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Abstract 
 

Excitation-inhibition (E:I) imbalance has long been considered one of the primary 
neurobiological theories explaining autism. However, the theory has been bolstered heavily by 
research on high-penetrance genetic mechanisms which are only found in a small proportion of 
the autism population and can manifest with potentially different directionality. How well does E:I 
imbalance explain idiopathic autistic males and does such E:I imbalance manifest in one particular 
direction? Answering this question in human patients necessitates a need for validated tools that 
allow for inference about E:I balance from non-invasively measured in-vivo electrophysiological 
(EEG, LFP) time-series data. Predictions from in-silico modelling alongside in-vivo validations 
from mouse electrophysiological data show that alterations of synaptic E:I balance cause changes 
in fractal long memory characteristics of the neural time-series that are captured with a metric 
known as the Hurst exponent (H). H estimated in resting state EEG data of idiopathic autistic males 
allows us to discover two distinct E:I ‘neurosubtypes’ that generalize at high levels (>92% 
accuracy) in independent data. Each autism neurosubtype captures approximately half of the 
sample and each can be described by opposing patterns of E:I imbalance relative to a typically-
developing (TD) comparison group. Autism E:I neurosubtypes also show differential relationships 
between H and behavioral and demographic variables consisting of age, intelligence, and autism 
symptomatology. This work establishes causal evidence for interpreting changes in EEG-derived 
H as an E:I-relevant biomarker and suggests that idiopathic autistic males can be characterized by 
opposing types of E:I imbalance with differential phenotypic relevance. 
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Introduction 
 

Imbalance between neurophysiological excitation and inhibition (henceforth referred to as 
‘E:I’ imbalance) has long been considered one of the primary neurobiological explanations behind 
autism1. While the theory has been highly influential, it still rests on evidence primarily gleaned 
from animal model research on known high-impact genomic mechanisms linked to autism2,3. 
Nearly all of these genomic causes are rare in frequency, both within the general population but 
also within autism4. Furthermore, the directionality (increased versus decreased E:I balance) and 
interpretation (initial cause versus homeostatic compensation)2,3,5 of observed E:I imbalance in 
such rare genomic causes can markedly differ. Thus, a clear roadblock exists with regard to 
generalizing heterogeneous evidence of E:I imbalance from such rare genomic causes to autistic 
individuals whose genetic etiologies are otherwise unknown (i.e. idiopathic autism). Sohal and 
Rubenstein3 proposed that the next steps in moving forward are towards identifying more 
individualized biomarkers of different types of E:I imbalance which might lead towards 
differential explanations behind heterogeneity in behavioral phenotypes and/or differential 
responses to treatment. In this work, we take these next steps by assessing whether the population 
of idiopathic autistic males can be split into E:I neurosubtypes based on in-vivo 
electroencephalography (EEG) biomarkers of high-relevance to underlying E:I balance.  

 
Derivation of biomarkers from neural time-series data such as EEG has gathered 

considerable attention in recent years6,7, particularly for its potential impact as a non-invasive in-
vivo method that could be used with human patients and under important clinical contexts (e.g., 
treatment, clinical trials)8,9. In this work we perform rigorous in-silico and in-vivo testing and 
validation of EEG-derived biomarkers that can be sensitive in parsing heterogeneity in E:I balance 
in idiopathic autistic males. Setting the table for this work, Gao and colleagues10 observed that the 
aperiodic signal variation (e.g., 1/f slope) measured from simulated local field potential (LFP) 
signal from uncoupled excitatory and inhibitory neuronal populations is sensitive to underlying 
changes in E:I balance, defined as the ratio between the strength of E and I conductances. This 
effect arises because excitatory AMPA post-synaptic potentials have a faster decay time constant 
than inhibitory GABA potentials. Thus, an increase of total E over I conductances will result in a 
relative increase in higher frequency components and consequently flatten the 1/f spectral slope10. 
Our recent in-silico modeling has confirmed that such effects are present in critical tests of a more 
biologically realistic situation when excitatory and inhibitory neuronal populations are recurrently 
connected11. Furthermore, we showed that in addition to metrics like 1/f slope, measures of fractal 
long-memory characteristics of the time-series such as the Hurst exponent (H) are also sensitive 
to such effects11. We then used causal chemogenetic in-vivo manipulations of local E:I balance in 
mouse prefrontal cortex to experimentally demonstrate that decreases in H measured from BOLD 
fMRI resting state time series captures causal excitation increases11. However, similar causal 
evidence from in-silico and in-vivo validations in EEG, and its intracranial counterpart, the local 
field potentials (LFP), data are still lacking.  

 
It is also important to consider that E:I balance is a complex construct that can be measured 

at several levels of analysis – from the ratio of E vs I synaptic conductances, to firing rates of E 
and I populations, and all the way up to MRI-derived phenotypes, such as magnetic resonance 
spectroscopy (MRS) metabolite concentrations relevant to excitation and inhibition6. Gao and 
colleagues focused on how a biomarker like 1/f slope measured in LFP or EEG might be 
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specifically linked to the ratio (denoted as g) of E vs I synaptic conductances10. However, as EEGs 
and LFP capture many neural parameters20,24, it is unclear whether such biomarkers are sensitive 
specifically to synaptic conductance changes, or whether they are instead more sensitive to 
changes in other E:I-relevant parameters that may covary with synaptic conductances in strongly 
coupled recurrently connected cortical networks12,13. Thus, more work is needed to determine how 
specific or generalized are such in-vivo EEG or LFP biomarkers for inferring specific changes to 
E:I-relevant parameters such as g and/or firing rates. Finally, several types of biomarkers have 
been proposed in the literature (e.g., H, 1/f slope, total broadband spectral power)10,11,14, but it is 
unclear which if any, can best track changes in underlying E:I balance. 

 
Here we start by addressing these mechanistic and explanatory gaps in decoding E:I 

balance from in-vivo measured electrophysiological (EEG, LFP) biomarkers (e.g., H, 1/f slope, 
total broadband spectral power). Utilizing in-silico modeling of recurrently connected E and I 
neuronal populations, we systematically manipulate a variety of ground truth E:I parameters (e.g., 
g, resting membrane potential) and examine how such changes explain variation in several 
measured EEG and LFP biomarkers (e.g., H, 1/f slope, total broadband spectral power). In-silico 
modeling predictions are then tested and validated in-vivo via causal chemogenetic manipulations 
of E:I balance in mice. Insights from in-silico and in-vivo experiments allowed us to scale up this 
work towards application on resting state EEG data measured in male idiopathic autistic patients. 
Resting state EEG E:I biomarkers were used to split idiopathic autism into discrete 
neurosubtypes15 and then tested for generalizability and differential brain-behavioral relationships. 

 
  
Results 
 
In-silico evidence that increasing network excitability causes changes in H measured in LFP 
and EEG 
 
 To first test that EEG biomarkers are relevant for inferring underlying E:I balance, we 
simulated realistic LFP and EEG proxies from a model of a local cortical network of recurrently 
connected leaky-integrate-and-fire (LIF) point neurons16 (Figure 1A-D), while manipulating 
neural parameters related to excitability. This model reproduces well the firing regimes and 
oscillation spectra of real cortical local networks17–20. In particular, the model generates highly 
realistic gamma (30-100 Hz) oscillations and spectral 1/f slopes. Throughout all simulations we 
hold the constant input to the model (i.e. ν0) to a rate of 2 spikes per second per neuron. This level 
of input results in an asynchronous irregular (AI) network state16,17 corresponding to output spiking 
that resembles resting state conditions (Figure 1D). We first varied the ground truth E:I ratio (g) – 
operationalized as the ratio of excitatory AMPA (gE) divided by inhibitory GABA (gI) 
conductances onto the excitatory population (g = gE/gI) (Figure 1A) - across a wide range that 
corresponds to around 5.7-14 times greater I than E and covers a range used to model resting state 
and stimulus-evoked neural cortical activity11,18,19. Increasing g led to a corresponding increase in 
the mean firing rate of excitatory neurons (Figure 1E left; Supplementary Table 1) and thus 
enhanced excitability of the network. However, because E and I are tightly coupled, it also led to 
an increase on the mean firing rate of I neurons (Figure 1E left; Supplementary Table 1). 
Measuring H from the simulated LFP and EEG, we found that increasing g (i.e. more recurrent 
synaptic excitation) and consequently, increasing firing rates, leads to decreased H (Figure 1F left; 
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Supplementary Table 1). Thus, H measured from EEGs or LFP is predictive of two aspects of 
underlying E:I balance - the ratio of E:I synaptic conductance and the total level of firing in the 
coupled E:I network.  
 

Because firing rates and the synaptic conductance ratio (g) were highly correlated in the 
above simulations, it is unclear which of the two aspects is more tightly captured by H. This cannot 
be determined by the uncoupled E:I model of Gao and colleagues10. While their work focused on 
the effect of the ratio g of E:I conductances10, in the uncoupled model of Gao and colleagues 
similar changes in H (and also in 1/f slope which captures scale-free properties similar to the fractal 
properties captured by H) occur when the E:I ratio g is held constant, but the firing rate of E and I 
neurons is changed (Supplementary Figure 1). In the uncoupled model, a decrease of H or the 
flattening of the 1/f slope could be due to an increase in the ratio of E:I conductance without 
changes in the firing rates, or to an increase in E firing rates over I firing rates without changes in 
ratio g of E:I conductance.  

 
 To better understand how H may change in relation to g or total firing rate, we thus 

performed another manipulation of the coupled E:I network to mimic the effect of chemogenetic 
stimulation of pyramidal neurons via CamkIIα-promoter driven hM3Dq expression21 (to be used 
experimentally in-vivo in the next section). In this simulated manipulation, we increased the 
excitability and firing of the E neurons without altering the synaptic conductance g ratio. This has 
the effect of increasing the rates of both E and I neurons without changing the synaptic conductance 
(Figure 1E center; Supplementary Table 1). In this simulation we found that H also tracks with 
firing rate change, demonstrating that it is not invariant to changes of simulation parameters as it 
would be predicted if it only associated with g.  Moreover, we found that H also tracked with the 
firing rate changes of a third set of simulations of the coupled E:I network, simulating the effect 
of chemogenetic inhibition of both excitatory and inhibitory neurons via hM4Di21 expression 
under the control of hSyn-promoter22. This manipulation (which we tested experimentally, 
described below) decreases the excitability and firing of both E and I neurons while at the same 
time decreasing the synaptic strengths of both E and I synapses22 (Figure 1E right; Supplementary 
Table 1).  
 

Three main biomarkers of E:I balance have been proposed based on spectral properties of 
LFP and EEG: the aperiodic 1/f slope10, the Hurst exponent (H)11, and the total broadband spectral 
power14. To understand how each relates to changes in synaptic conductance ratios or in firing 
rates, we also computed the 1/f slope and total broadband spectral power from the same EEG and 
LFP simulations as above. We found that both the 1/f slope and total broadband spectral power 
increased with the total firing rate, in all cases, even when the ground-truth synaptic conductance 
ratio g was unchanged (Supplementary Figure 2; Supplementary Table 1). Thus, based on this 
model all the three biomarkers correlate with the total firing rate and could be used to predict it. 
To quantitatively evaluate how well each of these biomarkers predict the total firing rate, we 
trained a linear regression model to predict the firing rate from the biomarkers measured in a first 
‘training’ set of simulations and we then used the linear model to predict the firing rate from the 
biomarkers in a second set of independently generated ‘validation’ simulations. As expected, all 
three biomarkers linearly predicted the firing rate well (Figure 1G; Supplementary Figure 2; 
Supplementary Table 1).  
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In sum, extending our prior observations made on simulated LFP and fMRI BOLD signal11, 
we determined that biomarkers (H, 1/f slope or broadband power) measured in simulated aggregate 
electrical potentials (such as the LFP or EEG) of coupled local cortical networks captures well and 
primarily the level of firing rates in the network, an important aspect of E:I balance. These indices 
reflect the operating point (or excitability) of the network in terms of overall firing rate, more than 
the ratio of E:I synaptic conductances as previously interpreted10,11.  
 

 
Figure 1: In-silico modeling shows that H computed from LFP and EEG data tracks with 
underlying changes to network excitability. Panel a shows a schematic of the recurrently 
connected leaky-integrate-and-fire point neuron model used to simulate LFP and EEG signal 
while manipulating ground truth E:I ratio. The model consists of 4000 excitatory (node E,), and 
inhibitory) neurons (node I). Each E and I population has recurrent connections between and 
within each population. The E:I ratio is operationalized as g and is derived as the ratio between 
excitatory AMPA (gE; red) and inhibitory GABA (gI; blue) synaptic conductance received by E 
neurons. The model was simulated over a range of E:I ratios that have inhibition 5.7-14 times 
greater than excitation and whereby the constant input to the model (ν0) is set to 2 spikes/second 
to resemble resting state conditions. Panel b shows a schematic of a multicompartment neuron 
model used in prior work to derive an EEG proxy that capture >90% of the variance in ground 
truth LFP signal. Panel c shows examples of LFP and EEG proxies simulated from the model. 
Panel d shows an example raster plot of the spiking activity of the model, which was asynchronous 
irregular. Panels e-g show the results of simulations where g (left) or resting membrane potential 
are varied either to increase (center) or decrease (right) excitability. The center and right columns 
are simulations that are meant to reflect changes that occur to excitability of E (center) or E and 
I (right) neurons as a result of the CamkII-hM3D(Gq) or hM4Di DREADD manipulations that we 
implemented in subsequent in-vivo validation experiments. The simulated decreases/increases in 
excitability of the neurons due to these chemogenetic manipulations are primarily modeled as 
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decreases/increases of the resting potential of these neurons as indicated in the x axis labels (see 
Methods). Panel e shows how mean firing rate (y-axis) of E (gray) and I (dark red) neuronal 
populations co-vary as a function of the manipulated parameters (x-axis). Panel f shows how the 
Hurst exponent (H) computed from LFP (dark blue) and EEG (light blue) data co-vary with 
changes to the simulated parameters (x-axis). Panel g plots actual ground truth firing rate of a 
validation set (x-axis) against predicted firing rate from a linear model trained based on H 
computed from LFP (dark blue) or EEG (light blue) data. Perfect predictions are shown by the 
black line, while the best fit lines are shown in light and dark blue.  
 
Experimental animal model evidence that chemogenetically altering E:I ratio in-vivo causes 
predicted changes to LFP H 
 
 The in-silico modeling provides a basis for predicting that in-vivo upregulation of 
excitability of excitatory neurons to increase the levels of firing should cause biomarkers measured 
in electrophysiological extracellular potentials to change in specific directions (e.g. decreased H, 
increased 1/f slope and broadband power). Here we test these causal predictions with a mouse 
model whereby we chemogenetically upregulated excitation of pyramidal neurons via 
overexpression of hM3Dq DREADD receptor under the control of CamkII-promoter in the medial 
prefrontal cortex (PFC) (Figure 2A-B). We performed electrophysiological recordings multi-unit 
activity (MUA) and LFPs in the chemogenetically manipulated area. We first verified that the 
CamkII-hM3D(Gq) DREADD manipulation increased PFC MUA spiking activity (a measure of 
total local firing20,23). Compared to the SHAM control injection, CamkII-hM3D(Gq) activation via 
systemic administration of DREADD activator CNO significantly and steadily increased MUA 
levels (by 2-4 standard deviations relative to baseline) over the examined 60 min time-window 
(Figure 2D; full statistics reported in Supplementary Table 2). Evidence of increased levels of 
spiking activity could be correctly inferred using H measured from the PFC LFP (Figure 2E; 
Supplementary Table 2). In the treatment phase, increased excitation caused statistically 
significant decreases in H of around 2-4 standard deviations relative to baseline in the DREADD 
condition. This effect was markedly greater than the negligible change in H relative to baseline 
observed in the SHAM control condition. This causal effect to decrease LFP-derived H was 
increasingly evident towards the end of the transition phase and continued throughout the treatment 
phase (Figure 2E; Supplementary Table 2). Thus, these results confirm the in-silico modeling 
predictions that increased excitability and causes a subsequent decrease in electrophysiologically 
measured H. 
 
 We next tested in-silico predictions regarding whether downregulating excitability of E 
and I neuronal populations would cause an increase in H. To experimentally test this hypothesis, 
we virally expressed DREADD hM4Di receptors in mouse PFC under the control of hSyn 
promoter. This manipulation has been shown to silence both  DREADD-expressing excitatory and 
inhibitory neuronal populations21,22 and should thus collectively produce a reduction of MUA 
activity in the manipulated region. In keeping with this, MUA levels decreased upon activation of 
hM4Di receptors via systemic activation of CNO (Figure 2F; Supplementary Table 2). 
Importantly, we also found that the resulting decreased in-vivo firing rate levels could be inferred 
by the increase in LFP-derived H, as predicted by the in-silico local network model.  In the 
treatment phase of the experiment hM4Di activation by CNO produced a large increase of H 
around 3-4 standard deviations relative to baseline (Figure 2G; Supplementary Table 2).  
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For both types of DREADD manipulations, the 1/f slope was predictive of the manipulation 

as expected by our in-silico model, but it was far less predictive of the manipulation compared to 
H (Supplementary Figure 3; Supplementary Table 2). Importantly, the result for total broadband 
spectral power was in the opposite direction compared to what is predicted by our in-silico local 
network model (Supplementary Figure 3). Our in-silico model of coupled E:I populations captures 
fully the effect of local interactions, which generate oscillations within the range of 30-100Hz16–

18. According to this model, if only local neural interactions were at play, the total broadband 
power would be an excellent predictor of the firing rate (Supplementary Figure 2). However, in 
real cortical LFPs, the low-frequency (< 4 Hz) power reflects global network fluctuations rather 
than local E:I interactions24. On our data, as shown also in Rocchi et al.,22 when the local firing 
rate decreases or increases, these global components of activity become more or less prominent in 
the spectra (Supplementary Figure 4). This phenomenon then biases the broadband power metric 
in the direction opposite to that induced by the variations of local firing rates.  
 

The comparison of SHAM vs DREADD has the advantage that it provides causal evidence 
that increases or decreases in firing rates can be detected by decreases or increases in H. However, 
it may be argued that the large variations in network configuration provided by the manipulation 
are unlike the variations naturally occurring across time or across animals. To evaluate whether H 
can track naturally occurring variations in firing rate, we compared, separately within the two 
SHAM and the two (hM3D(Gq) and hM4Di) DREADD conditions, the naturally occurring 
variations of firing rates with the variations in H during the treatment phase of the experiment. We 
found a significant negative correlation between firing rate and H, implying that H can track 
naturally spontaneously occurring as well as drug-induced variations of firing rate (Fig 2F, 2I; 
Supplementary Table 3). Importantly, on the same data the 1/f slope and the total broadband power 
showed non-significant and/or inconsistent (that is, with variable sign across datasets) correlation 
with firing rates compared to H (Supplementary Figure 3; Supplementary Table 3). The 
correlations with 1/f slope, when present, were positive in sign as predicted by the in-silico model. 
The correlations with total broadband spectral power, when present, were negative in sign, which 
is consistent with the chemogenetic manipulation results and was the opposite of what was 
predicted by the in-silico model of the local recurrent E:I network.  
 

In sum, our results show that in mouse PFC, H is the only electrophysiologically measured 
biomarker that can successfully track with both positive and negative variation in firing rates either 
causally induced with CamkII-hM3D(Gq) or hM4Di DREADD or spontaneously occurring across 
time or animals. Combined with the evidence from the in-silico modeling, this work shows that H 
measured in LFP and EEG is sensitive to underlying up- or down-regulations in firing rates, an 
important aspect of E:I balance.  
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Figure 2: Chemogenetic manipulation of E:I balance causes predicted changes to H. Panel a 
shows a schematic of the experimental design of the DREADD excitation (CamkII-hM3D(Gq)) 
and silencing (hM4Di) experiments. The first 15 minutes of the experiment was considered the 
‘Baseline’ phase (pink) before any injection (DREADD or SHAM) was given. After the ‘Baseline’, 
the experimental DREADD or SHAM control injection was given and then a period of 20 minutes 
ensued, which is dubbed the ‘Transition’ phase (green) of the experiment, where the DREADD 
drug is predicted to begin taking effect. After the ‘Transition’ phase is the ‘Treatment’ phase 
(blue), which lasts up until 60 minutes after experiment start and is the phase where the DREADD 
drug is predicted to have maximal effect. Both multi-unit arrays (MUA) and LFP were measured 
from the injection site in PFC to measure electrophysiological effects. Panel b shows the 
predictions for firing rate (left) and H (right) for the DREADD excitation experiment 
(experimental DREADD condition shown as the solid lines, control SHAM condition shown as the 
dashed lines). Panel c shows the predictions for firing rate (left) and H (right) for the DREADD 
silencing experiment (experimental DREADD condition shown as the solid lines, control SHAM 
condition shown as the dashed lines). Panels d-i summarize the effects of the DREADD excitation 
(d, e, f) and silencing (g, h, i) experiments. Panels d, e and g, h depict baseline normalized firing 
rate or H (y-axis) trajectories over sliding time windows (x-axis) whereby with each time window 
representing a 4 second segment of time and with each window separated by around 1 minute. The 
y-axis of panels d and g show the baseline normalized firing rates as measured by MUA. The y-
axis of panels e and h show the baseline normalized H responses as measured from LFP. All 
baseline normalized values on the y-axis represent z-scores, and thus, the units on the y-axis in 
each plot represent units of standard deviation difference from the baseline phase and 0 represents 
the baseline average value. The experimental phases are denoted with color (baseline, pink; 
transition, green; treatment, blue). Each plot’s facets represent either the experimental (DREADD, 
left) or control (SHAM, right) conditions. The gray lines in each plot represent the data for each 
individual mouse, while the thicker colored lines represent the group fit with confidence bands. 
All trajectories (individual and group) are fitted with a LOESS kernel. The vertical black lines in 
represent the start of the transition and treatment phases respectively, while the horizontal line at 
0 visually shows where the baseline average is for each plot. Panels f and i show associations 
between baseline normalized firing rate (x-axis) and baseline normalized H (y-axis) from trials in 
the treatment phase of the CamkII-hM3D(Gq) DREADD excitation (F) or hM4Di DREADD 
silencing (I) experiments and with DREADD and SHAM conditions indicated by pink and 
turquoise colors respectively. 
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Identifying EEG-derived autism E:I neurosubtypes 

 
Having established causal in-silico and in-vivo evidence that H measured in LFP and EEG 

is driven by changes in underlying E:I balance, we next translationally extended this work to 
humans and tested whether the population of male idiopathic autism can be split into EEG-derived 
E:I ‘neurosubtypes’. Here we applied unsupervised stability-based relative clustering validation 
analysis (reval)25 to a relatively large EEG dataset of male autistic individuals (n=286) 5-21 years 
of age from data releases 1-10 from the Child Mind Institute Healthy Brain Network (CMI-HBN) 
dataset26. Genetic data was not available for analysis on this sample, and thus our usage of the term 
‘idiopathic’ refers to the lack of knowledge regarding known genetic causes of autism. EEG data 
was examined under the two resting state conditions - eyes open and eyes closed. H was estimated 
across 93 electrodes across the scalp and then input into the reval clustering pipeline.  

 
For both eyes open and eyes closed conditions, we find that the optimal number of subtypes 

is 2 (Figure 3A-B). Generalization accuracy for this 2-subtype solution in the held-out validation 
set is 92% for the resting state eyes open condition and 98% in the resting state eyes closed 
condition. This 2-cluster solution is indicative of true clusters, as it heavily deviates from a single 
multivariate Gaussian null distribution (SigClust analysis: all p < 0.0015 in training and validation 
sets for eyes open and eyes closed) (see Supplementary Table 4). Plots of dimensionality-reduced 
data with UMAP further show visually how the subtypes each have their own distribution and 
distinct peaks (Figure 3A-B). Thus, using EEG H patterns across the entire scalp, unsupervised 
data-driven clustering can robustly and replicably identify autism E:I ‘neurosubtypes’ that 
generalize with high-accuracy in new unseen datasets. These findings solidify the idea that at the 
very least, autism can be split into at least two E:I-defined neurosubtypes based on EEG 
biomarkers such as H. 
 

In terms of the proportion of individuals within each subtype, we find that these E:I 
neurosubtypes comprise an approximate half-split of the entire autism sample examined (eyes 
open: autism subtype 1 = 45.45%, autism subtype 2 = 54.55%; eyes closed: autism subtype 1 = 
52.10%, autism subtype 2 = 47.90%). A vast majority (n = 211; 73.78%) of participants are 
clustered into the same subtype across the two eye conditions (Figure 3C). The smaller subset of 
participants who changed subtypes between eyes open and eyes closed (n = 75; 26.22%), were not 
different from those that stayed in the same subtype in terms of age, FIQ, or autism 
symptomatology measures (Supplementary Table 5).  
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Figure 3:  Identification of autism subtypes with high generalizability accuracy based on EEG-
derived H. Panels a-b show normalized stability plots (eyes open, a; eyes closed, b) that indicate 
that a 2-cluster solution minimizes clustering stability and produces high generalizability 
accuracy (92-98%) in independent data. The UMAP plots next to the stability plots show evidence 
that the clusters highly deviate from the null single multivariate Gaussian distribution. Panel c 
shows an alluvial plot to indicate how consistent are the 2 subtypes across eyes open and eyes 
closed conditions. Panel d (left) shows block-averaged H topographies for eyes open (top) and 
eyes closed (bottom) conditions. After statistical testing, we quantified the effect size difference 
between autism subtypes and TD. These effect size topographies are shown in panel e, whereby 
we see that autism subtype 1 has ubiquitously increased H across all electrodes (left), whereas 
autism subtype 2 has ubiquitously decreased H across all electrodes (right). Panel f shows the 
effect sizes plotted for all electrodes and across each of the 5 blocks. These plots show that the 
effect sizes remain relatively consistent over 5 repeat blocks of eyes open or closed conditions.  
 
Autism E:I neurosubtypes differ from typical development in opposite directions 
   

We next proceeded to test for differences between autism E:I neurosubtypes relative to a 
typically-developing (TD) comparison group. Linear mixed effect models were used with H values 
at each electrode as the dependent variable. Subtype, age, and their interaction were fixed effects 
in the model, while acquisition site and repeat blocks were modeled as random effects (see 
Methods). We found a significant main effect of subtype across all electrodes. Specific between-
group comparisons of TD vs autism subtype 1 and TD vs autism subtype 2 show that the group 
difference here is driven by both autism subtypes being significantly different from TD. Autism 
subtype 1 had higher H compared to TD (eyes open condition: Cohen’s d > 0.27, mean d = 0.49; 
eyes closed condition: Cohen’s d > 0.25, mean d = 0.51) (Figure 3D-E; Supplementary Table 5). 
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While the group differences are relatively strong across all electrodes, the topographies of effect 
size for TD vs autism subtype 1 shown in Figure 3E indicate relatively larger differences over 
central and posterior electrodes. In contrast, autism subtype 2 showed the opposite effect of lower 
H compared to TD (eyes open condition: Cohen’s d < -0.52; mean d = -0.71; eyes closed condition: 
Cohen’s d < -0.62, mean d = -0.79) (Figure 3D-E). These effects were all remarkably consistent 
over repeated blocks, which further emphasizes the robustness of the effects (Figure 3F). While 
group differences are relatively strong across all electrodes, the topographies of effect size for TD 
vs autism subtype 2 shown in Figure 3E indicate relatively larger differences over temporo-parietal 
electrodes. Lower H in autism subtype 2 is indicative of a higher excitability and is compatible 
with the predictions from the original E:I theory1. However, the existence of the opposing autism 
subtype 1 with higher H, is compatible with a more updated view about E:I imbalance in autism 
which suggests that imbalance towards either extreme may be important2,3. The subtypes are not 
equally deviant compared to the TD group though, as autism subtype 2 tends to show a more 
extreme deviation than autism subtype 1. In sum, the evidence here showcases an important 
validation that idiopathic autistic males can be described by E:I imbalances that deviate from the 
TD population in either direction.  

 
In addition to main effects of subtype, we also identified ubiquitous main effects of age 

involving a majority of all electrodes in the eyes open condition and primarily central and occipital 
electrodes in the eyes closed condition (Supplementary Figure 3A-B; Supplementary Table 6). 
These effects are described as a negative relationship between H and age (Supplementary Figure 
3C-D) and are congruent with other literature on E:I-sensitive metrics (e.g., 1/f slope) and how 
they change in a similar direction as one ages27–29. Finally, given the lack of any significant 
subtype*age interactions, it is clear that these age effects do not manifest differentially as a 
function of subtype membership (Supplementary Table 6).  
 
 Given that statistically significant main effects of subtype were present across the scalp, 
this potentially indicates that H variance manifests as a global factor. To better understand whether 
differential subtype H variance is best explained by this global or other local factors, we next 
proceeded to use principal components analysis (PCA) to decompose scalp-wide H variance into 
orthogonal components with different spatial topographies. PC1 explains a large majority of scalp-
wide H variance (eyes open = 67.1%; eyes closed = 66.6%) and is spatially homogeneous across 
the scalp. This homogenous topography is indicative of PC1 being a global component. Three 
other PCs were also identified, and cumulatively with PC1, account for ~80% of the total variance 
in H (Supplementary Figure 4). These subsequent PCs show a much more specific and localized 
spatial topography. Thus, beyond the global H signal captured by the large PC1 component, there 
are smaller components explaining how H more subtly varies in a spatially-specific manner.  
 

We next ran similar linear mixed effect models testing subtype, age, and subtype*age 
interactions on these first 4 PCs (Supplementary Table 7). This was done in order to test in a more 
principled manner whether the subtypes are differentiated by global and/or local components of H 
variation. Results for PC1 are similar across both eyes open and eyes closed conditions, with no 
subtype*age interactions (eyes open: F = 2.42, pfdr = 0.359; eyes closed: F = 0.80, pfdr = 0.756), 
but significant main effects of age (eyes open: F = 16.32, pfdr = 2.73E-04; eyes closed: F = 9.3, pfdr 
= 0.005) and subtype (eyes open: F = 144.95, pfdr = 3.38E-46; eyes closed: F = 180.38, pfdr = 
6.48E-56). The main effect of age manifests as a negative relationship (i.e. decreasing PC1 scores 
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with increasing age) (Supplementary Figure 3E-F). The main effect of subtype manifests with 
autism subtype 1 having higher values compared to TD (eyes open: t = 7.06, pfdr = 6.45E-11, 
Cohen’s d = 0.62; eyes closed: t = 6.79, pfdr = 2.91E-10, Cohen’s d = 0.65), but autism subtype 2 
showing lower values compared to TD (eyes open: t = -8.57, pfdr = 3.06E-15, Cohen’s d = -0.93 ; 
eyes closed: t = -9.83, pfdr = 6.52E-19, Cohen’s d = -1.04) (Figure 4A-B). Thus, results from PC1 
captures the same types of effects observed in prior analyses per each electrode.  

 
During the eyes open condition, PC4 was the only other component to show a significant 

main effect of subtype and with significant differences between TD and the autism neurosubtypes 
(F = 3.53, p = 0.03 pfdr = 0.061; TD vs A1: t = 2.19, pfdr = 0.04; TD vs A2: t = 2.46, pfdr = 0.029; 
Supplementary Table 7). The topography of PC4 shows differentiation between frontal and 
temporal electrodes (Figure 4C). Given the combination of PC1 and PC4 subtype effects during 
the eyes open condition, we next reconstructed the data exclusively based on PC1 and PC4 in order 
to descriptively show how subtype main effects manifest. Here we see that H is elevated in autism 
subtype 1 compared to TD and this effect is most prominent over frontal and posterior electrodes 
compared to temporal electrodes (Figure 4D). In contrast, H is decreased in autism subtype 2 
compared to TD, and this effect is strongest over non-frontal electrodes (Figure 4E).  

 

 
Figure 4:  PCA decomposition of global versus local components of H that differ significantly 
between autism neurosubtypes and TD. Panels a and b show PC1 for eyes open (top) and eyes 
closed (bottom) conditions. The topography of PC1 is shown on the left, with similar loadings 
across all electrodes, indicating that it is a global component explaining a large majority of the H 
variance. Effect size plots are shown to the right of the topography plots and indicate remarkable 
consistency of effect size across repeat blocks. Panel c shows the topography and effect sizes for 
the significant main effect of subtype in PC4 during the eyes open condition. PC4’s topography 
has strong loading over frontal electrodes and opposing effects at over temporal electrodes. 
Reconstructing PC1 and PC4 back to original H space shows increased H in autism subtype 1 
compared to TD that is most prominent over frontal and posterior electrodes relative to temporal 
electrodes (panel d). In contrast, H is decreased in autism subtype 2 relative to TD and this effect 
is most prominent over non-frontal electrodes (panel e). 
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Differential brain-behavior relationships  
  

We next sought to test for phenotypic differences between these neurally-defined H autism 
subtypes in age, FIQ, and autism symptomatology (e.g., ASSQ, SCQ, SRS, RBS). None of these 
variables showed significant differences between subtypes that were consistent across eyes open 
and eyes closed conditions (see Supplementary Table 8 for full set of statistical comparisons for 
all dependent variables) (Supplementary Figure 5). Although on-average phenotypic differences 
were not strong between the subtypes, it is possible that relationships between H and these 
phenotypic measures may be different. To test this hypothesis, we used partial least squares (PLS) 
correlation analysis30. This analysis identified one significant latent variable pair for both the eyes 
open (d = 6.09, p = 3.99e-4, percentage covariance explained = 33.1%) and eyes closed (d = 9.79, 
p = 2.99e-4, percentage covariance explained = 64.61%) conditions. Effects in both eyes open and 
eyes closed conditions are likely driven by a global effect spread across the scalp, as PLS brain 
bootstrap (BSR) ratios are widely greater than 2 across all electrodes (Figure 5A-B). In terms of 
the behavioral variables that drive these brain-behavior relationships, we see some evidence 
suggesting that age, SCQ, and SRS are important (Figure 5C-D), primarily in TD and autism 
subtype 1. Across eyes open and eyes closed, these effects are highly preserved within both autism 
subtypes (autism subtype 1: r = 0.88, p = 0.001; autism subtype 2: r = 0.84, p = 0.004). However, 
the effects in the TD group are not as highly preserved across eyes open and eyes closed (r = 0.51, 
p = 0.15). This relatively weaker preservation across resting state conditions in TD may explain 
why age, SCQ, and SRS correlations change in the TD group across eyes open or closed 
conditions. The weaker preservation in TD may also be indicative of higher sensitivity to neural 
changes of behavioral relevance in TD across relatively simple eye viewing condition changes. In 
contrast to the variables of importance for TD and autism subtype 1, the only variable with a strong 
driving effect in autism subtype 2 is age and this effect is consistent across eyes open and eyes 
closed conditions (Figure 5C-D). The relationship here is negative and implies that with increasing 
age, H decreases in autism subtype 2.  
 

 
Figure 5:  Subtype-specific brain-behavior relationships. PLS analysis identified one latent 
variable pair, LV1, within eyes open and eyes closed conditions that shows a statistically 
significant multivariate brain (H) by behavioral relationship. Panels A and B show brain bootstrap 
ratios (BSR) from PLS LV1 across all electrodes and all blocks in the eyes open (panel a) and eyes 
closed (panel b) conditions. Brain BSRs > 2 are generally considered strong drivers of the PLS 
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relationship, and here all electrodes have brain BSRs well over 2. Panels c and d show PLS 
behavior scores (i.e. correlations per each variable) to illustrate strength and stability of 
relationships driving the PLS latent variable pair LV1. These heatmaps show correlation values 
with H and cells with a black outline are those with 95% confidence intervals that do not include 
a value of zero, and thus, are strong and stable contributors to the LV1 relationships observed in 
eyes open (panel c) and eyes closed (panel d) conditions. 
 
Discussion 
 

Recent years have seen a surge of interest regarding the use of neural time-series features 
as potential markers of E:I mechanisms. Several indices have been proposed and widely used in 
the literature10,11,14. However, several major problems still need to be addressed to be able to use 
robustly these indices to infer aspects of E:I balance. First, very few studies have validated the 
effectiveness of these biomarkers with direct causal manipulations10,11,31. Most studies have 
employed systemic pharmacological manipulations, including the use of general anesthetics10,31, 
that typically do not offer unambiguous mechanistic interpretations. This is because systemic 
pharmacological manipulations or the use of anesthetics do not allow to probe if the observed 
change in spectral features (for instance measured at a specific electrode location) reflect local 
changes in E:I balance, or instead larger scale effects due to the systemic nature of the intervention. 
Moreover, general anesthetics typically have unclear mechanism of action, or involve multiple 
competing contributions that cannot be simply described as changes of E:I ratio. Second, most 
studies have concentrated on a single proposed biomarker, and systematic comparisons of the 
effectiveness of different biomarkers on the same dataset are lacking. Third, E:I imbalance is a 
nuanced phenomenon dependent on and characterized by many neural features, including levels 
of firing rates and synaptic conductances of E and I neurons. These factors are tangled because of 
the strong interactions between E and I neurons in the cortex, and it has been difficult to understand 
which factors are best captured by the biomarkers.  
 

Here we added three significant advances to address these open questions. First, we added 
a direct causal validation of biomarkers, by considering the direct effect of chemogenetic up- and 
down-regulation of local firing rates, an important aspect of E:I balance, on the extracellular 
potential recorded in the manipulated region. We found that large and robust changes to H are 
directly caused by these up- and down-regulations of this aspect of local E:I balance. We also 
showed that changes in H are not only predictive of the relatively large changes in firing rates 
caused by the causal manipulations, but are also predictive of the more subtle moment-to-moment 
natural spontaneous variations in firing. This is important because it shows that the H obtained 
from the extracellular potential is sensitive enough to detect relatively small, naturally occurring 
variations in rate. Importantly, the ability of H to detect these changes in firing rates was supported 
by independent in-silico modelling results that revealed E-I interaction mechanisms underlying the 
relationship between H and firing rates. Second, we compared systematically three major 
biomarkers (H, 1/f slope, broadband power) that has been proposed in the literature, and we found 
that the H was the only one that was revealing of firing rates across all conditions in in-silico and 
in-vivo experiments. The inability of total broadband power to accurately track firing rates in in-
vivo data can be explained by the fact that changes in low-frequency power - a dominant 
component of the total power - do not necessarily reflect local interactions. In our view, the 
advantage of H over 1/f slope could hint at the possibility that E:I-relevant signal in the data comes 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298729doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298729
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

from both periodic and aperiodic components of the signal. Estimation of aperiodic components 
of the signal with methods such as FOOOF28 attempt to remove periodic components of the signal 
before estimating 1/f slope. In contrast, H does not a priori factor out periodic signal components. 
In our data there are large variations of oscillation power at high and low frequencies both due to 
chemogenetic manipulations and natural variations (see Rocchi et al.,22, Figure 2 and 
Supplementary Figure 4). Thus, H may better capture the combination of periodic (oscillatory) and 
aperiodic components of the signal relevant to E:I mechanisms. Alternatively, the removal of 
oscillatory power needed to compute the 1/f slope may not always be accurate. For example, 
because oscillatory power at difference frequencies varies across time or conditions, these 
inaccuracies would make the 1/f estimation noisier. This is compatible with our observations that 
there are more variable estimates of 1/f obtained from the model compared to the estimates of H 
from the same data (Supplementary Figure 1). Third, we established by realistic in-silico modelling 
that when E and I are tightly coupled, H and 1/f slope are more predictive of network excitability 
(as expressed by firing rate levels) rather than as originally propose, of ratios of E and I 
conductances. Furthermore, these effects obtained with electrophysiological measures of neural 
activity (e.g., LFP) were more sensitive to such changes than those seen in prior work using fMRI 
BOLD signal11. For example, while this study showed that H measured in LFP is modulated in 
opposite directions by chemogenetic manipulations that enhance or reduce excitation, H measured 
in fMRI BOLD signal may be primarily susceptible to enhancing excitation11. To inform future 
study design or for comparing results obtained with different recording modalities, it will be 
important to corroborate our studies with further E:I manipulations coupled with scalp, rather than 
intracranial, EEG recordings. Yet, even with the above open question, together these results uphold 
the validity and high sensitivity of the H biormarker based on electrophysiological recordings, and 
suggest that changes in electrophysiological H should be interpreted in terms of changes in 
excitability reflecting firing rate levels.  
 

This mechanistic insight about H allows for clear interpretation of the EEG-defined E:I 
neurosubtypes identified in the autism population. We find evidence supporting the idea that 
within idiopathic autistic males, there are 2 robust and reproducible E:I neurosubtypes and that 
such subtypes can be identified with 92-98% accuracy in new independent data. Alongside our 
other past work taking a similar relative clustering validation approach25,32,33, this work showcases 
that we can begin with unsupervised data-driven discoveries and then immediately translate those 
discoveries into supervised prediction and classification models. Further utilization of such robust, 
reproducible, and highly generalizable stratification models may be useful for future work in the 
field. The robustness of the observed subtypes can also be seen in the remarkable consistency of 
the subtype labels across eyes open versus eyes closed conditions in a large majority of individuals, 
and by the consistency of effect sizes across repeated blocks of eyes open and eyes closed 
conditions. 
 

Regarding the description of the identified autism subtypes, we find that autism subtype 1 
is characterized by higher H compared to TD controls, while autism subtype 2 is characterized by 
lower H compared to TD and which is most prominent over non-frontal electrodes. The current 
sample was roughly split in half by these subtypes, indicating that one subtype does not necessarily 
adequately describe all autistic individuals. The most updated version of the E:I theory of autism 
predicts that E:I imbalance is affected in autism in either direction compared to what is considered 
an optimal level of balance defined by what is normative in the typically-developing brain3. Our 
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findings provide empirical validation of this prediction by showing that around half of autistic 
males in our sample conform to either extreme. Thus, like other work examining heterogeneity in 
E:I mechanisms in autism11, this work provides further evidence that dysregulation of E:I in autism 
can take many forms and may need to be personalized with respect to the type of individual in 
question. 
 
 Another observation from the current results is the remarkably global effect of H in these 
subtypes. While spatial specificity is a limitation behind EEG data, it is remarkable that most of 
the effects derived in this work are those that are global in nature across the entire scalp, rather 
than more localized in topography. The subtle exception to this was a small effect specific to the 
eyes open condition isolated in PC4. PC4 spatially varies in a manner that distinguishes frontal 
and temporal electrodes. Reconstructing the data based on PC1 and PC4 components shows that 
the global attenuation of H in autism subtype 2 is most pronounced over non-frontal electrodes. In 
contrast, the elevation of H in autism subtype 1 is most pronounced over frontal and posterior 
electrodes. Thus, the subtypes are different not only in the directionality of their difference relative 
to TD, but also in the topography of effects, potentially indicative of differential impact of separate 
brain regions. It is unclear how such results may hold up against other past work looking at H or 
related measures in autism in EEG34,35 and rsfMRI data11,36–38. Such past work does not examine 
data-driven E:I subtypes and instead rely on the clinical diagnosis to conduct case-control 
modeling. Future work applying such data-driven subtyping models will allow us to see how well 
these observations generalize across EEG and fMRI data and across autistic individuals at different 
points in the lifespan. Given the lack of more precise spatial sensitivity for localizing these 
observed atypical EEG E:I effects, future work examining these kinds of subtypes with rsfMRI 
may be important. It could be that E:I mechanisms may be differentially altered along spatial 
gradients of macroscale neural organization such as sensory-association cortex hierarchy39, which 
are also known to be sensitive to differences in intrinsic neural time-scale gradients and E:I 
mechanisms40,41.   
 
 Finally, we found little evidence of on-average subtype differences in demographic and 
behavioral measures such as age, IQ, and autism-specific symptomatology. This suggests that E:I 
neurosubtypes are not immediately self-evident via proxies of dramatically different phenotypic 
profiles alone. Rather, what is more sensitive to explaining behavioral phenotypic effects are the 
subtype labels combined with individual-level variation in H. PLS modeling allowed us to identify 
a significant multivariate brain-behavioral relationship that manifests differently between the 2 
autism E:I neurosubtypes. Autistic traits, as measured by the SRS, are positively associated with 
increasing global H in autism subtype 1 during the eyes open condition. This effect is relatively 
preserved during the eyes closed condition and also evident in TD. Thus, the effect here may be 
indicative of a continuum for how E:I biology may be related to autistic traits in TD and autism 
subtype 1. In contrast, a similar type of relationship was not apparent between SRS and H in autism 
subtype 2. Given that continuous variation in autistic traits may be mediated by heritable polygenic 
risk mechanisms42,43, these results may be suggestive that the differential E:I neurophenotype in 
autism subtype 1 may be mediated by different neurobiological and genomic mechanisms 
compared to autism subtype 2. Thus, a potential inference from these results is that E:I autism 
neurosubtypes may be more enriched for different types of genomic and neurobiological 
mechanisms. Identification of E:I neurosubtypes with differential brain-behavioral relationships 
may also be important for translational research to facilitate more positive outcomes for specific 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298729doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298729
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

types of individuals. Given prerequisite pre-treatment EEG datasets, current or future clinical trials 
focusing on pharmacological agents that manipulate/alter E:I-relevant mechanisms could be 
designed and/or re-analyzed in ways that take into account such stratification biomarkers6. Such 
an approach might yield more powerful and personalized insight into how such E:I-relevant agents 
may exert an effect (if any) on important clinical outcomes.  
 
 There are limitations and caveats to underscore about the current work. First, the autism 
dataset only examines males. Examination of females was not included due to limited sample size. 
However, given the potential that E:I mechanisms may not operate the same way in autistic males 
versus females11, future work examining females is needed. Second, although the IQ distributions 
in autism extend into the lower ranges, a majority of autistic individuals falls within 2 standard 
deviations of the TD norm. Thus, generalizing this work to autistic individuals with very low IQ 
may be limited. Third, the minimum age in our sample was 5 years and thus, our ability to 
generalize to even younger individuals may be limited. Given that E:I mechanisms tend to change 
with age (Supplementary Figure 3)27–29, more work is needed examining these types of metrics at 
the earliest ages autism can be diagnosed. The current version of the E:I theory2,3 allows for the 
possibility that E:I imbalance may arise because of core pathophysiology versus compensatory 
effects. As individuals age, there may be higher likelihood that E:I phenotypes may be indicative 
of compensatory effects. Fourth, future work should examine these subtypes and biomarkers in 
individuals that are better characterized in terms of genomic mechanisms. This will better elucidate 
the impact of differential genomic mechanisms (e.g., high impact rare variants versus polygenic 
risk) on the subtypes. Finally, our work here is restricted to what occurs during resting state eyes 
open and eyes closed conditions. It is possible that when processing dynamic naturalistic stimuli 
and/or across specific cognitive tasks or conditions44,45  different results might arise. Thus, future 
work examining E:I-relevant biomarkers and stratifications is needed across a range of conditions, 
stimuli, and contexts (e.g., social interaction) that might better capture the types of situations 
autistic individuals exhibit strengths and/or weaknesses. 
 
 In conclusion, we have discovered that idiopathic autistic males can be split into E:I 
neurosubtypes based on EEG data collected during resting state conditions. These neurosubtypes 
exhibit opposing effects in relation to a TD comparison group and are differentially related to 
phenotypic measures. Future work expanding on these insights may extend the work into females, 
individuals with more extreme IQ profiles, younger ages, and more comprehensive genomic 
characterization. Finally, the work could provide a basis for examining how E:I mechanisms may 
be affected in other cognitive states and/or while processing other types of stimuli. 
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Methods 
 
CMI-HBN dataset 
 

To identify autism E:I neurosubtypes, we utilized EEG and phenotypic data from data 
releases 1-10 of the Child Mind Institute Healthy Brain Network (CMI-HBN) dataset. The CMI-
HBN is an initiative to create a biobank of individuals aged 5-21 from the New York area. 
Participants undergo diagnostic and phenotypic assessments, EEG and MRI scanning during 
resting state, naturalistic viewing and task conditions. Data was acquired at four sites in the New 
York area - Staten Island, Midtown, Harlem, and a mobile unit. The CMI-HBN initiative received 
ethical approval by the Chesapeake Institutional Review Board, and written informed consent was 
obtained from all participants or their legal guardians (for participants < 18 years).  For further 
details on the CMI-HBN initiative see Alexander et al., 201726.  

 
For this work we started by isolating all participants from data releases 1-10 that had a 

diagnosis of autism (n = 412) or who were typically-developing (TD), as indicated by the label 
‘No Diagnosis Given’ (n = 257). From this pool of data, we excluded participants with missing 
resting state EEG data (n = 15) or whose data could not be successfully preprocessed (n = 106). 
Given a low sample size of female participants with autism (n = 50) and a potential sex-bias on 
the Hurst exponent, female participants (n = 139) were also excluded. The final sample size was 
of n = 286 autistic males and n = 123 typically developing males. The Wechsler Adult Intelligence 
Scale (WAIS), Wechsler Abbreviated Scale of Intelligence (WASI) and Wechsler Intelligence 
Scale for Children (WISC) were selected as measures of full-scale IQ (FIQ), while the Social 
Responsiveness Scale (SRS-2), Repetitive Behavior Scale (RBS-R), Social Communication 
Questionnaire (SCQ) and Autism Spectrum Screening Questionnaire (ASSQ) were selected as 
clinical phenotypic measures. See Supplementary Table 9 for a summary of participant 
characteristics.  
 
EEG data acquisition 
 

EEG data was recorded using a 128-channel EEG geodesic hydrocel system (Electrical 
Geodesics Inc; EGI). Data was recorded at a sampling rate of 500 Hz, with a bandpass filter of 0.1 
to 100 Hz and reference at the vertex of the head (Cz). Resting state data was collected for 5 
minutes, while the participant sits in front of a screen with a fixation cross on the center. 
Throughout the recording, participants alternate having their eyes open (20 seconds blocks) and 
closed (30 seconds blocks) for five blocks.  
 
EEG data preprocessing 

 
In order to handle in a reproducible way large amount of data, we developed a semi-

automated preprocessing pipeline that combines a set of custom MATLAB scripts executable 
within the EEGLAB46 framework with other associated software (ASR47,48 and IClabel49). The 
pipeline consists of a sequence of steps. Step one consists of removal of the outer ring of channels 
(26 channels) that are mainly located on the face and the neck and generally with a defective 
contact with the skin surface. Data was then downsampled to 250Hz (one sample every 4ms) and 
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a basic FIR filter (filtfilt.m function) with a high pass cutoff of 1Hz and a low pass cutoff of 80 Hz 
was applied. Line noise was removed via a notch filter centered at 60 Hz +/-2. Bad channels were 
identified based on a combination of three different parameters:  1) flatline duration (for more than 
5 consecutive seconds); 2) standard deviations (> 4) as compared to the total channel signal; 3) 
correlation with the neighboring channels (lower than the default value of 0.8). Channels falling 
into one of these conditions were rejected and interpolated with a spherical method. In a further 
step the Artifact Subspace Reconstruction (ASR) algorithm was applied to detect data segments 
contaminated by non-stereotypical artifacts. A preliminary calibration of the rejection threshold 
criteria is computed on a ‘cleaner’ portion of the EEG signal. Then ASR identifies the artifact 
subspace and repairs the artifactual samples based on the predefined threshold values. After re-
referencing to the average of all sensors, the number of channels was further reduced by 10% to 
match the number of available samples input into independent component analysis (ICA with 
ica_type set to ‘runica’). The resulting components were classified by the ICLabel algorithm as 
deriving from ‘brain’ or a variety of non-brain sources (e.g., muscle, line noise, channel noise, eye, 
or other). The non-brain ICs (probability < 20% of being ‘brain’) were then projected out from the 
data. After preprocessing was complete, we output preprocessing reports that could be manually 
checked and classified for exclusion or inclusion into further downstream data analysis. For this 
data quality control step, all preprocessing reports were manually inspected by MVL and a subset 
of overlapping subjects were also inspected by NB and AV. From this data quality control check 
we excluded participants for a variety of qualitative and quantitative reasons, including issues with 
the raw time-series data, large numbers of bad channels or bad samples that could not be repaired, 
too few high probability brain independent components (IC) in the top-35 ranked ICs, and/or odd 
looking IC topographies amongst ICs labeled as ‘brain’. For examples of excluded and included 
participants, see Supplementary Figure 6. Data quality metrics such as number of bad channels 
and percentage of bad samples were computed for all participants retained for further downstream 
analysis and were used for further denoising steps before the subtyping analysis.  
 
EEG subtyping analysis 
 

For EEG-based neural features relevant to E:I imbalance, we computed the Hurst exponent 
(H). Prior work has validated the use of H to infer E:I mechanisms from neural time-series data11, 
whereby lower H values are indicative of increased E:I ratio. H was computed at each electrode 
for each of the five blocks of eyes open or eyes closed conditions with the bfn_mfin_ml.m function 
from the nonfractal MATLAB library (https://github.com/wonsang/nonfractal). After computing 
H for each participant and electrode, we implemented a denoising procedure to remove variance 
associated with data quality metrics from the preprocessing such as number of bad channels and 
percentage of bad samples. This denoising step was implemented via a linear model with H as the 
dependent variable and diagnosis, age, study site, number of bad channels, and percentage of bad 
samples as independent variables. Beta coefficients for number of bad channels and percentage of 
bad samples were isolated and then projected out of the data to adjust H values for these metrics. 
This procedure was done to ensure that any residual effects of data quality were handled before 
subtyping analysis was implemented. Denoised H data was then utilized in all further downstream 
analyses.  

 
The primary subtyping analysis was implemented with stability-based relative clustering 

validation, otherwise known as reval25. With reval we aim to identify unsupervised data-driven 
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clusters based on H within the autism sample (n = 286) and to identify the optimal number of 
clusters with cross-validation and test generalizability in new independent data. A 50-50 split was 
used to separate data into the initial training and validation sets. These sets were balanced for 
presence or absence of comorbid ADHD diagnosis and age and then preprocessed by scaling it to 
a mean of 0 and a standard deviation of 1. We also applied a preprocessing step of reducing the 
dimensionality of the data to 2 dimensions with Uniform Manifold Approximation and Projection 
(UMAP)50 (number of neighbors = 30, number of components = 2, minimum distance = 0, random 
state seed = 24). The UMAP transformations derived from the training set were then applied to the 
validation set. After preprocessing we implement the primary steps within the reval pipeline - 
clustering and then producing a classifier that can predict clustering labels on held-out data. The 
clustering algorithm used throughout is k-means clustering, and the classifier was a k-nearest 
neighbor classifier (k=3). reval utilizes the training data within an internal 2-fold cross-validation 
loop to identify the optimal k clusters that minimizes clustering stability. This process is repeated 
100 times to identify the best cluster solution. Once the optimal k is identified in the internal cross-
validation of the training data, a classifier is fit to predict those cluster labels in new data. K-means 
clustering with the identified optimal k is then applied to the held-out validation set and then the 
classifier fit to the training data applied to the validation set with the goal of accurately predicting 
the clustering labels identified in the validation set. Generalization accuracy is then computed by 
comparing the actual clustering labels of validation set to the classifier’s predicted labels. The 
generalization accuracy computed from reval on the validation set informs us as to how robust, 
stable, and reproducible are clustering labels in the autism population based on EEG H data. 
However, reval itself does not test the hypothesis of whether the clusters come from an underlying 
distribution a single or multiple Gaussians. The null hypothesis if clusters do not actually exist is 
that the clustering labels come from a single multivariate Gaussian distribution. Thus, to formally 
test the data with respect to this null hypothesis, we use the sigclust function within the SigClust 
R library to test whether the data deviates from this single multivariate Gaussian null distribution51. 
Finally, given that reval clustering is computed twice within the same individuals - once under 
eyes open and then again for eyes closed condition - this allowed the opportunity to examine 
consistency of subtype solutions across these two eye conditions. This was achieved descriptively 
by computing alluvial plots that allow us to visualize the percentage of individuals that stay within 
the relatively same clustering subtype or which move to a different subtype across the eye 
conditions. For the individuals who changed subtypes across eyes open and eyes closed, we used 
linear modeling to test whether these types of individuals differed phenotypically (e.g., on age, 
FIQ, and autism symptomatology measures) from individuals who stayed within the same subtype. 
 

Once autism EEG-derived H subtypes were identified, we next tested for between-group 
differences between the autism subtypes and a typically-developing (TD) control group. For these 
analyses we utilized linear mixed effect models, computed per each electrode with the lmer 
function in the lme4 R library. The dependent variable in these models were H values. Fixed effects 
of subtype, age and the subtype*age interaction were modeled as fixed effects of interest. Random 
effects in the model were acquisition site (random intercepts) and repeated measures such as block 
(random intercepts and slopes per each subject). Multiple comparisons correction was 
implemented with false discovery rate (FDR; q < 0.05). Because electrode-wise analyses like these 
may be heavily redundant due to correlations between electrodes, we also utilized principal 
component analysis (PCA) as a more parsimonious way of summarizing H variation into global 
versus more localized E:I effects. Examination of scree plots from the PCA analysis showed an 
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elbow after the first 5 PCs (Supplementary Figure 4), which explained ~85% of the variance in H. 
Thus, the first 5 PCs were retained for hypothesis testing under the same linear mixed effect model 
framework as described above. All fixed and random effects were the same as the previously 
described analysis. The main change is that PCs scores from each of the first 5 PCs are used as the 
dependent variable in the model. All between-group differences are descriptively shown in figures 
as standardized effect sizes, operationalized as Cohen’s d in standard deviation units. 

 
Behavioral and brain-behavior relationship analyses 
 

Subtypes were tested for behavioral differences on age, FIQ, and autism symptomatology 
measures (e.g., ASSQ, SCQ, SRS, RBS) using linear models with the behavioral variable as the 
dependent variable and with subtype as the independent variable. Multiple comparison correction 
was achieved at FDR q<0.05. To test for brain-behavioral relationships we used a multivariate 
association analysis technique known as partial least squares (PLS) correlation analysis30, which 
has been utilized extensively in our past work on autism subtyping52–54. For these analyses, we 
utilized behavioral variables of age, FIQ, ASSQ, SCQ and SRS subscales. The RBS was not 
utilized in the PLS analysis due to too much missing data. Two PLS analyses were computed - one 
per eyes open and eyes closed conditions. Groups (TD, autism 1, and autism 2) were input as 
blocked structures in the PLS analysis. Behavior-PLS analysis was utilized here, whereby H values 
are the multivariate brain matrix (i.e. the H matrix) and age, FIQ, and autism symptomatology 
measures are used as the multivariate behavioral matrix. For these analyses, repeat eyes open or 
eyes closed blocks were concatenated in the H matrix such that each individual or row in the matrix 
had 93 electrodes * 5 blocks (i.e. 465 H values). Statistical inference on latent variable pairs was 
achieved in the PLS analysis using permutation analysis (10,000 permutations). Brain bootstrap 
ratios (BSR) and 95% confidence intervals on behavior scores were computed via bootstrap 
resampling (10,000 resamples). Latent variable pairs were judged to be statistically significant 
based on permutation p-values being corrected with FDR q<0.05. Behavioral variables with 95% 
confidence intervals that do not include 0 are considered important for driving the relationship 
within the identified LV and are thus annotated in the figures describing the PLS results. Brain 
BSRs are typically considered important when BSRs exceed 230.  

In-silico modeling of LFP and EEG data 

The in-silico modeling simulates a recurrently connected network model of leaky-
integrate-and-fire (LIF) pyramidal (excitatory) and interneuron (inhibitory) point neurons16 and 
computes highly realistic approximations (proxies) of the extracellular potentials (LFP, EEG) and 
spiking activity17,55. This recurrent spiking network model represents a relatively standard model 
of a recurrent cortical circuit that receives input as recurrent connections between and within 
populations and receives external inputs. The network structure and parameters are identical to 
those used in past work11,17,56 (Supplementary Table 10). The network is composed of 5000 
neurons, of which 4000 are excitatory (i.e. they form AMPA-like excitatory synapses with other 
neurons) and 1000 inhibitory (forming GABA-like synapses). Neurons are randomly connected 
with a connection probability between each pair of neurons of 0.2. Both populations receive two 
different types of external Poisson inputs: 1) a constant-rate input giving the network a level of 
excitation from the outside and 2) a time-fluctuating zero mean input generated by an Ornstein-
Uhlenbeck (OU) process, useful to simulate broadband fluctuations in network inputs that may 
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conceivably arise because of ongoing large-scale brain state changes. The LFP is computed as the 
sum of absolute values of AMPA and GABA postsynaptic currents on excitatory cells18,55. This 
simple estimation of LFPs was shown to capture more than 90% of variance of both experimental 
data recorded from cortical field potentials and of simulated LFPs that would  have been produced 
by the same spiking activity within a network of 3D neurons with highly realistic morphology 
18,19,55.  

In a first set of simulations, we changed across simulations the E:I ratio (g) defined as the 
ratio between the strengths of the excitatory (gE) and inhibitory (gI) synaptic conductances of 
connections to excitatory neurons. We did so by keeping gE fixed and changing gI for both I-to-E 
and I-to-I connections. This ratio was varied across simulations between 5.7-14 times greater 
inhibition relative to excitation, a range that reproduces well both spontaneous and stimulus-
evoked extracellular potentials and firing regimes in the cortex11,18,19. In a second set of 
simulations, we mimicked the chemogenetic application of hM4Di to all neurons as performed in 
the DREADD mouse experiments. To achieve this, we simultaneously varied the resting potential 
(𝐸!) of both E and I neurons between -70 mV (our reference value) and -75 mV, thus inducing 
hyperpolarization when making 𝐸! more negative. We also reduced synaptic strength across all 
connections to emulate synaptic silencing of the hM4Di manipulation21. Synaptic strength was 
reduced proportionally to the decrease of 𝐸! (by 0.1 nS for a decrease of 1 mV in 𝐸!). In a third set 
of simulations, we mimicked the application of the excitatory DREADD manipulation, CamkII-
hM3D(Gq), to the excitatory neurons by varying the resting potential (𝐸!) of E neurons between -
70 mV (our reference value) and -65 mV, thus inducing depolarization when making 𝐸! less 
negative. 

For all simulations the level of constant input (ν0) was set to 2 spikes per second per input 
cell (800 input cells) in order to resemble resting state conditions, including average firing rates of 
no more than few spikes/s and an asynchronous irregular firing regime, as observed in cortical 
spontaneous activity. Using simulated AMPA and GABA currents from the model, we then 
computed the ERWS2 non-causal EEG proxy as described in prior work17. The ERWS2 non-
causal EEG proxy used here accounts for approximately 95% of the variance of ground truth EEG 
signal produced by the same spiking activity within a network of 3D neurons with highly realistic 
morphology17. Using both simulated LFP and EEG proxy data from the model, we computed H 
identically to how H was computed in human EEG data and the 1/f slope as computed by Gao and 
colleagues10. To verify that increasing g or 𝐸! results in enhanced excitability of the network, we 
computed Pearson correlations between the parameters (g or 𝐸!) with the mean firing rate of E and 
I neurons in the model. These same tests were also applied to H, 1/f slope, and total broadband 
power computed on simulated LFP or EEG. Finally, we examined out-of-sample predictive 
accuracy for inferring the mean firing rate of the network from H, 1/f slope, or total power 
computed from EEG and LFP data. To do this, we trained a linear model on either H, 1/f slope, or 
total power on a ‘discovery’ dataset of simulated LFP or EEG data. This model was then fitted to 
H, 1/f slope, or total power computed on independently simulated EEG or LFP dataset (i.e. the 
‘validation’ set) that uses the same simulation parameters, but with resampled connections and 
noise values. We then compared the ground truth of the firing rate in the validation set to the 
model’s predicted firing rate, measuring strength of association with the R2 obtained from linear 
regression fitting. 
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In-vivo chemogenetic experiments altering excitation-inhibition balance 

All in-vivo studies in mice were conducted in accordance with the Italian law (DL 116, 
1992 Ministero della Sanità, Roma) and the recommendations in the Guide for the Care and Use 
of Laboratory Animals of the National Institutes of Health. Animal research protocols were also 
reviewed and consented to by the animal care committee of the Istituto Italiano di Tecnologia and 
University of Trento.  

Experimental procedures for viral expression and chemogenetic manipulations have been 
described in greater detail elsewhere22. Briefly, six-to-eight week old adult male C57Bl6/J mice 
(Jackson Laboratories; Bar Harbor, ME, USA) were anesthetized with isoflurane (isoflurane 4%) 
and head-fixed in a mouse stereotaxic apparatus (isoflurane 2%, Stoelting). Viral injections were 
performed with a Hamilton syringe mounted on Nanoliter Syringe Pump with controller (KD 
Scientific), at a speed of 0.05 ml/min, followed by a 5–10 min waiting period, to avoid backflow 
of viral solution and unspecific labeling. Viral suspensions were injected bilaterally in the mouse 
medial PFC using the following coordinates, expressed in millimeter from bregma: 1.7 AP, ± -0.3 
ML, -1.7 DV.  

For the DREADD silencing experiment, hM4Di DREADD was transduced using an 
AAV8-hSyn-hM4D(Gi)-mCherry construct. Control animals were injected with a control AAV8-
hSyn-GFP virus (www.addgene.com). These viral suspensions were injected using a 1mL bilateral 
injection volume in n = 5 hM4Di DREADD and n = 5 SHAM mice, respectively. For the 
DREADD excitation experiment, CamkII-hM3D(Gq) DREADD was transduced using an AAV8-
CamkII-hM3D(Gq)-mCherry construct which we injected bilaterally into the PFC as described 
above at a volume of 500 µL per hemisphere. Control animals for this experiment underwent a 
sham surgical procedure during which injection needles were inserted into parenchymal cerebral 
tissue at the correct stereotaxic coordinates, but no viral suspension was administered. This 
experimental cohort was composed of n = 5 CamkII-hM3D(Gq) DREADD mice, and n = 8 SHAM. 
Prior to each DREADD experiment, we waited at least 3 weeks to allow for maximal viral 
expression.  

For hM4Di experiments, electrophysiological recordings were carried out using animal 
preparation and sedation regimes employed in prior studies22,57,58. Mice were anesthetized with 
isoflurane (4% induction), intubated, artificially ventilated (2% maintenance), and head-fixed in a 
stereotaxic apparatus (Stoelting). The tail vein was cannulated for clozapine-N-oxide (CNO) 
injection (2 mg/kg). To ensure maximal consistency between viral injections and recording site, 
the skull surface was exposed and an insertion hole was gently drilled through the skull 
corresponding to the location of prior viral injection point. A 16-channel linear probe (Neuronexus, 
USA) was next inserted through the overlying dura mater by a microdrive array system (Kopf 
Instruments, Germany) at an insertion rate of 1 μm/min to reach the same stereotaxic coordinates 
employed for viral injection. Electrode insertion was performed in 3 steps of similar length, with 
a 20-minute waiting period in between to allow the tissue to reposition after each insertion step. 
For hM4Di recordings, during the last step of electrode positioning, isoflurane was discontinued 
and replaced by halothane at a maintenance level of 0.75%. Electrophysiological data acquisition 
commenced 1 hour after isoflurane cessation. Such transition time was required to ensure complete 
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washout of isoflurane anesthesia and avoid residual burst-suppressing activity associated with 
extended exposure to deep anesthetic levels.  

CamkII-hM3D(Gq) electrophysiological acquisitions were carried out using a combination 
of low dose isoflurane and medetomidine59. Briefly, animals were anesthetized with isoflurane 
(4% induction, 2% maintenance), intubated and head fixed on the stereotaxic frame. The tail vein 
was cannulated for medetomidine infusion. After craniotomy, electrode coordinates and insertion 
were performed as described before. The tail vein was cannulated for posterior medetomidine 
infusion, and a second canula was placed intraperitoneally for CNO administration (0.5 mg/kg). 
Temperature was constantly monitored and maintained to 36.5+-0.5 °C. Craniotomy procedures, 
and electrode insertion were performed as described before. Following the last step of the electrode 
insertion, sedation via a combination of medetomidine and isoflurane commenced. An initial 
intravenous bolus of 0.05 mg/kg of medetomidine was injected, and isoflurane was lowered to 1%. 
After 5 minutes, isoflurane level was lowered further to 0.3-0.5% and a constant infusion of 
medetomidine (0.1 mg/kg/h) was applied for maintenance until the end of the acquisition. Neural 
activity was next recorded in consecutive 5-minute time bins to cover a 15 min pre-injection time 
window, and a 60 min post CNO timeframe. Signals were amplified using an RHD 2000 amplifier 
system (Intan Technologies, RHD Recording Controller Software, v2.09) to acquire 
electrophysiological data at a sampling rate of 20 kHz.  

To compute the LFP signal, raw extracellular recordings were first downsampled to 4 kHz, 
then band-pass filtered to 0.1–250 Hz using a two-step procedure60. Briefly, raw timeseries were 
first low-pass filtered using a 4th order Butterworth filter with a cut-off frequency of 1 kHz. The 
resulting timeseries were next downsampled to 2 kHz, then again filtered using a Kaiser window 
filter between 0.1 Hz to 250 Hz (with a sharp transition bandwidth of 1 Hz, passband ripple of 0.01 
dB and a stop band attenuation of 60 dB) and then resampled at 1 kHz. Filtering was applied both 
forward and backward to remove filtering phase transitions lags.  

 Multi-unity activity (MUA) was computed following the procedure described by Belitski 
and colleagues60. A high-pass filter was applied to the extracellular signal (4th order Butterworth 
filter with cut off frequency over 100Hz), followed by a band-pass filter between 400 and 3000 
Hz using a Kaiser window filter (with transition band of 50 Hz, stopband attenuation of 60 dB, 
and passband ripple of 0.01 dB). Events over a threshold corresponding to 4-times the median of 
the signal of all traces (baseline and post injection combined), divided by 0.6745 61 were counted 
as neuronal action potentials (spikes). For the final count, spikes were considered to be biologically 
plausible, and therefore retained, only if occurring more than 1 ms apart. 

DREADD LFP data analysis 

Preprocessed LFP and MUA data from the DREADD experiments were cut into 4-second 
segments, with approximately 1 minute of separation between each segment. Given the high level 
of correlation between the 16 channels of recorded LFP data, we used principal component 
analysis as a dimensionality reduction technique to capture the vast majority of shared variance 
(e.g., 95-99%) across channels into one variable (PC1). PC1 was then utilized as input for 
computing H in a manner identical to how H was computed for human EEG data. The DREADD 
experiments consisted of 3 phases, called baseline, transition, and treatment. The baseline phase 
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was a 15-minute time period before the drug injection. The transition phase was defined here as a  
subsequent 20-minute period post-injection when the drug begins to exert its effect before reaching 
full pharmacokinetic equilibrations22,62. The treatment phase followed the transition phase 
(duration 25 minutes) and is considered as the time period where the drug is predicted to exert its 
maximal effect. Before hypothesis test statistical modeling, the mean and standard deviation (SD) 
of H for each mouse was computed within the baseline period and then used to normalize all H 
values across the entire experiment as a baseline normalization. This allows the dependent variable 
in our statistical model to be baseline normalized H, quantifying H in terms of change from 
baseline average H in units of SD. The same baseline normalization was carried out for the analysis 
of the 1/f slope, computed between 30-70 Hz, and for the integrated spectral power, defined as the 
sum of the LFP power spectrum across all frequencies (0-80 Hz). 

All statistical modeling for hypothesis testing on LFP H data, 1/f slope, and integrated 
spectral power for the DREADD experiments was implemented using linear mixed effect models, 
implemented with the lmer function in the lmerTest R library. The dependent variable in the model 
was baseline normalized H. Fixed effects were group (DREADD) and condition (baseline, 
transition, treatment) and their interaction. Random effects in the model were modeled with 
random intercepts for each mouse. The same hypothesis testing approach with linear mixed effect 
models was used for MUA spiking activity data. 

Data availability 
 
CMI-HBN data can be found at 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/.  
 
Code availability 

 
The reval Python library can be found on GitHub (https://github.com/IIT-

LAND/reval_clustering) and the documentation can be found at https://reval.readthedocs.io. 
Analysis code for the study is available on our GitHub repo (https://github.com/IIT-
LAND/CMI_EEG_H). The code for the simulation of point-neuron networks is available in our 
Gitlab repository (https://gitlab.com/panzerilab/CMI_EEG_networks). 
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Supplementary Figures 
 

 
Supplementary Figure 1: Analysis of E:I LFP proxies from the uncoupled model from Gao et 
al10. This figure presents the results of the analysis of how the LFP proxies of E:I imbalance depend 
on neural parameters in the uncoupled excitation-inhibition model described by Gao et al10. In 
this model, E and I spikes are generated at random times (homogeneous Poisson process) with a 
given mean firing rate of each cell type (FRE for E neurons; FRI for I neurons). Post-synaptic 
responses are created exactly as in Gao et al10, by convolving the spike trains with a beta function. 
The beta function has parameters τ rise= 0.1ms and 0.5 ms, and τ decay = 2ms and 10 ms for 
AMPA and GABA synapses respectively. The beta function is multiplied by a synaptic efficacy 
parameter gE for E neurons and gI for I neurons, and the LFP is computed as a sum of all synaptic 
currents, exactly as in Gao et al10. Panel A shows dependence of the 1/f slope (x-axis), computed 
as linear interpolation as in Gao et al10 from the LFP in the 30-70 Hz range, on the grand average 
firing rate defined as the ratio of the firing of all E and I neurons (left), on the ratio between E and 
I firing rate (center), and on the ratio of synaptic efficacies gE/gI (right). Panel B shows the same 
plots as panel A, but for H (x-axis) rather than for the 1/f slope. In all panels, the line plots the 
mean and the shaded are the SD over n=15 simulations (10 seconds of simulated activity per 
simulation) for each parameter value. Each plot shows the Pearson’s correlation and 
corresponding p-value for the association between plotted variables. Both H and 1/f slope in this 
model correlate tightly with variations in E:I conductance or firing rate ratio, but not with the 
total firing rate. In contrast, in both our in-silico coupled E:I network model and in-vivo mouse 
data, H and the 1/f slope correlate with the total firing rate. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298729doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298729
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 

 
Supplementary Figure 2: This figure shows how metrics such as 1/f slope and total broadband 
spectrum power relate to E:I ratio (g) and manipulations of the resting potential (El) in the 
CamkII-hM3D(Gq) and hM4Di simulations. Panels A and C show scatterplots and Pearson’s 
correlation values (full set of statistics can be found in Supplementary Table 1). Panels B and D 
plot actual versus out-of-sample predicted firing rates. 
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Supplementary Figure 3: This figure shows how metrics such as 1/f slope and total broadband 
power change as a function of the two DREADD manipulations that either increase (CamkII-
hM3D(Gq)) or decrease (hM4Di) excitability. Panels A-F show results for 1/f slope, while panels 
G-L show results for total broadband power. Panels A-B and G-H show theoretical predictions 
informed by the in-silico modeling. Panels C-D and I-J show plots of the metrics as they evolve 
over time across the 3 phases of the experiment (baseline, transition, treatment). Panels E-F and 
K-L show scatterplots of firing rate (x-axis) versus the metric (y-axis) when extracted exclusively 
from the Treatment phase of the experiment. 
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Supplementary Figure 4: Modulations of power spectra of mouse PFC LFPs during the 
treatment phase of DREADD experiments. The line and shaded show the mean and SEM across 
mice and analyzed time windows of baseline-normalized power spectra of the mouse PFC LFPs 
during the “treatment” phase of DREADD excitation (CamkII-hM3D(Gq); panel A) and silencing 
(hM4Di; panel B) experiments respectively. Baseline-normalized spectra are obtained by Z-
scoring the log of the power spectrum at each frequency measured during the treatment phase with 
the mean and SD of the log of the power spectra at the corresponding frequency computed during 
the baseline period. For both types of chemogenetic drugs, we show the spectral modulations both 
for the saline (SHAM) and CNO (DREADD) manipulations. For application of hM4Di (panel B), 
we obtain a decrease of higher-frequency (30-70 Hz) oscillations (capturing the reduced local 
activity and excitability) and an increase of low-frequency 0.1-5 Hz oscillations (capturing the 
higher locking of local activity to global low-frequency oscillations22), compared to SHAM. For 
application of CamkII-hM3D(Gq) (panel A), we obtain a decrease of low-frequency 0.1-5 Hz 
oscillations (capturing the weaker locking of local activity to global low-frequency oscillations), 
compared to SHAM. The changes in low-frequency power induced by the manipulation are 
opposite in sign with respect to the firing rate changes induced by the same manipulation. This 
prevents using the total broadband power as a reliable biomarker of the underlying firing rates.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.11.22.23298729doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.22.23298729
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 
 

 
Supplementary Figure 5: Decreasing H with increasing age. Panels A and B show topoplots of 
F-statistics of the main effect of age (left) along with FDR topoplots (right) to indicate which 
electrodes show such significant effects. Panels C and D show scatterplots of H (y-axis) over age 
(x-axis) for each block in eyes open (C) and eyes closed (D) conditions. Panels E and F show 
scatterplots of age (x-axis) by PC1 scores (y-axis) for eyes open (E) and eyes closed (F) conditions. 
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Supplementary Figure 6:  PCA analysis isolates top 4 PCs explaining ~80% of the variance in 
scalp-wide H. Panels A and C show scree plots of percentage variance explained (y-axis) for each 
PC (x-axis) for eyes open (A) and eyes closed (C) conditions. Panels B and D show topoplots of 
the loadings for eyes open (B) and eyes closed (C) conditions. 
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Supplementary Figure 7:  Raincloud plots of behavioral variables for each autism E:I 
neurosubtype. This plot shows the distribution of values over age, FIQ, and autism 
symptomatology measures (SRS, RBS, SCQ, and ASSQ) for eyes open (top) and eyes closed 
(bottom) conditions for both autism subtypes 1 (A1) and 2 (A2). 
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Supplementary Figure 8:  Examples of issues flagged up in data quality control analysis that 
warranted exclusion (A-D) or inclusion of data into further downstream analysis. Panels A-D 
show different examples of issues identified in data quality inspection at different step of the 
preprocessing pipeline. Panel E shows an example of a participant with relatively clean data and 
which was included in further downstream analysis.  
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Supplementary Table Legends 
 
Supplementary Table 1:  This table provides all of the correlations (Pearson’s r) and p-values 
from statistical analyses depicted in Figure 1E-G and Supplementary Figure 2. 
 
Supplementary Table 2:  This table provides all of the statistics from linear models (F-statistics 
and p-values) run on DREADD experiment data (CamkII-hM3D(Gq) and hM4Di) depicted in 
Figure 2D-E, 2G-H and Supplementary Figure 3C-D, 3I-J. 
 
Supplementary Table 3:  This table provides all of the correlations (Pearson’s r) and p-values 
from analyses of trial-level data from the treatment phase of the DREADD experiments depicted 
in Figure 2F, 2I and Supplementary Figure 3E, 3F, 3K, and 3L. 
 
Supplementary Table 4:  This table provides p-values from the SigClust analysis for eyes open 
and closed (rows) and training and validation sets (columns). 
 
Supplementary Table 5:  This table provides statistics comparing individuals within autism E:I 
neurosubtypes that are consistent or inconsistent across resting state eyes open versus closed 
conditions. 
 
Supplementary Table 6:  This table provides statistics per each electrode for main effects of 
subtype, age, and the subtype*age interaction, and also pair-wise autism subtype vs TD 
comparisons. 
 
Supplementary Table 7:  This table provides statistics per each principal component for main 
effects of subtype, age, and the subtype*age interaction, pair-wise autism subtype vs TD 
comparisons, and effect sizes per each block of eyes open and closed conditions. 
 
Supplementary Table 8:  This table provides descriptive statistics per each demographic or 
behavioral variable are shown in the table at the top. Directly below the descriptive statistics table 
are inferential statistics for a model testing for a between-group difference between TD, A1, and 
A2 (e.g., F-statistics, p-values, FDR). Below this table are further inferential statistical results for 
follow-up pair-wise comparisons between all groups are reported (e.g., t-statistics, p-values, FDR, 
Cohen’s d).  analyzing main effects of subtype, age, and the subtype*age interaction, pair-wise 
autism subtype vs TD comparisons, and effect sizes per each block of eyes open and closed 
conditions.  
 
Supplementary Table 9: This table shows sample size (n) or mean and standard deviation (in 
parentheses) for autism E:I neurosubtypes and TD groups. Abbreviations: FIQ: full-scale 
intelligence quotient, ASSQ: Autism Spectrum Screening Questionnaire; RBS-R: Repetitive 
Behaviors Scale - Revised (RBS-R); SCQ: Social Communication Questionnaire; SRS-2: Social 
Responsiveness Scale 2. 
 
Supplementary Table 10: This table provides baseline reference parameters of the in-silico 
recurrent network model. 
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