generate summary statistics (e.g.,
- 212 frequency counts, percentages, etc.) for the data extracted concerning the general
- 213 characteristics of the included studies. Subsequently, a content analysis was
- 214 conducted to characterize the narrative data. First, the digital applications
- 215 implemented in the included studies were categorized by two reviewers (MM, HDS)
- 216 by adapting the framework, 'Evolving Applications of Digital Technology in Health
- and Health Care.' Application categories [24] are as follows: 1) Telemedicine/Virtual
- care; 2) Personal health devices; 3) Digital interventions; 4) Knowledge generation
- 219 and/or integrators; 5) Health information; 6) Surgical/Radio graphic interventions;
- 220 7) Diagnostic and imaging [24]. One innovation could be characterized by more than
- 221 one category. Secondly, two reviewers categorized health conditions being
- examined in the included studies into disease types (EH, HDS). Thirdly, the
- 223 description of the NASSS application was assessed by sets of two independent
- reviewers (HDS, EH, EG, MM, RB, LS) in terms of its timing within the
- 225 implementation (i.e., prospective, retrospective, concurrent) and study design
- aspects (e.g., overall design, data collection, data analysis). This process required
- some level of interpretation by the team, and any conflicts in interpretation were

It is made available under a CC-BY 4.0 International license .

- 228 resolved through discussion. Fourth, barriers and enablers, often correspondingly
- 229 reported to the primary NASSS domains, were collated from the papers. Then, sets
- of two reviewers (HDS, EH, EG, MM, RB) categorized these into subdomains of
- 231 NASSS. Fifth, reported lessons learned from the authors were narratively
- summarized. The charted results are accompanied by narrative summaries that
- 233 describe how the results relate to our review objectives and questions.

234 **Results**

- Our search strategy yielded 1,705 citations (Figure 1). Following the automatic
- 236 removal of duplicates by Covidence, 823 articles underwent title and abstract
- 237 screening, and 355 articles underwent full-text evaluation to culminate in 57 studies
- in this review. Most excluded studies cited the NASSS framework in the text (e.g., in
- the discussion) but did not use the framework in study design, data collection,
- 240 analyses, or presentation of results. Other excluded studies were non-empirical (e.g.,
- 241 commentary) and those for which full text was unavailable.
- 242 <Insert Figure 1>

Figure 1: PRISMA Flow Diagram

245 RQ1. Characteristics of included studies

- 246 Individual study characteristics are presented in Table 1. As indicated in summary
- 247 Table 2, among the 57 included studies, the majority were qualitative (n=28),
- following mixed/multi-methods (n=13), case-studies (n=6), observational (n=3),
- 249 experimental (n=3), and other designs (e.g., quality improvement, n=4). Many

- studies originated in the United Kingdom (n=15), Australia (n=13), and the United
- 251 States (n=9), with a few other studies being set elsewhere in Europe, Southeast Asia,
- and North America. However, It is noteworthy that the NASSS framework was
- 253 developed in the United Kingdom, and several included studies were part of the
- initial empirical testing and refinement of the NASSS domains [25].
- 255 With the NASSS framework having been designed for health technology innovations,
- there were a variety of health conditions for which innovations were implemented,
- 257 including cardiovascular (n=10), mental health (n=9), general health promotion
- 258 (n=9), cancer (n=5), and women's health (n=5), among others. Of the 57 included
- studies, 53 implemented digital applications, and the rest (n=4) implemented non-
- 260 digital interventions such as harm reduction services and COVID-19 testing
- strategies. Of the 53 digital applications, approximately half of them were
- telemedicine/virtual care (n=24), followed by personal health devices (n=10),
- 263 knowledge generation applications (n=9), and digital interventions (n=10), such as
- 264 internet-based Cognitive Behavioural Therapy (iCBT). See Table 3 for a complete list
- 265 of digital applications and examples.
- 266 <Insert Table 1>
- 267 Table 1. Study characteristics

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Abimbola 2019 [26]	Australi a	Mixed- Methods	Australian General Practice	Patients; Service providers ; Other: program evaluation team (Pl, investigators, PhD student)	Cardiovasc ular related	Digital interven tion	Quality improvem ent interventi on for cardiovasc ular disease preventio n & a third- party add- on software tool	Retrospect ive (to evaluate imple ment ation)	Data analysis; Presenta tion of results; Interpret ation	No tool used
Alh mou d 2022 [27]	Engla n d	Qualitati ve	Hospitals	Service providers ; Clinic Staff	Cardiovasc ular- related	Digital interven tion	EHR- integrated automated monitorin g devices	Retrospect ive (to evaluate imple ment ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used
Banck 2020 [28]	Sweden	Qualitati ve	Hospital - Outpatient psychiatric dinics	Service providers ; Clinic Staff	Other: Insomnia	Digital interven tion	iCBT	Retrospect ive (to evaluate imple ment ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	Develo ped own instru ment (based on NASSS)
Barnett 2022 [29]	Australi a	Qualitati ve	Hospital & Ambulatory Care	Service providers ; Clinic Staff	Diet & Nutrition: Lifestyle- related chronic conditions	Digital interven tion	Technolog y- supported models of nutrition care	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Bezuiden hout 2022 [30]	Sweden	Quantita tive: Observat ional	Swedish Association of Physiothera pists	Service providers	Neurologic al diseases, Elderly Care: Older Adults	Digital interven tion	Telehealth	Concurrent with implement ation	Data collectio n	No too used
Brown 2022 [31]	Englan d	Qualitati ve	Hospitals - acute psychiatric wards	Patients; Clinic Staff	Mental Health: agoraphobi c avoidance	Digital interven tion	Virtual reality therapy	Prospectiv e (to inform design)	Study design; Data collectio n; Interpret ation	No too used
Budhwan i 2021 [32]	Ca na da	Qualitati ve	Hospital - Mental health department	Patients; Service providers	Mental health	Digital interven tion	Virtual care (video visit)	Retrospect ive (to evaluate implement ation)	Data analysis	No to c used
Cartledge 2022 [33]	Australi a	Qualitati ve	Members of the Australian Cardiovasc ular Health and Rehabilitati on Association (ACRA)	Service providers	Cardiovasc ular related: Cardiac event or diagnosis	Digital interven tion	Technolog y use for remotely delivered cardiac rehabilitat ion	Retrospect ive (to evaluate implement ation)	Data analysis; Presenta tion of results; Interpret ation	No too used
Catapan 2022 [34]	Brazil	Case study	Hospital & Outpatient Clinic	Service providers ; Intervention developers/vend ors	Generalize d: Patients seeking health care during the pandemic	Digital interven tion	Teleconsul tation	Retrospect ive (to evaluate implement ation)	Data analysis; Presenta tion of results; Interpret ation	No too used
Clarkson 2020 [35]	United Kingdo m	Mixed- Methods	Community organizatio ns	Patients	Pain- related: Joint pain	Digital interven tion	Digital self- manageme nt tool and social network activation tool	Prospectiv e (to inform design)	Data analysis; Presenta tion of results; Interpret ation	No to c used
Davies 2021 [36]	United Kingdo m (Greate r Manche ster area)	Mixed- Methods	Two schools	Patients; Caregivers; Service providers	No condition specified (school children)	Digital interven tion	A reading screening assessmen t that uses eye- tracking tech nolog y and a digital support and well- being monitorin g platform	Retrospect ive (to evaluate imple ment ation)	Data analysis; Presenta tion of results; Interpret ation	No toc used
Dijkstra 2019 [37]	Netherl ands	Ca se study	Hospitals - pediatric gastroenter ology centers	Patients; Service providers ; Other: Research staff, web designer	Paediatric inflammato ry bowel disease	Digital interven tion	Web- based telemonito ring strategy	Retrospect ive (to evaluate implement ation)	Study design; Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No toc used
Dyb 2021 [38]	Norway , Denmar k	Qualitati ve	Various health care centres	Service providers; Clinic Staff; Intervention developers/vend ors; IT staff; Organizations' leadership; Government/poli cymakers	Respirator y Ill ness: COPD, El derly care: el derly/fra il patients	Digital interven tion	Remote patient monitorin g, mobile care in patients' homes, telemedici ne	Prospectiv e (to infor m design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	Develo ped own instru ment (based on NASSS)

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Edridge 2019 [39]	United Kingdo m	Quantita tive: Experim ental	Schools: primary & secondary	Patients; Service providers	Mental health: Children's mental health	Digital interven tion	mHealth: Mental health education	Retrospect ive (to evaluate implement ation)	Data analysis; Interpret ation	No tool used
Fox 2021 [40]	Australi a	Mixed- Methods	Hospital	Patients; Service providers	Women's Health: Pregnancy	Digital Interven tion	Non- invasive fetal ECG monitorin g device	Retrospect ive (to evaluate implement ation)	Data analysis	No tool used
Franck 2021 [41]	USA	Qualitati ve	Various children's hospitals	Service providers; Organizations' leadership	Not condition specific: Various acute illnesses for Medi- Cal beneficiari es	Digital interven tion	Rapid genome sequencin g	Retrospect ive (to evaluate implement ation)	Data collectio n	No to ol used
Gorbenk o 2022 [42]	United States	Qualitati ve	Health care syste m	Service providers ; IT staff; Organizations' leadership	COVID-19 related	Digital interven tion	Google Nest DTC cameras customize d for inpatient monitorin g.	Prospectiv e (to inform design)	Study design; Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No to ol used
Grady 2020 [43]	Australi a	Quantita tive: Observat ional	Various childcare centres	Clinic Staff	Diet & Nutrition: Dietary guidelines	Digital interven tion	Digital health interventi ons to support dietary guideline implement ation	Prospectiv e (to infor m design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	Develo ped own instru ment (based on NASSS
Greenhal gh 2018 [44]	United Kingdo m	Mixed- Methods	Hospital - various department s	Patients; Service providers ; IT staff; Organizations' leadership; Government/poli cymakers	Other: Diabetes, Women's Health: diabetes antenatal, Cancer surgery	Digital interven tion	Video outpatient consultati ons	Concurrent with implement ation	Study design; Interpret ation	No tool used
Greenhal gh 2018 [25]	United Kingdo m	Case study	Health care organisatio ns and national- level bodies	Patients; Caregivers (e.g. family members); Service providers ; IT staff; Organizations' leadership; Other: Research staff	Neurologic al Diseases: Cognitive impairmen t, Cardiovasc ular related: heart failure, general data manageme nt	Digital interven tion	Various technologi es: Video outpatient consultati ons, GPS tracking technolog y for cognitive impair me nt, pendant alarm services, remote biomarker monitorin g, care organising software, integrated case manage me	Retrospect ive (to evaluate implement ation)	Data analysis; Presenta tion of results; Interpret ation	No tool used

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Study design aspects NASSS was us ed for	NASSS tools used
Gremyr 2020 [12]	Sweden	Case study	Teaching hospital psychiatric department	Service providers ; Clinic Staff; IT staff; Organizations' leadership	Mental Health: Schizophre nia	Digital interven tion	Digital Dashboard for Schizophr enia Care	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	NASSS- CAT LONG
Hall 2020 [45]	Englan d	Qualitati ve	Hospital	Service providers ; Clinic Staff; Other: Consultants	Palliative care	Non- digital interven tion	Evidence- based Carer Support Needs Assessme nt Tool to support carers during hospital discharge at end of life.	Retrospect ive (to evaluate implement ation)	Interpret ation	No tool used
Hammert on 2022 [46]	Englan d	Mixed- Methods	No condition specified: General practitioner practices	Service providers ; Clinic Staff; Intervention developers/vend ors	General practice patients	Digital interven tion	Various digital healthcare technologi es	Prospectiv e (to inform design)	Study design; Data collectio n	No tool used
Hehakay a 2020 [47]	Netherl ands	Qualitati ve	Hospitals	Patients; Service providers*; Organizations' leadership; Other: Payers (insurance) & industry	Cancer: Prostate	Digital interven tion	MRI- guided radiation therapy	Concurrent with implement ation	Data collectio n; Data analysis	No to ol used
Hehakay a 2020 [48]	Netherl ands	Qualitati ve	Hospitals	Patients; Service providers; Organizations' leadership; Other: Care insurers, manufacturing industry executives	Cancer: Prostate	Digital interven tion	MRI- guided radiation therapy	Concurrent with implement ation	Data collectio n; Data a nalysis	No tool used
Hehakay a 2022 [49]	United States	Qualitati ve	Hospital- Radiation therapy/ra diology department s	Service providers ; Clinic Staff; Organizations' leadership	Cancer	Digital Interven tion	MRI- guided radiation therapy	Concurrent with implement ation	Data collectio n	No tool used
Hollick 2019 [50]	United Kingdo m (Englan d & Scotlan d)	Case study	s Multiple UK Health Boards- Mobile bone density scanning services	Patients; Service providers ; Government/poli cymakers	Other: Osteoporos is	Digital interven tion	Mobile body scanner for bone density	Multiple timepoints	Study design; Data collectio n; Data a nalysis; Presenta tion of results; Interpret ation	No tool used
Jacobs 2022 [51]	United States	QT: Observat ional	Various veteran affairs medical centres	Patients	Not condition- specific	Digital interven tion	Teleh ealth	Retrospect ive (to evaluate implement ation)	Data collectio n	No tool used
Jones 2022 [52]	United Kingdo m	Qualitati ve	Various social care and volunteer sectors in health settings	Service providers	Occupation al therapy treatment for stroke, geriatrics; therapeutic s and palliative care (Elderly Care)	Digital interven tion	Remote home visits for occupatio nal therapy	Retrospect ive (to evaluate implement ation)	Study design; Data collectio n; Data analysis; Interpret ation	NASSS- CAT LONG

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Kip 2020 [53]	Netherl ands	Mixed- Methods	Forensic mental healthcare organizatio n	Patients; Service providers	Mental health	Digital interven tion	Modules for various topics via a website	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret	No too
Kozica- Olenski 2022 [54]	Australi a	Qualitati ve	General maternity care	Patients; Service providers	Women's Health: Diabetes in pregnancy	Digital interven tion	Tel eh eal th	Retrospect ive (to evaluate implement ation)	ation Data analysis; Presenta tion of results; Interpret ation	No too used
Kozica- Olenski 2022 [55]	Australi a	Qualitati ve	Hospital- Menopause Clinic	Patients; Service providers	Women's Health: Menopause	Digital interven tion	Telehealth	Retrospect ive (to evaluate implement ation)	Study design; Data collectio n; Data analysis; Interpret ation	No too used
Liverani 2022 [56]	Cambo dia	Qualitati ve	Ministry of Health and local and internation al non- governmen tal organizatio ns.	Clinic Staff; Government/poli cymakers; Other: NGOs, WHO	Cardiovasc ular and other non- communic able diseases	Digital interven tion	Wearable health monitors	Prospectiv e (to infor m design)	Study design; Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No too
Longacre 2021 [57]	USA	Mixed- Methods	Hospital - Supportive Oncology and Palliative Care Program	Patients; Caregivers	Cancer	Digital interven tion	Patient- caregiver portal system	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No too
Martinda le 2021 [58]	United Kingdo m	Qualitati ve	Various primary and secondary health care settings	Service providers ; Government/poli cymakers; Other: Scientists	COVID-19 - Related	Non- digital interven tion	No interventi on; focus on pandemic diagnostic preparedn ess and testing strategies	Retrospect ive (to evaluate implement ation)	Data analysis	No too used
Merolli 2019 [59]	Australi a	Qualitati ve	Various dinical health care settings	Patients; Service providers	Pain- related: Chronic Iow-back pain	Digital interven tion	Non specified ("technolo gies")	Prospectiv e (to inform design)	Data collectio n	Develo ped own instru ment (based on NASSS
Miller 2021 [60]	United Kingdo m	Mixed- Methods	Hospital- Stroke specialist staff	Service providers; Clinic Staff**	Cardiovasc ular related: Stroke	Digital interven tion	Online toolkit	Concurrent with implement ation	Data analysis; Presenta tion of results) No too used
Neher 2022 [61]	Sweden	Qualitati ve	Four county councils	Patients; Government/poli cymakers	Cardiovasc ular related: Heart disease Mental Health: depression	Digital interven tion	Four eHealth interventi ons, including iCBT.	Retrospect ive (to evaluate implement ation)	Interpret ation	No too used

Author & Year	Countr y	Study design	Setting	Stu dy participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Nguyen 2022 [62]	United States	Quantita tive: Experim ental	Home- based care - various sites	Patients; Caregivers; Service providers	Palliative care, Elderly Care: aging, Not condition specific: various serious illness with an expected survival of 1-2 year	Digital interven tion	Video consultati on	Concurrent with implement ation	Data analysis; Presenta tion of results; Interpret ation	No tool used
Nimsakul 2022 [63]	Thailan d	Other	Hospitals	Service providers ; Clinic Staff; Organizations' leadership; Other. civil society member, experts in drug operations	Mental Health: Harm reduction	Non- digital interven tion	Harm reduction service	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results	No tool used
Papoutsi 2020 [13]	United Kingdo m	Qualitati ve	Hospitals & Primary care	Patients; Caregivers (e.g. family members); Service providers ; Other: researchers	Cardiovasc ular related: Heart failure	Digital interven tion	Various tools	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results	No tool used
Perdache r 2022 [64]	Australi a	Qualitati ve	Prisons	Patients; Service providers	Mental Health	Digital interven tion	Digital mental health tool	Retrospect ive (to evaluate implement ation)	Interpret ation	No tool used
Przysuch a 2022 [65]	German y	Qualitati ve	Nursing care facilities & GP practices	Service providers	Not condition- sympatheti c: Primary care	Digital interven tion	eMedCAre	Retrospect ive (to evaluate implement ation)	Interpret ation	No tool used
Pumplun 2021 [66]	German y	Qualitati ve	Various dinics	Service providers; Clinic Staff; Other: "highly involved experts" who have detailed knowledge of clinical processes, experience with ML systems, and are involved in the respective decision-making processes: clinics' managers, physicians, and managers of diagnostic HIT suppliers.	Not condition- specific	Digital interven tion	Understan ding of clinics' adoption process of ML system	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used
Pumplun 2021 [67]	German y & Switzer land	Qualitati ve	Various clinics	Service providers ; Clinic Staff; IT staff; Organizations' leadership	Machine learning- medical diagnosis	Digital interven tion	Machine Learning systems for medical diagnostic s in clinics	Prospectiv e (to inform design)	Data analysis; Presenta tion of results; Interpret ation	No to ol used
Rudin 2021 [68]	United States	Other: Multi- methods	Various primary care dinics affiliated with an academic health system	Patients; Service providers	Respirator y III ness: Asth ma	Digital interven tion	Clinically integrated remote symptom monitorin g interventi on	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve ntion type	Bri ef Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Schougaa rd 2019 [69]	Denmar k	Quantita tive: Experim ental	Hospital - Department of Neurology	Patients	Neurologic al Diseases: Epilepsy	Digital interven tion	Telehealth & website	Retrospect ive (to evaluate implement ation)	Interpret	No tool used
Schultz 2021 [70]	Australi a	Mixed- Methods	Hospital - virtual ward	Patients; Caregivers; Service providers	COVID-19- Related	Digital interven tion	Virtual hospital ward	Concurrent with implement ation	Data collectio n	NASSS- CAT LONG
Strohm 2020 [71]	Netherl ands	Ca se study	Hospitals - Radiology department s	Service providers ; Clinic Staff; Organizations' leadership; Other: Innovation manager, senior data scientist	Other: Radiology	Digital interven tion	Al applicatio ns in clinical ra diology	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used
Th oma s 2022 [72]	Australi a	Qualitati ve	Various state-wide cardiac and pulmonary networks	Service providers; Clinic Staff	Cardiovasc ular related: Cardiopul monary health	Digital interven tion	Telehealth	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used
Thomas 2022 [72]	Australi a	Other: Multi- Method	Metropolita n health service network	Service providers ; Clinic Staff; Other: allied health departments	Not condition- specific	Digital interven tion	Telehealth	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	No tool used
Tolf 2020 [73]	Sweden	Qualitati ve	Hospital - Obstetric unit	Service providers ; Clinic Staff	Women's Health: Obstetrics and gynecology	Digital interven tion	Technolog y- supported QI programm e	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results	No to ol used
Tompson 2019 [74]	United Kingdo m	Mixed- Methods	General Practitioner Surgery Clinics	Patients; Service providers	Cardiovasc ular related: Hypertensi on	Digital interven tion	Blood pressure self- measurem ent kiosks	Retrospect ive (to evaluate implement ation)	Interpret ation	No tool used
UribeGua jardo 2022 75	Australi a	Other: Multi methods	Outpatient drug and al cohol services	Service providers	Mental Health: Comorbid mental health and substance use	Digital interven tion	Portal with eHealth Resources	Retrospect ive (to evaluate implement ation)	Data analysis; Presenta tion of results; Interpret ation	No to ol us ed
Vali, 2022 [76]	Various Europe an countri es	Mixed- Methods	Internation al setting	Service providers	problems Other: Non- alcoholic fatty liver disease (NAFLD)	Non- digital interven tion	Various non- alcoholic fatty liver disease non- invasive tests	Prospectiv e (to inform design)	Data collectio n; Data analysis; Presenta tion of results	No tool used
Weidner 2021 [77]	United States	Mixed- Meth ods	Internation al - various twitter user groups	Service providers ; Other: Twitter users including users from organization, public (personal account and/or health care consumer), business (for- profit group) ad unknown	Not condition- specific	Digital interven tion	Telepracti ce used by speech language pathologis ts	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results	No tool used

It is made available under a CC-BY 4.0 International license .

Author & Year	Countr y	Study design	Setting	Study participants	Condition / Diagnosis	Interve nti on type	Brief Interventi on Descripti on	Timing of NASSS use in implemen tation	Stu dy design as pects NASSS was us ed for	NASSS tools used
Yakovche nko 2021 [78]	United States	Qualitati ve	Various medical centres	Patients; Service providers	Not condition specific: Veterans' Health and Wellness	Digital interven tion	Automate d texting system	Retrospect ive (to evaluate implement ation)	Data collectio n; Data analysis; Presenta tion of results; Interpret ation	Other: NASSS- CAT LONG
			ns and therapis ators and mana							

268

269 <Insert Table 2>

270 Table 2. Summary characteristics

Characteristic			Citation
Study Type	n	%	
Qualitative	28	49.1	[13,27–29,31–33,38,41,42,45,47– 49,52,54–56,58,59,61,64–67,72,73,78]
Mixed-methods	13	22.8	[26,35,36,40,44,46,53,57,60,70,74,76,77]
Case Study	6	10.5	[12,25,34,37,50,71]
Observational	3	5.3	[30,43,51]
Experimental	3	5.3	[39,62,69]
Other	4	7.0	[63,68,75,79]
Country of Origin	n	%	
United Kingdom (including studies set in individual UK countries and across the UK)		26.3	[13,25,27,31,35,36,39,44– 46,50,52,58,60,74]
Australia	13	22.8	[26,29,33,40,43,54,55,59,64,70,72,75,79]
USA	9	15.8	[41,42,49,51,57,62,68,77,78]
Sweden	5	8.8	[12,28,30,61,73]
the Netherlands	5	8.8	[37,47,48,53,71]
Germany	2	3.5	[65,66]
Thailand	1	1.8	[63]

It is made available under a CC-BY 4.0 International license .

	r		
Brazil	1	1.8	[34]
Denmark	1	1.8	[69]
Canada	1	1.8	[32]
Cambodia	1	1.8	[56]
Multiple countries	3	5.3	[38,67,76]
Conditions Studied*		n	
Cardiovascular-related		10	[13,25–27,33,56,60,61,72,74]
Mental Health		9	[12,31,32,39,53,61,63,64,75]
Generalized		9	[25,34,41,46,62,65-67,78]
No condition specified		5	[36,51,67,77,79]
Cancer		5	[44,47-49,57]
Women's health		5	[40,44,54,55,73]
Elderly care		4	[30,38,52,62]
Neurological disease		3	[25,30,69]
COVID-related		3	[42,58,70]
Pain-related		2	[35,59]
Diet and Nutrition		2	[29,43]
Respiratory Illness		2	[38,68]
Palliative care		2	[45,62]
		6	[28,37,44,50,71,76]

**Other conditions include diabetes, insomnia, non-alcoholic fatty liver disease, osteoporosis, radiology

271

272 <Insert Table 3>

273 Table 3: Innovations examined by included studies

Category	Example of Interventions	n	%	Citations
Virtual Care	Telemedicine, ehealth virtual care & monitoring	24	34.78	[13,25,28,30,32– 34,37,38,42,44,46,51,52,54,55,57,61,62,68,70,72,77,79]
Personal Health Devices	Self- management/monitoring tools, self-assessment	10	14.49	[13,25,35,36,40,46,56,65,74,78]
Knowledge Generation and/or Integrators	eLearning, machine learning, decision aids, tools (web or app based)	9	13.04	[25–27,60,66,67,71,73,75]
Digital	A single	10	14.49	[28,30,31,33,39,43,46,53,64,69]

intervention	intervention/application that is digital and doesn't fit the above categories. (e.g., iCBT, VR therapy)			
Health Information	EMRs/patient records dashboards, patient portals	8	11.59	[12,13,46,57,65,69,73,75]
Surgical & Radiologic Interventions	Radiotherapy or new surgical intervention	4	5.80	[47-49,71]
Diagnostics & Imaging	Interventions that conduct diagnostic testing or imaging, onsite or remote.	2	2.90	[41,50]
Non- specified	Study just states "technologies" or "interventions"	2	2.90	[29,59]

Note: Categories adapted based on "Evolving Applications of Digital Technology in Health and Health Care" as cited in Abernethy et al., 2022[24] *Not mutually exclusive

274 RQ2. Application of the NASSS framework

- As indicated in Table 4, the NASSS framework was used in various aspects of
- 276 methodology in included studies. The NASSS was used to inform overall study
- 277 design (n=9), including conceptualization. Studies used the NASSS to inform data
- collection methods (n=35) by adapting interview guides according to NASSS
- domains (e.g., [47,72]). Studies also used the NASSS to inform data analysis (n=41),
- for example by using the NASSS framework for directed content analysis (e.g., [66]).
- 281 The NASSS was also used to inform data presentation (n=33); studies often utilized
- a table to organize barriers and enablers by NASSS domain (e.g., [54]). Finally,
- studies also used the NASSS for interpretation of results (n=39), for example by
- dedicating one paragraph of the discussion to each NASSS domain (e.g., [61]). Most
- 285 papers (n=43) used the NASSS to inform multiple aspects of their study.
- 286 <Insert Table 4>
- 287 Table 4: Application of the NASSS framework

NASSS Application Characteristic	n	%	Citation
Study Design Aspect*			
Overall Study Design	9	5.7	[31,37,42,44,46,50,52,55,56]
Data Collection	35	22.3	[12,13,27–31,37,38,41–43,46–53,55– 57,59,63,67,68,70–73,76–79]
Data Analysis	42	26.1	[12,13,25–29,32–40,42,43,47,48,50,52– 58,60,62,63,66–68,71–73,75–79]
Presentation of results		21.0	[12,13,25–29,33– 38,42,43,50,53,54,56,57,60,62,63,66–68,71–73,75–

It is made available under a CC-BY 4.0 International license .

			79]
Interpretation of results	39	24.8	[12,25–29,31,33–39,42–45,50,52–57,61,62,64– 69,71,72,74,75,78,79]
Timing of			
Implementation			
Retrospectively	33	57.9	[13,25–28,32–34,36,37,39–41,45,51–55,58,61,63– 65,69,71–75,77–79]
Prospectively	15	26.3	[12,29,31,35,38,42,43,46,56,57,59,66–68,76]
Concurrent with	8	14.0	[30,44,47-49,60,62,70]
Implementation			-
Multiple Time Points	1	1.8	[50]
Number of NASSS			
domains reported			
1 domain	1	1.75	[59]
2 domains	1	1.75	[77]
3 domains	3	5.26	[43,69,70]
4 domains	11	19.30	[27,30,31,35,39,42,46,60,65,74,75]
5 domains	9	15.79	[32,34,41,45,48,51,58,61,64]
6 domains	13	22.81	[29,44,47,49,52,53,55,57,66–68,71,78]
7 domains	19	33.33	[12,13,25,26,28,33,36-
			38,40,50,54,56,62,63,72,73,76,79]
*Not mutually exclusi	ve		

288

289 In terms of timing, most studies conducted their analyses using the NASSS

290 framework retrospective to implementation, for example to analyze why

291 implementation did or did not succeed in terms of adoption, non-abandonment,

scale, spread, and sustainability of the innovation in a given context (n=33). The rest

293 applied the framework prospectively to inform future implementations (n=15), or

concurrently with implementation (n=8). Approximately one third (32%) of

included studies reported implementation barriers and enablers related to all 7

296 NASSS domains, and 21% reported barriers and enablers related to 6 domains. The

297 Embedding and Adaptation Over Time domain was often omitted, but studies

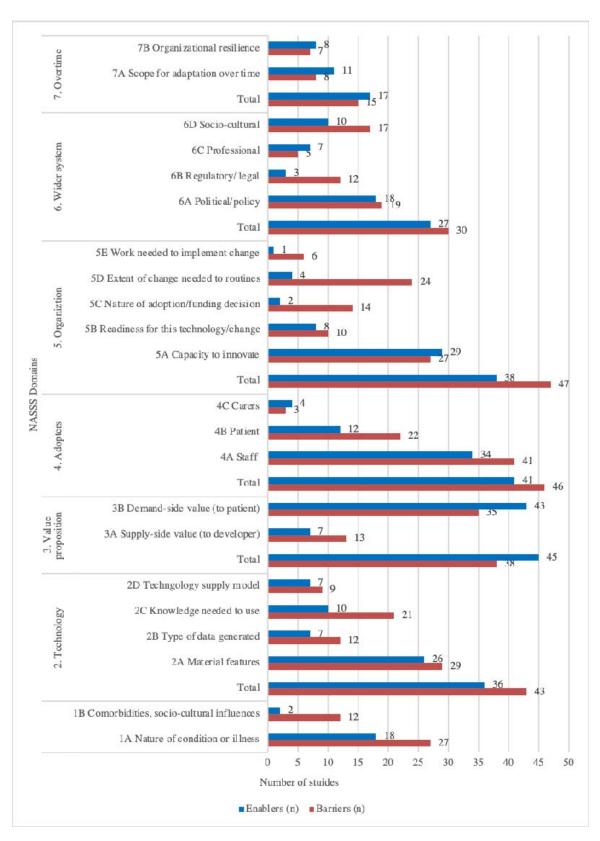
incorporated this concept into other domains (e.g., whether the technology will

require future iterations [27], whether the regulatory context is expected to change

300 [41]). Another one third (35%) of studies reported barriers and enablers related to

301 four to five NASSS domains, and 12% reported three or fewer, with the latter relying

302 on advisory committees to identify domains of particular relevance to the study


303 [43].

It is made available under a CC-BY 4.0 International license .

304 RQ3. Lessons learned from the application of the NASSS

- 305 The barriers and enablers of the successful implementation of innovations are
- 306 presented by the NASSS domain in Figure 2. The most common barriers across
- 307 studies (n=47) were in the Organization domain, whereby organizations were cited
- 308 as lacking in infrastructure, resources, or capacity to innovate and/or whereby the
- 309 innovation substantially disrupts organizational routines. Specifically, the
- 310 organization's capacity, such as technical or human resources, was the most
- 311 frequently reported barrier and enabler. Another common barrier within the
- 312 Organization domain was the extent of change required in routines. The following
- 313 are some exemplary quotes of organizational barriers reported in studies:
- 314 *"Technical infrastructure was sometimes poor, increasing the likelihood of technical crashes"* [26]
- 316 "Representatives from all three groups expressed that an impediment to
 317 engaging in the [Quality Improvement] teams was insufficient time and that
 318 meeting times conflicted with clinical engagements" [73]
- 319 "Space and the need for dedicated and private telehealth rooms were also
 320 common concerns for clinicians. Such spaces need to be fitted with appropriate
 321 hardware, software, and peripheral devices." [72]
- 322 *"Therapists stated that the intervention was often not discussed in meetings and was not integrated in electronic patient records they used."* [53]
- 324 "Participants indicated they were concerned that administrative tasks would
 325 continue to be a significant time barrier with increased adoption and scale up."
 326 [29]
- 327 The most reported enablers were within the Value Proposition domain, whereby a
- 328 total of 45 studies noted the technology as profitable (from the supply side) or cost-
- 329 effective (from the demand side) and reported perceived advantages, including
- improved patient outcomes, increases in access to care, improvements in
- 331 organizational processes or workflows, and overall effectiveness of the innovation.
- The following are exemplar quotes of enablers related to the Value Propositiondomain reported in studies:
- "With automated monitoring in the specialist hospital, the accuracy of
 recording and timely data transfer is reliable. Nurses are more aware of the
 need to accomplish this task when it's automated" [27]
- 337 "Clinicians valued telehealth for the benefits they felt it afforded patients such
 338 as convenience and improved access to care, more so than perceived
 339 advantages for themselves." [55]
- 340 *"Several practical advantages were mentioned, among which saving time for*
- 341 therapists and patients because of less traveling time and replacing part of in-
- 342 person treatment with the intervention, an increase of patients' access to care
- 343 because they can individually work on their treatment at their own pace, and
- 344 providing a new way of delivering treatment to patients." [53]

- Factors within the Adopter System domain were also commonly reported as
 barriers or enablers to implementation. A total of 46 studies reported Adopter
 System factors as barriers, and 41 studies reported them as enablers, including staff,
 patients, and carers' attitudes and acceptance towards the new technology and its
- 349 ease of use. Notably, staff was more frequently reported than patients as both a
- barrier and an enabler. The following are some exemplar quotes of barriers and
- 351 enablers related to the Adopter System domain reported in studies:
- 352 "A few therapists were willing to try ICBT-i, but none were initially deeply
 353 interested in the new method, only a few were available to take on this extra
 354 task, and only a few had the appropriate competence." [28]
- 355 "Lastly, providers described feelings of `Zoom fatigue' and burnout and 356 mentioned that video visits required more concentration, energy, and 357 adaptations to interpret visual cues in comparison to in-person visits" [32]
- 358 "Most patient participants were interested to see their readings and described
 359 the technology as well-designed. They used the tablet and the peripheral
 360 devices without too much difficulty and saw great value in monitoring their
 361 condition, especially in terms of gaining reassurance and legitimising help362 seeking when they needed clinical care." [13]
- Few authors reported lessons learned from applying the NASSS in their studies.
 Twenty-five studies commented in varying detail about their experience using
 NASSS. Eighteen studies [12,26,28,33,35,39,41,50,52,55–57,62,63,68,73,75,78]
 mentioned that NASSS was a helpful and useful tool, explicitly noting its utility in
- 367 exploring complexity, facilitating an understanding of the implementation context,
- applicability in the health technology domain, and its flexibility to be adapted to
- 369 researchers' needs. A few studies mentioned the comprehensiveness of the tool for
- identifying implementation determinants and its value in providing a theoretical
 foundation [12,27,38]. Additionally, two studies [50,78] suggested future directions
- for NASSS, such as the opportunity to use the NASSS-CAT tool over time and its
- 373 applicability in a broader healthcare context. Lastly, two studies [62,67] commented
- on the limitation of NASSS, including its lack of consideration for how research
- design can impact intervention implementation and the need for its expansion to
- 376 include medical ethics.

Figure 2: Barriers and Enablers identified in included studies, organized according to NASSS domains.

It is made available under a CC-BY 4.0 International license .

378 **Discussion**

379 This scoping review identified 57 empirical studies that used the NASSS framework 380 between its publication in August 2017 and the commencement of the search in 381 December 2022. Most of the included studies were qualitative or mixed/multi-382 methods designs, which can be attributed to the purpose of NASSS in exploring 383 determinants of implementation success. This exploration required substantial 384 contextual information, and qualitative data could effectively provide it. The NASSS 385 framework was commonly used to inform data collection, data analysis, and the 386 presentation of results. Almost all included studies focused on technological 387 innovation, such as telemedicine/virtual care, health monitoring or decision support 388 via devices and applications, and targeted digital interventions. These innovations 389 were designed for various health conditions (primarily cardiovascular and mental 390 health) or supported general health promotion activities. While approximately one-391 third of studies reported barriers and enablers for implementation on all 7 NASSS 392 domains, 20% did not report barriers or enablers related to the Over Time domain. 393 The most reported barriers were found in the Organization and Adopter System 394 domains, and the most frequently reported enablers were within the Value 395 Proposition domain.

- 396 Most identified studies in this review had used the NASSS retrospectively, primarily
- 397 to evaluate why an innovation was unsuccessful at becoming adopted by its
- 398 intended users, got abandoned shortly thereafter, or failed at scaling to become
- 399 routine within the organization, spreading to other contexts or sustaining over time.
- 400 Similar findings have been reported with the i-PARiHS (Integrated Promoting Action
- 401 on Research Implementation in Health Services) application in research [80]. There
- 402 is a need for prospective and concurrent applications of implementation TMFs to
- 403 identify potential hurdles and areas of complexity ahead of time with
- implementation such that mitigation strategies can be put in place [81,82]. Given thenovelty of the NASSS framework, many innovations in this review have already been
- 406 implemented either as small-scale demonstration projects or larger
- 407 implementations that were not informed a priori by any theoretical framework and
- 408 therefore required retrospective evaluation. Nevertheless, the NASSS does not offer
- 409 solutions to identified areas of complexity. While some authors noted that the
- 410 NASSS helped illuminate areas of focus, it remained unclear what actions they
- 411 intended to take [26]. A recent companion document, [11], explicitly recommends
- the next steps for each domain where complexity is identified; however, only four of
- 413 the included studies had used any of the NASSS-CAT tools [12,52,70,78].

414 The prevalent implementation determinants (i.e., barriers and enablers) identified

- 415 in the Organization and Adopter System domains found in this review are consistent
- 416 with findings in previous reviews of other tools used in implementation science. The
- 417 Exploration, Preparation, Implementation, Sustainment (EPIS) [83] is a commonly
- 418 used framework that highlights key phases guiding implementation as well as
- 419 factors related to the outer (system) context, inner (organizational) context and the
- 420 innovation itself. A review of this framework application shows that the
- 421 Implementation phase was most commonly examined in research. During this

It is made available under a CC-BY 4.0 International license .

422 phase, organizational and individual adopter characteristics were the most

- 423 frequently mentioned factors [84], as observed in the current NASSS review.
- 424 In the dynamic field of implementation science, various determinant frameworks
- 425 share similarities in understanding complex factors, focusing on contextual
- 426 elements that influence the successful implementation of healthcare innovations.
- 427 CFIR, a popular determinant framework in implementation science, primarily
- 428 identifies factors that influence implementation outcomes across the domains of
- 429 Intervention Characteristics, Outer Setting, Inner Setting, Individual Characteristics,
- 430 and Implementation Process [85]. CFIR serves a similar purpose as the NASSS. A
- 431 recent literature review of CFIR use indicates that the most commonly used
- 432 constructs in studies were "Knowledge and Beliefs about the Intervention," followed
- 433 by "Self-Efficacy," both of which fall within the domain of Individual Characteristics
- 434 [86]. This finding aligns with the NASSS' Adopter System domain and echoes the
- 435 Value Proposition domain, all commonly reported barriers and enablers in this
- 436 review.
- 437 The i-PARiHS is another implementation determinant framework, and it has four

438 interacting core constructs, including Evidence, Context, Recipients, and Facilitation

439 [87,88]. The inner and outer Contexts in the i-PARiHS are like the Organization and

440 Wider Context domains of the NASSS. A review of research using the i-PARiHS [89]

- 441 identified variations in how researchers conceptualized outer Context, including
- 442 specific influences from external organizations, such as guideline-producing entities,
- and attributions of 'contextual trust' to broader political and economic
- 444 characteristics [89]. This conceptualization resonates with the Wider Context of the
- 445 NASSS. Furthermore, leadership was suggested as another key sub-construct within
- 446 the Context of the i-PARiHS [89], which corresponds to the 5A Capacity subdomain 447 within the Organization domain of the NASSS
- 447 within the Organization domain of the NASSS.
- 448 Although the NASSS was initially created to implement health and care technologies,
- 449 it exhibits similarities with widely used implementation determinant frameworks
- 450 designed for a broader range of health innovations, encompassing health technology
- 451 and evidence-based practices. As such, we found four studies included in this review
- that used the NASSS for non-digital innovations [45,58,63,76], demonstrating the
- 453 framework's adaptability and utility.
- 454 Our review found that, when used, the NASSS informed many aspects of design,
- 455 including the data collection process, data analysis, and the presentation and
- 456 interpretation of results. The use of the NASSS framework in data collection and
- 457 analysis was usually consistently and clearly reported. However, there was a lack of
- 458 consistency and clarity in using the NASSS framework to present and interpret
- 459 results. Often, data were presented within the primary domains of the NASSS
- 460 framework. As our team organized narrative descriptions of barriers and enablers
- into the NASSS subdomains, we observed several instances of overlapping domains.
- 462 Furthermore, we identified the potential for these barriers to be mapped onto other
- 463 primary NASSS domains. This observation may indicate the intricate nature of the
- 464 implementation under examination in the included studies, which could be

It is made available under a CC-BY 4.0 International license .

465 explained by the framework's underlying assumption that, in complex situations,

the NASSS domains interact with one another and are interdependent [25]. In other

467 words, when interdependencies among the domains exist, it often leads to the

468 inability to address a singular issue without inadvertently giving rise to new

469 challenges in other domains of the NASSS [25].

470 For studies that did not present their results using the NASSS domains, despite

471 reporting the NASSS use for data analysis, it became challenging to determine which

472 domain(s) the results pertained to concerning predicting or explaining

- 473 implementation success or failure. This unclear use of the NASSS framework for
- 474 presenting results and interpreting findings represents a notable gap in the

475 literature. It has been previously documented in the literature that implementation

476 studies lack reporting, leading to low-quality reporting in the field [90,91].

477 Specifically, many implementation studies have faced criticism for providing

inaccurate descriptions of the context and lacking information detail on the

479 implementation process [91]. Poor reporting makes it difficult to synthesize

480 evidence from relevant studies [90]. Therefore, enhancing reporting practices to

481 facilitate more straightforward evidence synthesis is essential, aiding future

482 empirical testing and refinement of the NASSS.

483 Additionally, some studies were unclear about how the NASSS framework was used

484 to inform the study designs, including the presentation and/or interpretation of

results. Clear reporting standards may increase the NASSS' utility by guiding

researchers on correctly applying and describing its use. The need for better

487 reporting on how TMFs are used in implementation research is a gap in the

literature that has already been discussed [92]. For example, in a review of
implementation TMFs, 159 different TMFs were identified, with 87% used in five or

439 fewer studies [92]. Despite the substantial number of TMFs, there is limited

491 evidence base describing their use [92]. This limitation restricts opportunities for

492 advancing the science and learning from other researchers. Implementation studies

should more clearly report how TMFs have been incorporated into the study design
[93]. Better reporting allows for a coherent synthesis of evidence, application and

494 [93]. Better reporting allows for a coherent synthesis of evidence, application and495 scaling of the TMFs to other contexts, thereby contributing to the science of

495 implementation [93]. We also found that not many authors shared their experience

497 of using the NASSS or provided suggestions for the NASSS advancement. Two

498 studies in this review mentioned the NASSS' shortcomings [62,67], including ethical

499 principles, and this has been addressed in the Planning and Evaluating Remote

500 Consultation Services framework in 2021[94]. It would be beneficial to conduct a

501 review in five years to reassess the application of the NASSS, explore grey literature,

and gather lessons learned for the ongoing advancement and refinement of theframework.

504 Reporting issues have led to the creation of reporting checklists in other fields, like

505 the Consolidated Standards of Reporting Trials (CONSORT) checklist for

506 randomized controlled trials [95]. Some implementation reporting standards are

507 available; one example is the Standards for Reporting Implementation Studies

508 (StaRI) Statement and Checklist [91]. The StaRI checklist prompts authors to

It is made available under a CC-BY 4.0 International license .

- 509 describe the implementation method and the intervention [91], encouraging
- 510 detailed reporting on contextual information. In addition, the StaRI checklist also
- 511 prompts authors to describe the theoretical underpinnings of the study. Therefore,
- 512 its use in future implementation studies is encouraged and may improve reporting
- 513 of TMF applications, including the NASSS.

514 Limitations

- 515 Several limitations of this review must be acknowledged. First, quality appraisal was
- 516 not employed to exclude studies, as scoping reviews generally do not require such
- 517 assessment. In addition, our primary goal was to explore the breadth and depth of
- the literature and map available literature about the NASSS application. Second, the
- 519 field of mHealth is rapidly evolving, and our findings may need re-evaluation.
- 520 Nevertheless, our review remains relevant at the time of publication and
- 521 contributes to the ongoing evolution of the NASSS. Third, this review excluded non-
- 522 empirical papers, such as commentaries and opinion articles, which could offer
- authors insights regarding their experiences with the NASSS framework. Future
- reviews aiming to reassess the NASSS application can include a grey literature
- 525 search to enhance comprehensiveness. Fourth, we only included studies written in
- 526 English. While we did include a small number of English studies published in non-
- 527 English speaking countries, our findings may not provide a comprehensive
- 528 representation of the NASSS application in those regions.

529 **Conclusions**

- This review outlines the characteristics of studies using the NASSS framework and
 examines patterns of its application. Most of the included studies employed
 qualitative or mixed/multi-methods designs, which align with the NASSS's purpose
 of exploring determinants of implementation success. This often requires qualitative
- exploration to assess context. Additionally, most studies retrospectively applied the
 NASSS, likely due to the novelty of the framework. However, this highlights the need
- 536 for prospective and concurrent utilization of the NASSS during the implementation
- 537 phase, revealing a gap in the current literature.
- 538
- 539 Furthermore, nearly all included studies identified various domains as both
- 540 implementation barriers and enablers, aligning with the current literature on the
- 541 intricate nature of the implementation process. This underscores the importance of
- 542 thorough preparation for successful implementation outcomes. Lastly, our review
- 543 findings point to a need for improved reporting of NASSS utilization in research,
- 544 including how it was applied and a need for more consistency in presenting results
- and interpreting findings using the NASSS to facilitate evidence synthesis in the
- 546 future.

547 Acknowledgements

- 548 HDS conceptualized this review, and HDS, EH, EG, MM, LS, and RB designed the
- 549 review protocol following the JBI methodology. LS and HDS wrote the review
- 550 protocol and developed the search strategy with a librarian. HDS, EH, EG, MM, LS,

It is made available under a CC-BY 4.0 International license .

- and RB participated in screening titles and abstracts and assessing full texts against
- the inclusion criteria. HDS, EH, EG, MM, LS, and RB participated in data extraction.
- 553 HDS, EH, EG, and MM designed the data analysis plan. HDS, EH, EG, MM, LS, and RB
- 554 participated in data analysis. HDS, EH, EG, MM, KET, and MB participated in data
- 555 interpretation. HDS, EH, EG, and MM developed tables and figures for data
- 556 presentation. HDS, EH, EG, and MM wrote the first draft of the review report. All
- authors critically reviewed and provided feedback on the manuscript. HDS worked
- on manuscript revisions. KET and MB supervised all steps of this review.
- 559 **Conflicts of Interest**
- 560 There are no conflicts to declare.
- 561 Abbreviations
- 562 NASSS: Non-Adoption, Abandonment, Scale-Up, Spread and Sustainability
- 563 Supporting Information
- 564 Supporting Information 1. Search strategy
- 565 Supporting Information 2. Data extraction tool

566 **References**

- Ayyoubzadeh SM, Niakan Kalhori S R, Shirkhoda M, Mohammadzadeh N,
 Esmaeili M. Supporting colorectal cancer survivors using eHealth: a systematic
 review and framework suggestion. Support Care Cancer Support Care Cancer.
 2020;28: 3543–3555. doi:10.1007/s00520-020-05372-6
- Bégin M, Eggertson L, Macdonald N. A country of perpetual pilot projects. Can Med Assoc J CMAJ CMAJ. 2009;180: 1185, E88-1185. doi:10.1503/cmaj.090808
- Christ C, Schouten MJE, Blankers M, van Schaik DJF, Beekman ATF, Wisman
 MA, et al. Internet and computer-based cognitive behavioral therapy for anxiety and
 depression in adolescents and young adults: Systematic review and meta-analysis. J
 Med Internet Res J Med Internet Res. 2020;22: e17831. doi:10.2196/17831
- 577 4. Lv M, Wu T, Jiang S, Chen W, Zhang J. Effects of Telemedicine and mHealth on
 578 Systolic Blood Pressure Management in Stroke Patients: Systematic Review and
 579 Meta-Analysis of Randomized Controlled Trials. JMIR MHealth UHealth. 2021;9:
 580 e24116. doi:10.2196/24116
- 581 5. Pouls BPH, Vriezekolk JE, Bekker CL, Linn AJ, Onzenoort HAW, Vervloet M, et
 al. Effect of Interactive eHealth Interventions on Improving Medication Adherence
 in Adults With Long-Term Medication: Systematic Review. J Med Internet Res.
 2021;23.
- 585
 6. Schreiweis B, Pobiruchin M, Strotbaum V, Suleder J, Wiesner M, Bergh B. Barriers
 586 and Facilitators to the Implementation of eHealth Services: Systematic Literature

587 588		Analysis. J Med Internet Res J Med Internet Res. 2019;21: e14197. doi:10.2196/14197
589 590 591 592	7.	Cresswell K, Sheikh A. Organizational issues in the implementation and adoption of health information technology innovations: An interpretative review. Int J Med Inform Shannon Irel Int J Med Inf. 2013;82: e73–e86. doi:10.1016/j.ijmedinf.2012.10.007
593 594 595	8.	Glover WJ, Nissinboim N, Naveh E. Examining innovation in hospital units: a complex adaptive systems approach. BMC Health Serv Res BMC Health Serv Res. 2020;20: 554. doi:10.1186/s12913-020-05403-2
596 597 598	9.	Greenhalgh T, Papoutsi C. Studying complexity in health services research: desperately seeking an overdue paradigm shift. BMC Med BMC Med. 2018;16: 95. doi:10.1186/s12916-018-1089-4
599 600 601 602 603	10.	Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A'Court C, et al. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies. J Med Internet Res J Med Internet Res. 2017;19: e367. doi:10.2196/jmir.8775
604 605 606 607 608	11.	Greenhalgh T, Maylor H, Shaw S, Wherton J, Papoutsi C, Betton V, et al. The NASSS-CAT Tools for Understanding, Guiding, Monitoring, and Researching Technology Implementation Projects in Health and Social Care: Protocol for an Evaluation Study in Real-World Settings. JMIR Res Protoc JMIR Res Protoc. 2020;9: e16861. doi:10.2196/16861
609 610 611 612	12.	Gremyr A, Gare BA, Greenhalgh T, Malm U, Thor J, Andersson AC. Using Complexity Assessment to Inform the Development and Deployment of a Digital Dashboard for Schizophrenia Care: Case Study. J Med INTERNET Res. 2020;22. doi:10.2196/15521
613 614 615 616	13.	Papoutsi C, A'Court C, Wherton J, Shaw S, Greenhalgh T. Explaining the mixed findings of a randomised controlled trial of telehealth with centralised remote support for heart failure: multi-site qualitative study using the NASSS framework. TRIALS. 2020;21. doi:10.1186/s13063-020-04817-x
617 618 619	14.	Gaglio B, Shoup JA, Glasgow RE. The RE-AIM framework: a systematic review of use over time. Am J Public Health 1971 Am J Public Health. 2013;103: e38–e46. doi:10.2105/AJPH.2013.301299
620 621 622 623	15.	Glasgow RE, Harden SM, Gaglio B, Rabin B, Smith ML, Porter GC, et al. RE-AIM Planning and Evaluation Framework: Adapting to New Science and Practice With a 20-Year Review. Front Public Health Front Public Health. 2019;7: 64. doi:10.3389/fpubh.2019.00064

624 625 626	16.	Wickremasinghe D, Kuruvilla S, Mays N, Avan BI. Taking knowledge users' knowledge needs into account in health: an evidence synthesis framework. Health Policy Plan Health Policy Plan. 2016;31: 527–537. doi:10.1093/heapol/czv079
627 628 629	17.	Peters M, Godfrey C, McInerney P, Baldini Soares C, Khalil H, Parker D. Chapter 11: Scoping Reviews. In: Aromataris E, Munn Z, editors. Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute; 2017.
630 631 632	18.	Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth JBI Evid Synth. 2020;18: 2119–2126. doi:10.11124/JBIES-20-00167
633 634 635	19.	Tricco AC, Lillie E, Zarin W, O'Brien K K, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med Ann Intern Med. 2018;169: 467–473. doi:10.7326/M18-0850
636 637 638	20.	Shin HD, Samawi L, Gatov J, Hamovitch E, MacKinnon M, Boateng R, et al. The NASSS (Non-Adoption, Abandonment, Scale-Up, Spread and Sustainability) framework use over time: A scoping review protocol. 2022. Available: osf.io/74csw
639 640 641	21.	McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol J Clin Epidemiol. 2016;75: 40–46. doi:10.1016/j.jclinepi.2016.01.021
642 643 644	22.	Wright K, Golder S, Rodriguez-Lopez R. Citation searching: a systematic review case study of multiple risk behaviour interventions. BMC Med Res Methodol. 2014;14: 73. doi:10.1186/1471-2288-14-73
645 646	23.	Covidence systematic review software. Melbourne, Australia.; 2019. Available: www.covidence.org
647 648 649	24.	Abernethy A, Adams L, Barrett M, Bechtel C, Brennan P, Butte A, et al. The Promise of Digital Health: Then, Now, and the Future. NAM Perspect NAM Perspect. 2022;2022. doi:10.31478/202206e
650 651 652 653	25.	Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A'Court C, et al. Analysing the role of complexity in explaining the fortunes of technology programmes: empirical application of the NASSS framework. BMC Med. 2018;16. doi:10.1186/s12916-018-1050-6
654 655 656 657	26.	Abimbola S, Patel B, Peiris D, Patel A, Harris M, Usherwood T, et al. The NASSS framework for ex post theorisation of technology-supported change in healthcare: worked example of the TORPEDO programme. BMC Med. 2019;17. doi:10.1186/s12916-019-1463-x
658 659	27.	Alhmoud B, Banerjee A, Bonnici T, Patel R, Melley D, Hicks L. Implementation of a digital early warning score (NEWS2) in a cardiac specialist and general hospital

660 661	settings in the COVID-19 pandemic. Intensive Care Med Exp. 2022;10. doi:10.1186/s40635-022-00469-0
 662 28. 663 664 665 	Banck JK, Bernhardsson S. Experiences from implementation of internet-delivered cognitive behaviour therapy for insomnia in psychiatric health care: a qualitative study applying the NASSS framework. BMC Health Serv Res. 2020;20. doi:10.1186/s12913-020-05596-6
666 29.667668	Barnett A, Kelly JT, Wright C, Campbell KL. Technology-supported models of nutrition care: Perspectives of health service providers. Digit Health. 2022;8. doi:10.1177/20552076221104670
 669 30. 670 671 672 	Bezuidenhout L, Joseph C, Thurston C, Rhoda A, English C, Conradsson DM. Telerehabilitation during the COVID-19 pandemic in Sweden: a survey of use and perceptions among physiotherapists treating people with neurological diseases or older adults. BMC Health Serv Res. 2022;22. doi:10.1186/s12913-022-07968-6
 673 31. 674 675 676 	Brown P, Waite F, Lambe S, Jones J, Jenner L, Diamond R, et al. Automated Virtual Reality Cognitive Therapy (gameChange) in Inpatient Psychiatric Wards: Qualitative Study of Staff and Patient Views Using an Implementation Framework. JMIR Form Res. 2022;6. doi:10.2196/34225
 677 32. 678 679 680 	Budhwani S, Fujioka JK, Chu C, Baranek H, Pus L, Wasserman L, et al. Delivering Mental Health Care Virtually During the COVID-19 Pandemic: Qualitative Evaluation of Provider Experiences in a Scaled Context. JMIR Form Res. 2021;5. doi:10.2196/30280
 681 33. 682 683 684 	Cartledge S, Rawstorn JC, Tran M, Ryan P, Howden EJ, Jackson A. Telehealth is here to stay but not without challenges: a consultation of cardiac rehabilitation clinicians during COVID-19 in Victoria, Australia. Eur J Cardiovasc Nurs. 2022;21: 548–558. doi:10.1093/eurjcn/zvab118
 685 686 687 688 	Catapan S de C, Taylor A, Calvo MCM. Health professionals' views of medical teleconsultation uptake in the Brazilian Unified Health System: A description using the NASSS framework. Int J Med Inf. 2022;168: 104867. doi:10.1016/j.ijmedinf.2022.104867
 689 690 691 692 693 	Clarkson P, Vassilev I, Rogers A, Brooks C, Wilson N, Lawson J, et al. Integrating a Web-Based Self-Management Tool (Managing Joint Pain on the Web and Through Resources) for People With Osteoarthritis-Related Joint Pain With a Web- Based Social Network Support Tool (Generating Engagement in Network Involvement): Design, Deve. JMIR Form Res. 2020;4. doi:10.2196/18565
694 36.695696	Davies SM, Jardine J, Gutridge K, Bernard Z, Park S, Dawson T, et al. Preventive Digital Mental Health for Children in Primary Schools: Acceptability and Feasibility Study. JMIR Form Res. 2021;5. doi:10.2196/30668

 697 37. 698 699 700 	Dijkstra A, Heida A, van Rheenen PF. Exploring the Challenges of Implementing a Web-Based Telemonitoring Strategy for Teenagers With Inflammatory Bowel Disease: Empirical Case Study. J Med INTERNET Res. 2019;21. doi:10.2196/11761
701 38.702703	Dyb K, Berntsen GR, Kvam L. Adopt, adapt, or abandon technology-supported person-centred care initiatives: healthcare providers' beliefs matter. BMC Health Serv Res. 2021;21. doi:10.1186/s12913-021-06262-1
704 39. 705 706	Edridge C, Deighton J, Wolpert M, Edbrooke-Childs J. The implementation of an mHealth intervention (ReZone) for the self-management of overwhelming feelings among young people. JMIR Form Res. 2019;3. doi:10.2196/11958
707 40. 708 709 710	Fox D, Coddington R, Scarf V, Bisits A, Lainchbury A, Woodworth R, et al. Harnessing technology to enable all women mobility in labour and birth: feasibility of implementing beltless non-invasive fetal ECG applying the NASSS framework. Pilot Feasibility Stud. 2021;7: 214. doi:10.1186/s40814-021-00953-6
 711 41. 712 713 714 	Franck LS, Kriz RM, Rego S, Garman K, Hobbs C, Dimmock D. Implementing Rapid Whole-Genome Sequencing in Critical Care: A Qualitative Study of Facilitators and Barriers to New Technology Adoption. J Pediatr. 2021;237: 237-+. doi:10.1016/j.jpeds.2021.05.045
 715 42. 716 717 718 	Gorbenko K, Mohammed A, Ezenwafor E, Phlegar S, Healy P, Solly T, et al. Innovating in a crisis: a qualitative evaluation of a hospital and Google partnership to implement a COVID-19 inpatient video monitoring program. J Am Med Inform Assoc. 2022;29: 1618–1630. doi:10.1093/jamia/ocac081
 719 43. 720 721 722 	Grady A, Barnes C, Wolfenden L, Lecathelinais C, Yoong SL. Barriers and Enablers to Adoption of Digital Health Interventions to Support the Implementation of Dietary Guidelines in Early Childhood Education and Care: Cross-Sectional Study. J Med INTERNET Res. 2020;22. doi:10.2196/22036
 723 44. 724 725 726 	Greenhalgh T, Shaw S, Wherton J, Vijayaraghavan S, Morris J, Bhattacharya S, et al. Real-World Implementation of Video Outpatient Consultations at Macro, Meso, and Micro Levels: Mixed-Method Study. J Med INTERNET Res. 2018;20. doi:10.2196/jmir.9897
727 45. 728 729 730	Hall A, Ewing G, Rowland C, Grande G. A drive for structure: A longitudinal qualitative study of the implementation of the Carer Support Needs Assessment Tool (CSNAT) intervention during hospital discharge at end of life. Palliat Med. 2020;34: 1088–1096. doi:10.1177/0269216320930935
731 46.732733	Hammerton M, Benson T, Sibley A. Readiness for five digital technologies in general practice: perceptions of staff in one part of southern England. BMJ OPEN Qual. 2022;11. doi:10.1136/bmjoq-2022-001865

734 735 736 737	47.	Hehakaya C, Van der Voort van Zyp J, Lagendijk J, Grobbee D, Verkooijen H, Ellen M. Opportunities and challenges in the adoption and implementation of MR- Linac for prostate cancer. Radiother Oncol. 2020;152: S672. doi:10.1016/S0167- 8140
738 739 740 741	48.	Hehakaya C, van Zyp J, Lagendijk J, Grobbee DE, Verkooijen HM, Moors E. Problems and Promises of Introducing the Magnetic Resonance Imaging Linear Accelerator Into Routine Care: The Case of Prostate Cancer. Front Oncol. 2020;10. doi:10.3389/fonc.2020.01741
742 743 744 745	49.	Hehakaya C, Sharma AM, van der Voort Van Zijp J RN, Grobbee DE, Verkooijen HM, Izaguirre EW, et al. Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States. Adv Radiat Oncol. 2022;7: 1. doi:10.1016/j.adro.2022.101049
746 747 748	50.	Hollick RJ, Black AJ, Reid DM, McKee L. Shaping innovation and coordination of healthcare delivery across boundaries and borders A comparative case study. J Health Organ Manag. 2019;33: 849–868. doi:10.1108/JHOM-10-2018-0315
749 750 751 752	51.	Jacobs J, Ferguson JM, Van Campen J, Yefimova M, Greene L, Heyworth L, et al. Organizational and External Factors Associated with Video Telehealth Use in the Veterans Health Administration Before and During the COVID-19 Pandemic. Telemed E-Health. 2022;28: 199–211. doi:10.1089/tmj.2020.0530
753 754 755 756	52.	Jones NL, Read J, Field B, Fegan C, Simpson E, Revitt C, et al. Remote home visits: Exploring the concept and applications of remote home visits within health and social care settings. Br J Occup Ther. 2022;85: 50–61. doi:10.1177/03080226211000265
757 758 759 760	53.	Kip H, Sieverink F, Van Gemert-Pijnen L, Bouman Y, Kelders SM. Integrating People, Context, and Technology in the Implementation of a Web-Based Intervention in Forensic Mental Health Care: Mixed-Methods Study. J Med INTERNET Res. 2020;22. doi:10.2196/16906
761 762 763 764	54.	Kozica-Olenski S, Soldatos G, Marlow L, Cooray SD, Boyle JA. Exploring the acceptability and experience of receiving diabetes and pregnancy care via telehealth during the COVID-19 pandemic: a qualitative study. BMC Pregnancy Childbirth. 2022;22: 932. doi:10.1186/s12884-022-05175-z
765 766 767 768	55.	Kozica-Olenski S, Garth B, Boyle JA, Vincent AJ. Menopause care delivery in the time of COVID-19: evaluating the acceptability of telehealth services for women with early and usual age menopause. Climacteric J Int Menopause Soc. 2022; 1–13. doi:10.1080/13697137.2022.2127351
769 770 771 772	56.	Liverani M, Ir P, Perel P, Khan M, Balabanova D, Wiseman V. Assessing the potential of wearable health monitors for health system strengthening in low- and middle-income countries: a prospective study of technology adoption in Cambodia. Health Policy Plan. 2022;37: 943–951. doi:10.1093/heapol/czac019

773 774 775	57.	Longacre ML, Keleher C, Chwistek M, Odelberg M, Siemon M, Collins M, et al. Developing an Integrated Caregiver Patient-Portal System. HEALTHCARE. 2021;9. doi:10.3390/healthcare9020193
776 777 778 779	58.	Martindale AM, Pilbeam C, Mableson H, Tonkin-Crine S, Atkinson P, Borek A, et al. Perspectives on COVID-19 testing policies and practices: a qualitative study with scientific advisors and NHS health care workers in England. BMC PUBLIC Health. 2021;21. doi:10.1186/s12889-021-11285-8
780 781 782 783	59.	Merolli M, Marshall CJ, Pranata A, Paay J, Sterling L. User-Centered Value Specifications for Technologies Supporting Chronic Low-Back Pain Management. MEDINFO 2019 Health WELLBEING E-Netw ALL. 2019;264: 1288–1292. doi:10.3233/SHT1190434
784 785 786 787	60.	Miller C, Christian D, Spencer J, Watkins C. Healthcare professionals perceptions of the stroke-specific education framework; what are the factors influencing effective implementation and adoption in the national stroke workforce? Int J Stroke. 2021;16: 35. doi:10.1177/17474930211059996
788 789 790	61.	Neher M, Nygardh A, Brostrom A, Lundgren J, Johansson P. Perspectives of Policy Makers and Service Users Concerning the Implementation of eHealth in Sweden: Interview Study. J Med INTERNET Res. 2022;24. doi:10.2196/28870
791 792 793 794	62.	Nguyen HQ, McMullen C, Haupt EC, Wang SE, Werch H, Edwards PE, et al. Findings and lessons learnt from early termination of a pragmatic comparative effectiveness trial of video consultations in home-based palliative care. BMJ Support Palliat Care. 2022;12: E432–E440.
795 796 797	63.	Nimsakul K, Suwannaprom P, Suttajit S. Complexity of implementing Harm Reduction Services in community hospitals: A two-phase qualitative study. Thai J Pharm Sci. 2022;46: 324–334.
798 799 800	64.	Perdacher E, Kavanagh D, Sheffield J, Healy K, Dale P, Heffernan E. Using the Stay Strong App for the Well-being of Indigenous Australian Prisoners: Feasibility Study. JMIR Form Res. 2022;6. doi:10.2196/32157
801 802 803 804	65.	Przysucha M, Peters L, Büscher A, Schnellhammer M, Hübner U. What Went Wrong in eMedCare? Formative Evaluation of an IT Project in Primary Care in Two Rural Districts. StudHealth TechnolInform. 2022;296: 9. doi:10.3233/SHTI220807
805 806 807 808 809	66.	Pumplun L, Fecho M, Islam N, Buxmann P. Machine learning systems in clinics - How mature is the adoption process in medical diagnostics? Proceedings of the Annual Hawaii International Conference on System Sciences. 2021. pp. 6317–6326. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85108367707&partnerID=40&md5=c0eb4c92372f9a5f0f2831bbefd17957

810 811 812	67.	Pumplun L, Fecho M, Wahl N, Peters F, Buxmann P. Adoption of Machine Learning Systems for Medical Diagnostics in Clinics: Qualitative Interview Study. J Med INTERNET Res. 2021;23. doi:10.2196/29301
813 814 815 816	68.	Rudin RS, Perez S, Rodriguez JA, Sousa J, Plombon S, Arcia A, et al. User-centered design of a scalable, electronic health record-integrated remote symptom monitoring intervention for patients with asthma and providers in primary care. J Am Med Inform Assoc. 2021;28: 2433–2444. doi:10.1093/jamia/ocab157
817 818 819 820	69.	Schougaard L, Mejdahl CT, Christensen J, Lomborg K, Maindal HT, de Thurah A, et al. Patient-initiated versus fixed-interval patient-reported outcome-based follow- up in outpatients with epilepsy: a pragmatic randomized controlled trial. J PATIENT-Rep OUTCOMES. 2019;3. doi:10.1186/s41687-019-0151-0
821 822 823	70.	Schultz K, Vickery H, Campbell K, Wheeldon M, Barrett-Beck L, Rushbrook E. Implementation of a virtual ward as a response to the COVID-19 pandemic. Aust Health Rev. 2021;45: 433–441. doi:10.1071/AH20240
824 825 826	71.	Strohm L, Hehakaya C, Ranschaert ER, Boon W, Moors E. Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. Eur Radiol. 2020;30: 5525–5532. doi:10.1007/s00330-020-06946-y
827 828 829	72.	Thomas EE, Chambers R, Phillips S, Rawstorn JC, Cartledge S. Sustaining telehealth among cardiac and pulmonary rehabilitation services: a qualitative framework study. Eur J Cardiovasc Nurs. 2022. doi:10.1093/eurjcn/zvac111
830 831 832 833	73.	Tolf S, Mesterton J, Soderberg D, Amer-Wahlin I, Mazzocato P. How can technology support quality improvement? Lessons learned from the adoption of an analytics tool for advanced performance measurement in a hospital unit. BMC Health Serv Res. 2020;20. doi:10.1186/s12913-020-05622-7
834 835 836	74.	Tompson A, Fleming S, Lee MM, Monahan M, Jowett S, McCartney D, et al. Mixed-methods feasibility study of blood pressure self-screening for hypertension detection. BMJ OPEN. 2019;9. doi:10.1136/bmjopen-2018-027986
837 838 839 840 841	75.	Uribe Guajardo MG, Baillie A, Louie E, Giannopoulos V, Wood K, Riordan B, et al. The evaluation of the role of technology in the pathways to comorbidity care implementation project to improve management of comorbid substance use and mental disorders. J Multimorb Comorbidity. 2022;12: 26335565221096977. doi:10.1177/26335565221096977
842 843 844 845	76.	Vali Y, Eijk R, Hicks T, Jones WS, Suklan J, Holleboom AG, et al. Clinicians' Perspectives on Barriers and Facilitators for the Adoption of Non-Invasive Liver Tests for NAFLD: A Mixed-Method Study. J Clin Med J Clin Med. 2022;11: 2707. doi:10.3390/jcm11102707

846847848	Weidner K, Lowman J, Fleischer A, Kosik K, Goodbread P, Chen B, et al. Twitter, Telepractice, and the COVID-19 Pandemic: A Social Media Content Analysis. Am J Speech Lang Pathol. 2021;30: 2561–2571. doi:10.1044/2021_AJSLP-21-00034
 849 78. 850 851 852 853 	Yakovchenko V, McInnes DK, Petrakis BA, Gillespie C, Lipschitz JM, McCullough MB, et al. Implementing Automated Text Messaging for Patient Self-management in the Veterans Health Administration: Qualitative Study Applying the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability Framework. JMIR MHEALTH UHEALTH. 2021;9. doi:10.2196/31037
854 79. 855 856	Thomas EE, Taylor ML, Ward EC, Hwang R, Cook R, Ross JA, et al. Beyond forced telehealth adoption: A framework to sustain telehealth among allied health services. J Telemed Telecare. 2022. doi:10.1177/1357633X221074499
857858859860	Duan Y, Iaconi A, Wang J, Perez JS, Song Y, Chamberlain SA, et al. Conceptual and relational advances of the PARIHS and i-PARIHS frameworks over the last decade: a critical interpretive synthesis. Implement Sci Implement Sci. 2022;17: 78. doi:10.1186/s13012-022-01254-z
 861 81. 862 863 864 	Ahmed S, Zidarov D, Eilayyan O, Visca R. Prospective application of implementation science theories and frameworks to inform use of PROMs in routine clinical care within an integrated pain network. Qual Life Res Qual Life Res. 2021;30: 3035–3047. doi:10.1007/s11136-020-02600-8
865 82. 866 867 868	Moullin JC, Dickson KS, Stadnick NA, Albers B, Nilsen P, Broder-Fingert S, et al. Ten recommendations for using implementation frameworks in research and practice. Implement Sci Commun Implement Sci Commun. 2020;1: 42. doi:10.1186/s43058-020-00023-7
 869 870 871 872 	Aarons GA, Hurlburt M, Horwitz SM. Advancing a Conceptual Model of Evidence- Based Practice Implementation in Public Service Sectors. Adm Policy Ment Health Ment Health Serv Res Adm Policy Ment Health. 2011;38: 4–23. doi:10.1007/s10488-010-0327-7
873873874875	Moullin JC, Dickson KS, Stadnick NA, Rabin B, Aarons GA. Systematic review of the Exploration, Preparation, Implementation, Sustainment (EPIS) framework. Implement Sci Implement Sci. 2019;14: 1. doi:10.1186/s13012-018-0842-6
876 85. 877 878 879	Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci Implement Sci. 2009;4: 50. doi:10.1186/1748-5908-4-50
880881882	Kirk MA, Kelley C, Yankey N, Birken SA, Abadie B, Damschroder L. A systematic review of the use of the Consolidated Framework for Implementation Research. Implement Sci Implement Sci. 2016;11: 72. doi:10.1186/s13012-016-0437-z

883 884 885	87.	Harvey G, Kitson A. PARIHS revisited: from heuristic to integrated framework for the successful implementation of knowledge into practice. Implement Sci IS. 2016;11: 33. doi:10.1186/s13012-016-0398-2
886 887	88.	Rycroft-Malone J. The PARIHS framework—a framework for guiding the implementation of evidence-based practice. J Nurs Care Qual. 2004;19: 297–304.
888 889 890 891	89.	Duan Y, Iaconi A, Wang J, Perez JS, Song Y, Chamberlain SA, et al. Conceptual and relational advances of the PARIHS and i-PARIHS frameworks over the last decade: a critical interpretive synthesis. Implement Sci Implement Sci. 2022;17: 78. doi:10.1186/s13012-022-01254-z
892 893 894 895	90.	Pinnock H, Epiphaniou E, Pearce G, Parke H, Greenhalgh T, Sheikh A, et al. Implementing supported self-management for asthma: a systematic review and suggested hierarchy of evidence of implementation studies. BMC Med BMC Med. 2015;13: 127. doi:10.1186/s12916-015-0361-0
896 897 898	91.	Pinnock H, Barwick M, Carpenter CR, Eldridge S, Grandes G, Griffiths CJ, et al. Standards for Reporting Implementation Studies (StaRI) Statement. BMJ Online BMJ. 2017;356: i6795. doi:10.1136/bmj.i6795
899 900 901 902	92.	Strifler L, Cardoso R, McGowan J, Cogo E, Nincic V, Khan PA, et al. Scoping review identifies significant number of knowledge translation theories, models, and frameworks with limited use. J Clin Epidemiol. 2018;100: 92–102. doi:10.1016/j.jclinepi.2018.04.008
903 904 905	93.	Rycroft-Malone J, Burton CR. Is it Time for Standards for Reporting on Research about Implementation? Worldviews Evid-Based Nurs Worldviews Evid Based Nurs. 2011;8: 189–190. doi:10.1111/j.1741-6787.2011.00232.x
906 907 908 909	94.	Greenhalgh T, Rosen R, Shaw SE, Byng R, Faulkner S, Finlay T, et al. Planning and Evaluating Remote Consultation Services: A New Conceptual Framework Incorporating Complexity and Practical Ethics. Front Digit Health. 2021;3: 726095. doi:10.3389/fdgth.2021.726095
910 911 912	95.	Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med PLoS Med. 2010;7: e1000251. doi:10.1371/journal.pmed.1000251
012		

913

It is made available under a CC-BY 4.0 International license .

Supporting Information 1. Search Strategy

(Search Ran 20 December 2022)

Medline (Ovid)

Database Ovid MEDLINE: Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE® <1946-Present>

Search strategy:

1 NASSS.ti,ab,kf. (51)

2 ((non-adoption or nonadoption) adj2 abandonment adj5 (scale-up or scaleup) adj2 spread adj2 sustainability).ti,ab,kf. (53)

- 3 NASSS-CAT.ti,ab,kf. (2)
- 4 (greenhalgh* adj5 (framework* or model*)).ti,ab,kf. (26)
- 5 1 or 2 or 3 or 4 (88)

EMBASE (Ovid)

Database: Embase Classic+Embase 1947 to 2022 December 19

Search strategy:

2 ((non-adoption or nonadoption) adj2 abandonment adj5 (scale-up or scaleup) adj2 spread adj2 sustainability).ti,ab,kf. (51)

- 3 NASSS-CAT.ti,ab,kf. (2)
- 4 (greenhalgh* adj5 (framework* or model*)).ti,ab,kf. (35)
- 5 1 or 2 or 3 or 4 (97)

APA PsychInfo (Ovid)

Database: APA PsycInfo 1806 to December Week 2 2022 Search strategy:

1 NASSS.ti,ab,id. (12)

¹ NASSS.ti,ab,kf. (54)

It is made available under a CC-BY 4.0 International license .

2 ((non-adoption or nonadoption) adj2 abandonment adj5 (scale-up or scaleup) adj2 spread adj2

sustainability).ti,ab,id. (6)

- 3 NASSS-CAT.ti,ab,id. (0)
- 4 (greenhalgh* adj5 (framework* or model*)).ti,ab,id. (8)
- 5 1 or 2 or 3 or 4 (22)

CINAHL (EBSCO)

Database: CINAHL Plus with Full Text Search strategy:

1 TI NASSS OR AB NASSS OR TX NASSS (34)

2 TI (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) OR AB (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) OR TX (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) (20)

3 TI NASSS-CAT OR AB NASSS-CAT OR TX NASSS-CAT (3)

4 TI (greenhalgh* N5 (framework* OR model*)) OR AB (greenhalgh* N5 (framework* OR model*)

) OR TX (greenhalgh* N5 (framework* OR model*)) (74)

5 S1 OR S2 OR S3 OR S4 (109)

LISTA (EBSCO)

Database: Library, Information Science & Technology Abstracts Search strategy:

1 TI NASSS OR AB NASSS OR TX NASSS (9)

2 TI (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) OR AB (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) OR TX (((non-adoption OR nonadoption) N2 abandonment N2 (scale-up or scaleup) N2 spread N2 sustainability)) (9)

3 TI NASSS-CAT OR AB NASSS-CAT OR TX NASSS-CAT (1)

4 TI (greenhalgh* N5 (framework* OR model*)) OR AB (greenhalgh* N5 (framework* OR model*)) OR TX (greenhalgh* N5 (framework* OR model*)) (1)

5 S1 OR S2 OR S3 OR S4 (12)

It is made available under a CC-BY 4.0 International license .

Web of Science

Database: Web of Science Core Collection (1900-present)

Search strategy:

- 1 TS=(NASSS) (48)
- 2 TS=((non-adoption or nonadoption) NEAR/2 abandonment NEAR/5 (scale-up or scaleup)

NEAR/2 spread NEAR/2 sustainability) (49)

- 3 TS=(NASSS-CAT) (2)
- 4 TS=(greenhalgh* NEAR/5 (framework* OR model*)) (30)
- 5 #1 OR #2 OR #3 OR #4 (89)

Scopus

Database: Scopus

Search strategy:

1 TITLE-ABS-KEY (nasss) (55)

2 TITLE-ABS-KEY((NON-ADOPTION OR NONADOPTION) W/2 ABANDONMENT W/5 (

SCALE-UP OR SCALEUP) W/2 SPREAD W/2 SUSTAINABILITY)(43)

3 TITLE-ABS-KEY (nasss-cat) (2)

4 TITLE-ABS-KEY (greenhalgh* W/5 (framework* OR model*)) (38)

5 TITLE-ABS-KEY (nasss)) OR (TITLE-ABS-KEY ((non

adoption OR nonadoption) W/2 abandonment W/5 (scale-

up OR scaleup) W/2 spread W/2 sustainability)) OR (TITLE-ABS-KEY (nasss-cat)) OR (TITLE-ABS-

KEY (greenhalgh* W/5 (framework* OR model*))) (103)

It is made available under a CC-BY 4.0 International license .

Supporting Information 2. Data Extraction Tool

		Value
Citation information	Author	
	Year	
	Study title	
	Link	
	Journal	
Study characteristics	Type of study (peer-	
	reviewed, gray lit)	
	Country (setting)	
	Study timeframe	
	Study aims	
	Study type	
	Study design (e.g., cross-	
	sectional, retrospective	
	cohort)	
	Data sources	Select all:
		 Health-admin data
		• Survey
		 Interview
		 Focus Group
		• Other : Insert text
	Setting	
	Study participants (data	
	collected from them for the	
	purpose of the study aim)	
	Condition/diagnosis	
	Intervention type	
	Intervention (describe)	
	Intervention targets (e.g.,	
	patients with a specific	
	condition)	
How NASSS was	Timing of framework use	Select:
applied	with regards to	 Prospective
11	implementation	• Retrospective
	-	Concurrently
	NASSS was used in:	Select all:
		 Study design
		 Data collection
		 Analysis
		 Presentation
		 Interpretation
	Were NASSS tools used?	
Barriers (NASSS	Description of barriers	
domains)	1	
		Select corresponding sub domains (can select multiple)
	(1) The illness/condition	1A. Nature of Condition/Illness
		1B. Comorbidities
		1C. Sociocultural factors
		 The illness/condition: other (list)
		2A. Material properties
	(2) The technology	2B. Knowledge to use
	(2) The teenhology	2C. Knowledge generated
		• 2E. Who owns the IP
		The technology: other (list)
	(3) The value proposition	A. Supply-side value (to developer)
		 3B. Demand-side value (to patient)
		 The value proposition: other (list)
	(4) The adopters	• 4A. Staff (role, identity)
		 4B. Patient (passive vs. active input)
		 4C. Carers (available, type of input)
		ie carers (available, cype of input)
		The adopters: other (list)

		5B. Readiness for this technology
		5C. Nature of adoption/funding decision
		 5D. Extent of changes needed to organisational routines
		 5E. Work needed to implement and evaluate change
		 The organization: other (list)
	(6) The wider system	 6A. Political/policy context
		 6B. Regulatory/legal issues
		6C. Professional bodies
		6D. Socio-cultural context
		 6E Inter-organisational networking
		The wider system: Other (list)
	(7) Over time	 7A. Scope for adaptation over time
		• 7B. Organisational resilience
		over time: other (list)
Enablers (NASSS domains)	Description of enablers	
	(1) The illness/condition	Select corresponding sub domains (can select multiple)
		 1A. Nature of Condition/Illness
		1B. Comorbidities
		 1C. Sociocultural factors
		 The illness/condition: other (list)
	(2) The technology	 2A. Material properties
		2B. Knowledge to use
		2C. Knowledge generated
		² 2D. Supply model
		• 2E. Who owns the IP
		• The technology: other (list)
	(3) The value proposition	 3A. Supply-side value (to developer)
		3B. Demand-side value (to patient)
	(4) The adapted	
	(4) The adopters	
		 4C. Carers (available, type of input)
		 The adopters: other (list)
	(5) The organization(s)	 5A. Capacity to innovate
		 5B. Readiness for this technology
		 5C. Nature of adoption/funding decision
		5D. Extent of changes needed to organisational routines
		5E. Work needed to implement and evaluate change
		 The organization: other (list)
	(6) The wider system	6A. Political/policy context
		6B. Regulatory/legal issues
		6C. Professional bodies
		GD. Socio-cultural context
		6E. Inter-organisational networking
		The wider system: Other (list)
	(7) Over time	 7A. Scope for adaptation over time
		 7A. Scope for adaptation over time 7B. Organisational resilience
		over time: other (list)
T - l	Nout store hand on	over time: other (list)
Takeaways	Next steps, based on conclusions (e.g., how to deal w identified complexity)?	
	Study conclusion using	
	NASSS: Will the intervention	
	get adopted, scale, spread,	
	and/or sustain (any)? Or if	
	retrospective, did we	
	identify why it did not	
	succeed?	
	Feedback regarding NASSS	
	application	
	(recommendations)	