
Three components of glucose dynamics – value, variability, and 1 

autocorrelation – are independently associated with coronary plaque 2 

vulnerability  3 

 4 

Authors 5 

Hikaru Sugimoto,1 Ken-ichi Hironaka,2 Tomoko Yamada,3 Natsu Otowa-Suematsu,3 Yushi 6 

Hirota,3 Hiromasa Otake,4 Ken-Ichi Hirata,3 Kazuhiko Sakaguchi,3 Wataru Ogawa,3* and 7 

Shinya Kuroda1,2,5* 8 

 9 

Affiliations 10 

1Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The 11 

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 12 

2Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 13 

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 14 

3Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University 15 

Graduate School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, Hyogo 650-0017, Japan 16 

4Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University 17 

Graduate School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, Hyogo 650-0017, Japan 18 

5Lead contact 19 

 20 

*Corresponding authors: Wataru Ogawa, ogawa@med.kobe-u.ac.jp; Shinya Kuroda, 21 

skuroda@bs.s.u-tokyo.ac.jp 22 

  23 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


ABSTRACT 24 

Impaired glucose homeostasis leads to numerous complications, with coronary artery disease 25 

(CAD) being a major contributor to healthcare costs worldwide. Given the limited efficacy of 26 

current CAD screening methods, we investigated the association between glucose dynamics 27 

and a predictor of coronary events measured by virtual histology-intravascular ultrasound 28 

(%NC), with the aim of predicting CAD using easy-to-measure indices. We found that 29 

continuous glucose monitoring (CGM)-derived indices, particularly average daily risk ratio 30 

(ADRR) and AC_Var, exhibited stronger predictive capabilities for %NC compared to 31 

commonly used indices such as fasting blood glucose (FBG), hemoglobin A1C (HbA1c), and 32 

plasma glucose level at 120 min during oral glucose tolerance tests (PG120). Factor analysis 33 

identified three distinct components underlying glucose dynamics – value, variability, and 34 

autocorrelation – each independently associated with %NC. ADRR was influenced by the 35 

first two components and AC_Var by the third. FBG, HbA1c, and PG120 were influenced 36 

only by the value component, making them insufficient for %NC prediction. Our results were 37 

validated using data sets from Japan (n=64), America (n=53), and China (n=100). 38 

CGM-derived indices reflecting the three components of glucose dynamics can serve as more 39 

effective screening tools for CAD risk assessment, complementing or possibly replacing 40 

traditional diabetes diagnostic methods.  41 
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INTRODUCTION 42 

Diabetes mellitus (DM) is a metabolic disorder affecting more than 400 million people 43 

worldwide. Among its complications, coronary artery disease (CAD) accounts for a 44 

significant proportion of morbidity, mortality and healthcare costs in patients with type 2 DM 45 

(T2DM) (Bax et al., 2007). Various prognostic models (Fiarni et al., 2019; Ravaut et al., 46 

2021) and diagnostic markers (Bax et al., 2007) have been developed to predict CAD; 47 

however, screening of CAD can be ineffective, costly, or laborious (Bax et al., 2007; Young 48 

et al., 2009). More effective approaches for identifying individuals at high risk for 49 

complications using readily available clinical variables are warranted. 50 

 Blood glucose levels are among the readily obtained predictors of the complications 51 

(Psoma et al., 2022). The disrupted conditions of glucose dynamics seen in impaired glucose 52 

tolerance (IGT) and T2DM are partly characterized by high concentrations of blood glucose 53 

levels (Monnier et al., 2008). High concentrations of blood glucose levels have been defined 54 

as having high hemoglobin A1c (HbA1c) levels, fasting blood glucose (FBG) levels, and 55 

plasma glucose concentration at 120 min during the oral glucose tolerance test (OGTT) 56 

(PG120) (Monnier et al., 2008). These indices, especially HbA1c, are associated with 57 

complications of T2DM (Selvin et al., 2010).  58 

 Recent studies have shown that glucose variability, in addition to absolute glucose 59 

concentration, significantly contributes to the prognosis of complications (Gerbaud et al., 60 

2019; Gorst et al., 2015; Monnier et al., 2008; Psoma et al., 2022; Su et al., 2011; Zhou et al., 61 

2018) and all-cause mortality (Cai et al., 2022). Continuous glucose monitoring (CGM) can 62 

estimate short-term glycemic variability (Service, 2013), and has been reported to predict 63 

T2DM complications (Tang et al., 2016). Standard deviation (Std) of glucose levels 64 

(CGM_Std), mean amplitude of glycemic excursion (MAGE), mean of daily difference 65 

(MODD), and continuous overlapping net glycemic action (CONGA) are established indices 66 

of glycemic variability, of which CGM_Std and MAGE are more highly correlated with 67 
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coronary plaque properties (Otowa-Suematsu et al., 2018). Among glucose level-related 68 

indices, including HbA1c and FBG, MAGE is an independent determinant of coronary 69 

plaque instability (Okada et al., 2015). 70 

 Other CGM-derived indices such as average daily risk ratio (ADRR), lability index 71 

(LI), J-index, mean absolute glucose (MAG), and glycemic risk assessment in diabetes 72 

equation (GRADE) have also been developed (Hill et al., 2011). We recently showed that 73 

AC_Mean and AC_Var, which are calculated from the autocorrelation function of glucose 74 

levels measured by CGM, can detect decreased abilities in glucose regulation that cannot be 75 

captured by FBG, HbA1c, or the other conventional CGM-derived indices (Sugimoto et al., 76 

2023). The characteristics of glucose dynamics can also be estimated from insulin 77 

concentrations. The disposition index (DI), which is the product of insulin sensitivity and 78 

insulin secretion, reflects and predicts glycemic disability beyond FBG (Utzschneider et al., 79 

2009). Several other glucose-related indices and the relationship between the indices have 80 

also been reported (Fabris et al., 2015, 2014; Keshet et al., 2023). Despite these advances, a 81 

comprehensive understanding of how these various indices can be optimally combined to 82 

predict T2DM complications, particularly CAD, remains elusive. Furthermore, the 83 

underlying factors that these indices represent and their individual associations with CAD 84 

remain to be fully elucidated.  85 

This study aims to address these knowledge gaps through three objectives: (i) to 86 

determine which clinical parameters are effective predictors of coronary plaque vulnerability; 87 

(ii) to identify the factors underlying these indices; and (iii) to elucidate how these factors are 88 

associated with coronary plaque vulnerability. We investigated the characteristics of 14 89 

CGM-derived indices: 12 relatively well-known CGM-derived indices (Hill et al., 2011) and 90 

2 indices (AC_Mean and AC_Var) as well as OGTT-derived indices, and investigated the 91 

relationship between these parameters and coronary plaque vulnerability assessed by virtual 92 

histology-intravascular ultrasound (VH-IVAS). We showed that three factors, namely, value, 93 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


variability, and autocorrelation, underly blood glucose level-related indices, and that the three 94 

are independently associated with coronary plaque vulnerability. 95 

 96 

RESULTS 97 

Mean, standard deviation, and autocorrelation function of glucose levels independently 98 

contribute to the prediction of coronary plaque vulnerability  99 

We previously reported that AC_Var, calculated from the autocorrelation function of glucose 100 

levels, can capture decreased glucose handling capacities that cannot be captured by the mean 101 

(CGM_Mean) and standard deviation (CGM_Std) of glucose levels measured by CGM 102 

(Sugimoto et al., 2023). Based on the study, we hypothesized that AC_Var could identify 103 

individuals with high %NC, a widely used parameter of plaque vulnerability, independently 104 

from CGM_Mean and CGM_Std. To test this hypothesis, we conducted multiple regression 105 

analysis with CGM_Mean, CGM_Std, and AC_Var as input variables and %NC as the 106 

objective variable (Fig. 1A). For comparison, we also performed multiple regression analysis 107 

with established diagnostic markers of diabetes (FBG, HbA1c, and PG120) as input variables 108 

(Fig. 1B). We performed this analysis using a previously described cohort consisting of 8 109 

individuals with NGT, 16 with IGT, and 29 with T2DM (Otowa-Suematsu et al., 2018). 110 

The variance inflation factor (VIF) for CGM_Mean, CGM_Std, and AC_Var were 111 

1.1, 1.1, and 1.0, respectively, indicating low multicollinearity among these variables. The R2 112 

of the model that predicted %NC from the three indices was 0.36. CGM_Mean, CGM_Std, 113 

and AC_Var had statistically significant independent positive correlations with %NC (Fig. 114 

1A), suggesting that CGM_Mean, CGM_Std, and AC_Var are independently associated 115 

with %NC. In contrast, the R2 of the model that predicted %NC from FBG, HbA1c, and 116 

PG120 was only 0.05 (Fig. 1B). Univariate and multivariate analyses including other indices 117 

further confirmed that several CGM-derived indices were significantly correlated with %NC, 118 

even after adjustment for multiple testing (Supplementary text).  119 
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 120 

CGM-derived indices, particularly ADRR, AC_Var, MAGE, and LI, contribute to the 121 

prediction of coronary plaque vulnerability 122 

To address the challenge of unstable results when dealing with numerous variables and to 123 

investigate which variables are particularly useful in estimating %NC, we used two statistical 124 

techniques: Least Absolute Shrinkage and Selection Operator (LASSO) regression and Partial 125 

Least Squares (PLS) regression (Fig. 2) (Tibshirani, 1996; Wold et al., 2001). These 126 

regression models have been used for studies where the number of input variables is large 127 

relative to the sample size (Pei et al., 2023; Wang et al., 2005). 128 

LASSO uses L1 regularization to produce models with fewer parameters and has 129 

been widely used for feature selection in predictive modeling (Wei et al., 2022). We included 130 

BMI, FBG, HbA1c, OGTT-derived indices, and CGM-derived indices as the input variables. 131 

The leave-one-out cross-validation identified the optimal regularization coefficient, lambda, 132 

as 0.849 (Fig. 2A). At the lambda, the coefficients of ADRR, AC_Var, MAGE, and LI were 133 

estimated to be non-zero coefficients (Fig. 2B, C), suggesting that CGM-derived indices, 134 

particularly ADRR, AC_Var, MAGE, and LI, contribute to the prediction of %NC. Even with 135 

the inclusion of SBP, DBP, TG, LDL-C, and HDL-C as additional input variables, the results 136 

remained consistent, with the coefficients of ADRR, AC_Var, MAGE, and LI still estimated 137 

as non-zero coefficients (Fig. S4). 138 

 To further validate the LASSO results and address potential instability, we 139 

performed PLS regression and examined the Variable Importance in Projection (VIP) scores 140 

(Fig. 2D). PLS regression is particularly useful when dealing with many input variables that 141 

may be highly collinear (Wold et al., 2001). The VIP scores of ADRR, AC_Var, MAGE, and 142 

LI, which were estimated to be non-zero coefficients by LASSO, were higher than 1, 143 

indicating that these four variables especially contribute to the prediction of %NC. 144 

 145 
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Three components of glucose dynamics –value, variability, and autocorrelation – are 146 

associated with coronary plaque vulnerability 147 

To elucidate the underlying factors of clinical parameters and their association with %NC, we 148 

performed an exploratory factor analysis. Factor analysis reduces interrelated indices into a 149 

smaller set of underlying common factors, and has been employed to examine the 150 

interdependencies among various clinical parameters (Augstein et al., 2015; Cappelleri et al., 151 

2000; Oh et al., 2004) and DM complications (Guo et al., 2020).  152 

 The optimal number of underlying factors was determined using Bayesian 153 

information criterion (BIC) and minimum average partial (MAP) methods, which indicated 154 

that five and six factors were appropriate, respectively. We first set the number of underlying 155 

factors as five. Figure 3A shows that FBG, HbA1c, PG120, I.I., oral DI, CGM_Mean, 156 

CONGA, HBGI, MVALUE, GRADE, JINDEX, and ADRR were included in the first factor. 157 

Given that most of these indices are related to the value of blood glucose concentration, 158 

factor 1 was labeled “value.” CGM_Std, MAGE, LI, MAG, MODD, JINDEX, and ADRR 159 

were included in the second factor. Given that these indices are related to glucose variability, 160 

factor 2 was labeled “variability.” Given that the definition of JINDEX is based on the sum of 161 

CGM_Mean and CGM_Std, and that of ADRR is based on both high and low values of 162 

glucose, the result that JINDEX and ADRR clustered in both factors 1 and 2 is plausible. 163 

Given that autocorrelation-derived indices, AC_Mean and AC_Var, were included in the 164 

third factor, factor 3 was labeled “autocorrelation.” BMI, PG120, composite index, and oral 165 

DI were included in the fourth factor. Factor 4 did not include any CGM-derived indices. 166 

Given that this combination of indices indicates a decrease in oral DI and associated increase 167 

in blood glucose due to decreased insulin sensitivity, factor 4 was labeled “sensitivity 168 

(without CGM)”. PG120, I.I., oral DI, and MAG were included in the fifth factor. Factor 5 169 

did not have positive loadings of any CGM-derived indices. Given that this combination of 170 

the indices indicates a decrease in oral DI and associated increase in blood glucose due to 171 
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decreased insulin secretion (I.I.), factor 5 was labeled “secretion (without CGM).” The 172 

cumulative percentages of the total variance of the factors were 39%, 60%, 70%, 75%, and 173 

80%, respectively.   174 

 The validity of the factor analysis was assessed according to previous studies 175 

(Cappelleri et al., 2000; Guo et al., 2020). To evaluate the applicability of the factor analysis, 176 

the Kaiser-Meyer-Olkin (KMO) and Bartlett’s spherical test were performed. The KMO test 177 

indicated that the value of the measure of sampling adequacy for this data was 0.64, and 178 

Bartlett’s spherical test indicated that the variables were statistically significantly 179 

intercorrelated (P < 0.01), suggesting that this dataset was applicable for the factor analysis. 180 

To evaluate internal consistency, Cronbach’s α (Fig. 3B) and item–total correlations were 181 

calculated for each factor. Cronbach’s α was 0.97 for factor 1, 0.93 for factor 2, 0.90 for 182 

factor 3, 0.72 for factor 4, and 0.66 for factor 5; these values were larger than 0.65 (Fig. 3B), 183 

suggesting that the internal consistency was satisfactory. While Cronbach’s α of factor 5 was 184 

relatively low, exclusion of MAG increased the Cronbach’s α to 0.84, indicating that the 185 

association between factor 5 and decrease in oral DI and associated increase in blood glucose 186 

due to decreased insulin secretion could be considered reliable. Item–total correlations ranged 187 

from 0.63 to 0.97 for factor 1, 0.72 to 0.94 for factor 2, 0.82 for factor 3, 0.54 to 0.76 for 188 

factor 4, and 0.37 to 0.86 for factor 5. With the exception of MAG, item–total correlations 189 

ranged from 0.84 to 0.91 for factor 5. The correlation coefficient of MAG was 0.37, which 190 

can be considered a modest correlation (Cappelleri et al., 2000), and the item–total 191 

correlations were generally reasonably strong in demonstrating reliability.  192 

 We also investigated a 6-factor solution (Fig. S5A). Factors 1, 2, and 3 could be 193 

interpreted as value, variability, and autocorrelation, respectively, similar to the 5-factor 194 

solution. Given that factor 6 had no factor loadings ≥ 0.3, we applied the 5-factor solution in 195 

the subsequent analysis. Furthermore, the inclusion of SBP, DBP, TG, LDL-C, and HDL-C 196 

into the input variables did not change the presence of the three components (value, 197 
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variability, and autocorrelation) in glucose dynamics (Fig. S5B). Since we only included only 198 

individuals with well-controlled serum cholesterol and BP levels in this study, we applied the 199 

5-factor solution without these indices (Fig. 3A) to the following analysis.  200 

 To further examine the stability of the results of the factor analysis, we also 201 

conducted hierarchical clustering analysis (Fig. S6). The optimal number of clusters was 202 

determined based on silhouette analysis. A large positive silhouette coefficient indicates that 203 

each cluster is compact and distinct from the others. The analysis indicated that the four 204 

clusters were appropriate (Fig. S6A). Clusters 1, 2, and 3 can be interpreted as value, 205 

variability, and autocorrelation, respectively (Fig. S6B).  206 

 To investigate the association between these underlying factors and %NC, we 207 

investigated the correlation between the factor scores and %NC (Fig. 3C). The factor value 208 

and variability showed significant positive correlations with %NC, whereas autocorrelation 209 

showed a significant negative correlation. Factors 4 and 5, which were less related to the 210 

CGM-derived indices, showed weaker correlations with %NC. Collectively, we conclude that 211 

glucose dynamics has three components – value, variability, and autocorrelation – and that 212 

these three components are associated with %NC. 213 

 To assess the robustness and generalizability of our factor analysis results, we 214 

performed similar analyses using previously published datasets from diverse populations 215 

(Figs. S7, 8). Factors that could be interpreted as representing the value, variability, and 216 

autocorrelation of glucose dynamics were consistently observed across diverse populations, 217 

including Japanese (Sugimoto et al., 2023) (Fig. S7A), American (Hall et al., 2018) (Fig. 218 

S7B), and Chinese (Zhao et al., 2023) (Fig. S8A) cohorts. In the Chinese dataset, all three 219 

factors were significantly different between individuals with and without diabetic 220 

macrovascular complications (Fig. S8B). Taken together, these results support the 221 

reproducibility and cross-cultural validity of our three-component model of glucose 222 

dynamics. 223 
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 224 

Overview of the three components of glucose dynamics –value, variability, and 225 

autocorrelation – 226 

We have shown that three components of glucose dynamics – value, variability, and 227 

autocorrelation – are associated with %NC. To overview the characteristics of glucose 228 

dynamics with different values of the components, we simulated glucose fluctuations using a 229 

previously reported mathematical model (De Gaetano and Arino, 2000) (Figs. 4, S9). 230 

 We could generate glucose fluctuations with almost the same standard deviation 231 

(Std) and AC_Var but with a different mean (Fig. 4A). Similarly, we could also simulate 232 

glucose fluctuations with almost the same mean and AC_Var but different Std, and with 233 

almost the same mean and Std but different AC_Var. These three components were 234 

independently adjustable by changing parameters within the range of values for NGT 235 

individuals (Fig. S9B). Individuals with higher AC_Var tended to have higher %NC (Fig. 1); 236 

however, comparing the glucose dynamics with higher and lower AC_Var, the maximum 237 

value of blood glucose was lower in individuals with higher AC_Var (Fig. 4A). 238 

 To facilitate a more comprehensive exploration of the three components of glucose 239 

dynamics, we developed a web-based application (https://simulator-glucose.streamlit.app/) 240 

using a more detailed mathematical model (Dalla Man et al., 2007). This model incorporates 241 

additional physiological parameters and allows for a more comprehensive simulation of 242 

glucose-insulin interactions. The web application allows users to manipulate a wide range of 243 

parameters, including insulin sensitivity, beta cell function, and insulin clearance. By 244 

systematically varying these parameters, users can examine how the Mean, Std, and AC_Var 245 

of glucose concentrations change under different conditions. 246 

 We also investigated the relationship between the three components and shapes of 247 

the glucose response curve after OGTT. Patterns of the glucose response curve after OGTT 248 

were heterogeneous, and four distinct patterns, denoted class 1–4, were previously identified 249 
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by analyzing the glucose dynamics of 5861 individuals in Denmark (Fig. 4B) (Hulman et al., 250 

2018). The classes with a high mean did not necessarily have high Std or AC_Var (Fig. 4C). 251 

The classes with high Std did not necessarily have high mean and AC_Var (Fig. 4C), 252 

consistent with the result that mean, Std, and AC_Var had low multicollinearity with each 253 

other. Compared to class 2, only class 1 was lower in mean and Std, and was higher in 254 

AC_Var. Compared to class 2, only class 3 was higher in mean, Std, and AC_Var. Compared 255 

to class 2, only class 4 was higher in mean and Std, and lower in AC_Var. Collectively, the 256 

three components could characterize the previously reported four distinct patterns during 257 

OGTT. 258 

 Class 3 was characterized by normal FBG and PG120 values, but is reportedly 259 

associated with increased risk of diabetes and higher all-cause mortality rate, suggesting that 260 

subgroups at high risk may not be identified by investigating only FBG and PG120 (Hulman 261 

et al., 2018). Std and AC_Var were high in class 3 (Fig. 4C), suggesting that high Std and 262 

high AC_Var indicate glycemic disability independent of FBG and PG120. 263 

 264 

DISCUSSION 265 

Here, we identified three distinct components of glucose dynamics: value, variability, and 266 

autocorrelation, each independently associated with coronary plaque vulnerability. We 267 

previously reported that AC_Var, an index reflecting autocorrelation, can detect decreased 268 

abilities in glucose regulation independently of other CGM-derived indices including 269 

CGM_Mean and CGM_Std, which reflect value and variability components, respectively 270 

(Sugimoto et al., 2023). Diabetes diagnosis has been based on elevated FBG, PG120, and 271 

HbA1c levels. However, these indices primarily reflect only the value component of glucose 272 

dynamics, and consequently the predictive performance of the prediction model for %NC 273 

using FBG, PG120, and HbA1c was relatively modest compared to that of the model using 274 

all three components of glucose dynamics. This result is partially consistent with a previous 275 
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notion that glucose dynamics include two components: amplitude and timing (Cobelli and 276 

Facchinetti, 2018). Collectively, CGM-derived indices reflecting the three components of 277 

glucose dynamics – value, variability, and autocorrelation – can outperform indices used to 278 

diagnose diabetes reflecting only the value component in predicting glycemic control 279 

capacity and coronary plaque vulnerability. 280 

 We also showed that CGM-derived indices, especially ADRR and AC_Var, 281 

contribute to the prediction of %NC by using LASSO and PLS (Fig. 2). Given that the 282 

definition equation for ADRR is affected by both high and low concentrations of blood 283 

glucose (Hill et al., 2011), it is likely affected by both glucose concentration values and 284 

glycemic variability. Factor analysis (Fig. 3) also showed that ADRR was included in both 285 

factor 1 (value) and factor 2 (variability). Since three factors, value, variability, and 286 

autocorrelation, contribute independently to the prediction of the complication, it would be 287 

useful to examine ADRR, which is influenced by both value and variability, and AC_Var, 288 

which is influenced by autocorrelation, in predicting %NC with a minimal number of 289 

variables. Therefore, the result of the LASSO showing that ADRR and AC_Var are 290 

particularly effective in predicting %NC is consistent with the results of the factor analysis 291 

that the three components contribute to the prediction. 292 

 This study also provided evidence that autocorrelation can vary independently from 293 

the value and variability components by using simulated data. As shown in Figure 4, these 294 

three components could be varied independently by simply changing the parameters related 295 

to glucose regulation within the range of NGT individuals. In addition, simulated glucose 296 

dynamics indicated that even subjects with high AC_Var did not necessarily have high 297 

maximum and minimum blood glucose levels. This study also indicated that these three 298 

components qualitatively corresponded to the four distinct glucose patterns observed after 299 

glucose administration, which were identified in a previous study (Hulman et al., 2018). 300 

Glycemic variability is involved in T2DM complications by oxidative stress and endothelial 301 
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dysfunction (Ceriello et al., 2008; Monnier et al., 2008); however, the reasons why the three 302 

components, especially autocorrelation, independently contribute to the prediction remain 303 

unknown. The underlying biological mechanisms and effects of the three components on 304 

living systems need to be investigated in future studies. 305 

The current study had several limitations. LASSO and factor analysis indicated that 306 

CGM-related features were particularly important in predicting %NC. However, these results 307 

do not mean that other clinical parameters do not associate with T2DM complications, 308 

because we only included subjects with well-controlled serum cholesterol and blood pressure 309 

levels in this study. A previous study identified components of interday variability and 310 

hypoglycemia in CGM-derived indices (Augstein et al., 2015) that were not observed in our 311 

analysis. This discrepancy may be due to the relatively small number of T2DM subjects in 312 

our study. We acknowledge that factor analyses of data from longer measurement periods, 313 

including more patients with T1DM and T2DM, could potentially yield different results. 314 

However, it is noteworthy that our analysis of longer-term CGM data sets from Japanese and 315 

American populations confirmed the existence of the same three factors - value, variability, 316 

and autocorrelation - in glucose dynamics. Moreover, even with the short measurement 317 

period, CGM-derived indices reflecting these three factors demonstrated superior predictive 318 

accuracy for %NC compared to traditional indices such as FBG, HbA1c, and PG120, 319 

underscoring the potential utility of CGM. Although time in range (TIR) was not included in 320 

the main analyses due to the small number of T2DM patients and the large number of patients 321 

with TIR greater than 70%, the CGM-derived indices still outperformed FBG, HbA1c, and 322 

PG120 in predicting %NC. The multiple regression analysis between factor scores and TIR 323 

showed that only factors 1 (value) and 2 (variability) were significantly associated with TIR 324 

(Fig. S10), further supporting the existence of three components in glucose dynamics and the 325 

potential value of examining AC_Var in addition to other CGM-derived indices. 326 
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We acknowledge the potential concern of multiple testing in our study. However, 327 

even after adjusting for multiple comparisons, the CGM-derived indices retained significant 328 

correlations with %NC (Fig. S1). The consistency of our findings across different analytical 329 

approaches (Lasso, PLS, and factor analysis) and different data sets further supports the 330 

robustness of our conclusions regarding the characteristics of glucose dynamics. While we 331 

used methods that assume linearity, such as LASSO, we also examined nonlinear 332 

relationships using Spearman’s correlation for index relationships and factor loadings 333 

with %NC, and found significant associations. We acknowledge that some significant 334 

correlations appear to be relatively small. However, these findings, combined with our 335 

predictive models showing improved accuracy using CGM compared to traditional diabetes 336 

diagnostic indices, and the theoretical framework showing that conventional markers only 337 

consider the “value” component of glucose dynamics, can demonstrate the clinical 338 

significance. Finally, although we analyzed three different datasets with a total of 270 339 

subjects, the sample size may still be considered relatively small to comprehensively examine 340 

the relationships between the variables in this study. Larger, prospective studies are needed to 341 

provide a more accurate assessment of these variables in predicting abnormalities and to 342 

further validate our findings. 343 

In conclusion, glucose dynamics has three components: value, variability, and 344 

autocorrelation. These three components are associated with coronary plaque vulnerability. 345 

CGM-derived indices reflecting these three components can be valuable predictive tools for 346 

T2DM complications, compared to conventional diabetes diagnostic markers reflecting only 347 

the value component. This new predictive model has the potential to improve the diagnosis 348 

and management of diabetes worldwide. To facilitate this CGM-derived prediction, we 349 

created a web application that performs a multiple regression model with these three 350 

components as input variables (https://cgm-basedregression.streamlit.app/). 351 

 352 
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METHODS 353 

Key Resources Table 

Reagent 

type  
Designation Source or reference Identifiers 

Additional 

information 

software, 

algorithm 

SciPy 

v1.10.1  
Virtanen et al., 2020 

  

software, 

algorithm 

scikit-learn 

v1.0.2 
https://scikit-learn.org/stable/ 

  

 354 

Subjects and measurements 355 

This was a retrospective observational study approved by the ethics committee of Kobe 356 

University Graduate School of Medicine (UMIN000018326; Kobe, Japan), as described 357 

previously (Otowa-Suematsu et al., 2018). The study included 53 participants who underwent 358 

a 75-g oral glucose tolerance test (OGTT), continuous glucose monitoring (CGM) with the 359 

use of an iPro2 CGM system (Medtronic, Northridge, CA, USA), and percutaneous coronary 360 

intervention (PCI). During PCI, VH-IVUS was carried out to assess the plaque components. 361 

Among the 53 participants, eight, 16, and 29 individuals were categorized as having normal 362 

glucose tolerance (NGT), impaired glucose tolerance (IGT) and T2DM, respectively. Of note, 363 

with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, a 364 

sample size of 47 was required to detect a significant difference from zero in the correlation 365 

coefficient.  366 

Detailed participant characteristics have been reported in the previous study 367 

(Otowa-Suematsu et al., 2018). Briefly, participants aged 20–80 years with LDL-C levels < 368 

120 mg/dL under statin administration or < 100 mg/dL under other treatments for 369 

dyslipidemia, including lifestyle intervention, were included in this study. Participants with 370 

acute coronary syndrome, unsuitable anatomy for virtual VH-IVUS, poor imaging by 371 
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VH-IVUS, hemodialysis, inflammatory disease, shock, low cardiac output, or concurrent 372 

malignant disease were excluded from this study.  373 

 To validate the findings on glucose dynamics, the present study analyzed a 374 

previously reported data set from Japan (Sugimoto et al., 2023). The study was conducted in 375 

accordance with the Declaration of Helsinki and approved by the Kobe University Hospital 376 

Ethics Committee (Approval No. 1834). Briefly, individuals aged ≥ 20 years with no 377 

previous diagnosis of diabetes were recruited from Kobe University Hospital between 378 

January 2016 and March 2018. Exclusion criteria included use of medications that affect 379 

glucose metabolism (e.g., steroids, β-blockers), psychiatric disorders, pregnancy or lactation, 380 

and ineligibility as determined by treating physicians. Participants wore a CGM device (iPro; 381 

Medtronic, USA). The study included 52 individuals with NGT, nine with IGT, and three 382 

with T2DM. 383 

Further validation of the glucose dynamics findings was performed using a 384 

previously reported CGM dataset (Dexcom G4 CGM System; Dexcom, Fort Lauderdale, FL, 385 

USA) obtained in the United States (Hall et al., 2018). The study included 53 individuals with 386 

no previous diagnosis of diabetes.  387 

In addition, the present study analyzed a previously reported CGM (FreeStyle Libre 388 

H, Abbott Diabetes Care, Witney, UK) dataset from China (Zhao et al., 2023). Participants 389 

were recruited from the DiaDRIL registry at Shanghai East Hospital (September 2019 to 390 

March 2021) and Shanghai Fourth People’s Hospital (June 2021 to November 2021). 391 

Inclusion criteria for this dataset were: diagnosis of diabetes according to the 1999 World 392 

Health Organization (WHO) criteria, age 18 years or older, willingness to provide informed 393 

consent, and CGM recording for at least three days. Exclusion criteria included reported 394 

alcohol or drug abuse, inability to comply with study protocols, or inability to participate as 395 

determined by the investigators. We extracted and analyzed glucose profile characteristics 396 

from the first three days of CGM data for each participant. 100 individuals with T2DM were 397 
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analyzed in this study. Our primary objective was to explore the relationship between the 398 

CGM-derived indices and the presence of diabetic macrovascular complications.  399 

 400 

Calculation of clinical indices 401 

CGM-derived indices: 402 

The CGM data collected in this study were obtained at different sampling frequencies in the 403 

different data sets. For the two Japanese cohorts and the American cohort, glucose 404 

measurements were collected at 5-minute intervals. In contrast, the Chinese cohort collected 405 

glucose measurements at 15-minute intervals.  406 

Fourteen CGM-derived indices were evaluated in this study: twelve well-established 407 

CGM-derived indices (Hill et al., 2011) and two indices (AC_Mean and AC_Var) that have 408 

been reported to capture glucose handling capacity independently of the aforementioned 409 

twelve indices (Sugimoto et al., 2023). For the datasets with 5-minute sampling intervals (the 410 

two Japanese datasets and the American dataset), AC_Mean and AC_Var were calculated as 411 

the mean and variance of the autocorrelation functions at lags 1-30 of the glucose levels, 412 

respectively. For the data set with 15-minute sampling intervals (the Chinese data set), 413 

AC_Mean and AC_Var were calculated as the mean and variance of the autocorrelation 414 

functions at lags 1-10 of the glucose levels, respectively. These calculations correspond to a 415 

time window of 150 minutes. CGM_Mean and CGM_Std indicate the mean value and 416 

standard deviation of glucose levels measured by CGM, respectively. CONGA, LI, JINDEX, 417 

HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, and MAG were calculated using 418 

EasyGV software (Hill et al., 2011). The calculating formulae of these indices are shown in 419 

Table S1.  420 

In the two Japanese datasets and the American dataset, there was a relatively small 421 

proportion of T2DM patients and a substantial number of subjects with time in range (TIR) 422 

(Battelino et al., 2023; Larkin et al., 2019) values (glucose levels between 70 and 180 mg/dL) 423 
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greater than 70% (Hall et al., 2018; Otowa-Suematsu et al., 2018; Sugimoto et al., 2023). 424 

Given this distribution, we decided not to include TIR in our primary analyses. However, 425 

given the potential interest of this metric, we provided correlations between TIR and other 426 

indices as supplementary information. 427 

 428 

OGTT-derived indices: 429 

Three OGTT-derived indices were calculated as previously described (Matsuda and 430 

DeFronzo, 1999; Otowa-Suematsu et al., 2018). The insulinogenic index (I.I.) indicates 431 

insulin secretion and is calculated from the ratio of the increment of immunoreactive insulin 432 

(IRI) to that of plasma glucose at 30 min after onset of the OGTT. The composite index 433 

indicates insulin sensitivity, which can be calculated from fasting plasma glucose, fasting IRI, 434 

mean blood glucose levels, and mean serum IRI concentrations during the OGTT. The oral 435 

disposition index (Oral DI) was calculated from the product of the composite index and the 436 

ratio of the area under the insulin concentration curve from 0 to 120 minutes to that for 437 

plasma glucose from 0 to 120 minutes, without using the data measured at 90 min, in the 438 

OGTT. 439 

 440 

VH-IVUS-derived index: 441 

VH-IVUS was carried out using the Eagle Eye Platinum 3.5-Fr 20-MHz catheter (Volcano, 442 

Rancho Cordova, CA, USA), as previously described (Otowa-Suematsu et al., 2018). The 443 

intraclass correlation coefficients for interobserver and intraobserver reliability of external 444 

elastic membrane volume were 0.95 and 0.97, respectively (Otowa-Suematsu et al., 2018), 445 

indicating high reproducibility. The VH-IVUS categorized plaque into four components: 446 

fibrous, fibrofatty, necrotic core, and dense calcium. Following the previous study, our 447 

investigation focused specifically on the ratio of necrotic core to total plaque volume (%NC), 448 
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a widely used parameter of plaque vulnerability. For patients with multiple plaques, the 449 

mean %NC was calculated. 450 

 451 

Prediction models and statistical analyses 452 

In this study, we conducted multiple linear regression, LASSO regression, and PLS 453 

regression. The input variables in these models included the following 26 variables: BMI, 454 

SBP, DBP, TGs, LDL-C, HDL-C, FBG, HbA1c, PG120, I.I., composite index, oral DI, 455 

CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, 456 

MVALUE, MAG, AC_Mean, and AC_Var. In conducting these models, z-score 457 

normalization on each input variable was performed. 458 

The predictive performance of multiple linear regression was evaluated by the 459 

coefficient of determination (R2), the adjusted coefficient of determination (Adj R2), or AIC. 460 

The multicollinearity of the input variables was estimated by VIF. LASSO regression is a 461 

kind of linear regression with L1 regularization (Tibshirani, 1996). The optimal 462 

regularization coefficient, lambda, was based on leave-one-out cross-validation and 463 

mean-squared error (MSE). The importance of the input variables in predicting %NC was 464 

evaluated by the VIP scores (Wold et al., 2001) that were generated from PLS regression. 465 

These models were conducted using scikit-learn v1.0.2, a Python-based toolkit 466 

(https://scikit-learn.org/stable/). 467 

Relationships among indices were also evaluated using Spearman’s correlation 468 

coefficients (r), and the correlation coefficients were reported with 95% CIs through 469 

bootstrap resampling. The number of resamples performed to form the distribution was set at 470 

10000. Benjamini–Hochberg’s multiple comparison test was also performed with a 471 

significance threshold of Q < 0.05. 472 

 473 

Factor analysis and hierarchical clustering analysis 474 
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The intercorrelations of the clinical parameters and their associations with %NC were 475 

assessed using exploratory factor analyses and hierarchical clustering analyses. We followed 476 

the previously reported approach (Cappelleri et al., 2000; Guo et al., 2020; Lakka et al., 2002; 477 

Oh et al., 2004) with some modifications in conducting our exploratory factor analyses. BIC 478 

and MAP methods were used to determine the number of underlying factors. Variables with 479 

factor loadings of ≥ 0.30 were used in interpretation. To improve the interpretation, 480 

orthogonal (varimax) rotation was used. To evaluate the applicability of the factor analysis, 481 

KMO and Bartlett’s spherical test were performed. To evaluate internal consistency of each 482 

factor, Cronbach’s α and item–total correlations were calculated. The association of the factor 483 

scores with %NC was assessed using Spearman’s correlation. 484 

 Hierarchical clustering analysis was conducted using a method that combines a 485 

Euclidean distance measure and Ward linkage. I.I., composite index, oral DI, and AC_Mean 486 

were inverted negatively so that the value of indices increased in subjects with abnormalities. 487 

The quality of the hierarchical clustering analysis was evaluated based on silhouette analysis 488 

(Rousseeuw, 1987). These analyses were performed after Z score normalization using 489 

scikit-learn v1.0.2, a Python-based toolkit (https://scikit-learn.org/stable/). 490 

 491 

Mathematical models used for simulating the characteristics of glucose dynamics 492 

In simulating the characteristics of glucose dynamics, we used a simple and stable model (De 493 

Gaetano and Arino, 2000), which can be written as follows: 494 

��
�� � ������ � ����	� 
 ���	 
 � 

�	
�� � ���


���

� �
�

������

� � �
��	 

where the variables � and 	 denote blood glucose and insulin concentrations, respectively. 495 

We simulated 240-minutes profiles of �, and calculated the mean, Std, and AC_Var of �. 496 

The parameters were changed within the range participants could take (De Gaetano and 497 
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Arino, 2000). Five mg/dL/min glucose was applied for 10 minutes at 30 minutes as the 498 

external input of glucose �.  499 

 For more detailed simulations of the postprandial response, we used a complex, 500 

fine-grained model (Dalla Man et al., 2007). Briefly, the model consists of two 501 

interconnected subsystems: the glucose subsystem and the insulin subsystem. The glucose 502 

subsystem is represented by a two-compartment model. The first compartment (��) 503 

represents glucose in plasma and rapidly equilibrating tissues, while the second compartment 504 

(��) represents glucose in slowly equilibrating tissues. The dynamics of this subsystem is 505 

described by the differential equations, as follows: 506 

���

�� � ����� 
 ���� 
 EGP��� 
 Ra��� � ������ � ���� 

���

�� � ���� � ���� � ������ 

��
�� � ��

�� . 
In these equations, �� and �� are rate constants, EGP is endogenous glucose production, 507 

Ra is the rate of glucose appearance from meal absorption, ��� is insulin-independent 508 

glucose utilization, � is renal excretion, ��� is insulin-dependent glucose utilization, � is 509 

plasma glucose concentration, and �� is the distribution volume of glucose. 510 

 The insulin subsystem is also modeled with two compartments, one for plasma 511 

insulin (	�) and another for liver insulin (	�). The dynamics of this subsystem is described by 512 

the differential equations, as follows: 513 

�	�
�� � ���� 
 ���	� 
 ��	� 
 S��� 

�	�
�� � ���� 
 ���	� 
 ��	�, 

where, S is the insulin secretion rate, ��, ��, and �� are rate parameters, �� is 514 

peripheral insulin clearance. For simplicity, we assumed that insulin sensitivity and beta cell 515 

responsivity to glucose are constant. We simulated 48-hour profiles of �, and calculated the 516 
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Mean, Std, and AC_Var of �. The code that simulates the glucose dynamics is available 517 

from the repository (https://github.com/HikaruSugimoto/Simulator) and the web application 518 

(https://simulator-glucose.streamlit.app/). The simulations were conducted using SciPy 519 

v1.10.1 (Virtanen et al., 2020). 520 

 521 

Characterization of glucose patterns during the OGTT 522 

We investigated the characteristics of previously reported glucose patterns during the OGTT 523 

(Hulman et al., 2018). In the study, 5861 subjects without diabetes in Denmark underwent the 524 

OGTT with measurements of glucose levels at three time points (0, 30, and 120 min), and 525 

four distinct glucose patterns associated with long-term outcomes including diabetes onset, 526 

cardiovascular disease, and all-cause mortality rate were identified. For the calculation of 527 

mean, Std, and AC_Var of glucose levels, each time point was linearly imputed. Here, 528 

AC_Var was calculated from the autocorrelation function at lags 1–20, as we had glucose 529 

data available for only 2 h after the OGTT. 530 
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Figure Legends 546 

Figure 1. Multiple regression analyses for predicting %NC. 547 

Multiple regression analysis between %NC and CGM_Mean, CGM_Std, and AC_Var (A). 548 

That between %NC and FBG, HbA1c, and PG120 (B). Scatter plots for predicted %NC versus 549 

measured %NC (the left). Each point corresponds to the values for a single subject. Bars 550 

represent the 95% CIs of the coefficients of the regression models (the right). 551 

 552 

Figure 2. LASSO and PLS regression analyses for predicting %NC. 553 

(A) Relationship between regularization coefficients (lambda) and the MSE based on the 554 

leave-one-out cross-validation in predicting %NC. Dotted vertical line indicates the optimal 555 

lambda, which provides the least MSE. The optimal lambda was 0.849.  556 

(B) LASSO regularization paths along the lambda in predicting %NC. Cyan, magenta, and 557 

gray lines indicate the estimated coefficients of AC_Mean, AC_Var, and the other input 558 

variables, respectively. Dotted vertical line indicates the optimal lambda.  559 

(C) Estimated coefficients with the optimal lambda. Only variables with non-zero coefficients 560 

are shown. Input variables include the following 21 variables: BMI, FBG, HbA1c, PG120, 561 

I.I., composite index, oral DI, CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, 562 

GRADE, MODD, MAGE, ADRR, MVALUE, MAG, AC_Mean, and AC_Var. 563 

(D) VIP generated from the PLS regression predicting %NC. Variables with a VIP�≥�1 (the 564 

dotted line) were considered to significantly contribute to the prediction. 565 

 566 

Figure 3. Factor analysis of the clinical parameters. 567 

(A) Factor analysis after orthogonal rotation. The values and colors were based on the factor 568 

loadings. The columns represent each factor. The rows represent input indices.  569 

(B) Cronbach’s α for each factor. Bars represent the 95% CI. 570 
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(C) Scatter plots and fitted linear regression lines for factor scores versus %NC. Each point 571 

corresponds to the values for a single subject. r is Spearman’s correlation coefficient, and the 572 

value in parentheses is the 95% CI. 573 

 574 

Figure 4. Overview of the three components of glucose dynamics.  575 

(A) 240 min simulated glucose concentration. The colors of the line are based on the mean 576 

value (Mean), Std, and AC_Var of the simulated blood glucose. Red and gray dotted 577 

horizontal lines indicate the minimum or maximum values of blood glucose, respectively. 578 

(B) Previously reported patterns of blood glucose during the OGTT (Hulman et al., 2018). 579 

Green, class 1; light blue, class 2; dark blue, class 3; red, class 4.  580 

(C) Mean, Std, and AC_Var of the glucose during the OGTT. Colors are based on the class 581 

shown in Figure 4B.  582 
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