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SUMMARY 24 

Impaired glucose homeostasis leads to many complications, with coronary artery disease 25 

(CAD) being a major contributor to healthcare costs. However, current CAD screening 26 

methods lack efficacy. Here, we predicted CAD using easy-to-measure indices, including 27 

continuous glucose monitoring (CGM)-derived indices. We found that CGM-derived indices, 28 

particularly ADRR and AC_Var, exhibited stronger predictive capabilities for CAD 29 

compared to commonly used diabetes diagnostic indices such as fasting blood glucose 30 

(FBG), hemoglobin A1C (HbA1c), and plasma glucose level at 120 min during oral glucose 31 

tolerance tests (PG120). Factor analysis identified three distinct components underlying 32 

glucose dynamics – value, variability, and autocorrelation – each independently associated 33 

with CAD. Remarkably, ADRR was influenced by the first two components, and AC_Var 34 

was influenced by the third component. FBG, HbA1c, and PG120 were influenced only by 35 

the value component, making them insufficient for CAD prediction. CGM-derived indices 36 

reflecting the three components can outperform traditional diabetes diagnostic methods in 37 

CAD prediction. (150/150 words) 38 

 39 

Keywords: Continuous glucose monitoring; oral glucose tolerance test; virtual histology-40 

intravascular ultrasound; coronary artery disease 41 
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INTRODUCTION 44 

Diabetes mellitus (DM) leads to a variety of complications, primarily caused by vascular 45 

damage.1 Among the complications, coronary artery disease (CAD) accounts for a large 46 

fraction of the morbidity, mortality, and healthcare costs in patients with type 2 DM 47 

(T2DM).2 Various prognostic models1,3 and diagnostic markers2 have been developed to 48 

predict CAD; however, screening of CAD can be ineffective, costly, or laborious.2,4 More 49 

effective approaches for identifying individuals at high risk for complications using readily 50 

obtained clinical variables are warranted. 51 

 Blood glucose levels are among the readily obtained predictors of the 52 

complications.5 The disrupted conditions of glucose dynamics seen in impaired glucose 53 

tolerance (IGT) and T2DM are partly characterized by high concentrations of blood glucose 54 

levels.6 High concentrations of blood glucose levels have been defined as having high 55 

hemoglobin A1c (HbA1c) levels, fasting blood glucose (FBG) levels, and plasma glucose 56 

concentration at 120 min during the oral glucose tolerance test (OGTT) (PG120).6 These 57 

indices, especially HbA1c, are associated with complications of T2DM.7  58 

 Beyond the absolute value of glucose concentration, glucose variability also 59 

contributes to the prognosis of the complications5,6,8–11 and all-cause mortality.12 Continuous 60 

glucose monitoring (CGM) can estimate short-term glycemic variability,13 and is reportedly 61 

able to predict T2DM complications.14 Standard deviation (Std) of glucose levels 62 

(CGM_Std), mean amplitude of glycemic excursion (MAGE), mean of daily difference 63 

(MODD), and continuous overlapping net glycemic action (CONGA) are established indices 64 

of glycemic variability, of which CGM_Std and MAGE are more highly correlated with 65 

coronary plaque properties.15 Among glucose level-related indices, including HbA1c and 66 

FBG, MAGE is an independent determinant of coronary plaque instability.16 67 

 Other CGM-derived indices such as average daily risk ratio (ADRR), lability index 68 

(LI), J-index, mean absolute glucose (MAG), and glycemic risk assessment in diabetes 69 
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equation (GRADE) have also been developed.17 We recently showed that AC_Mean and 70 

AC_Var, which are calculated from the autocorrelation function of glucose levels measured 71 

by CGM, can detect decreased abilities in glucose regulation that cannot be captured by FBG, 72 

HbA1c, or the other conventional CGM-derived indices.18 The characteristics of glucose 73 

dynamics can also be estimated from insulin concentrations. The disposition index (DI), 74 

which is the product of insulin sensitivity and insulin secretion, reflects and predicts glycemic 75 

disability beyond FBG.19 Several other glucose-related indices have also been reported; 76 

however, how these indices can be combined to deduce T2DM complications including CAD 77 

has yet to be established.   78 

The objectives of this study were to determine (1) which clinical parameters are 79 

particularly useful in predicting CAD, (2) what factors underlie these indices, and (3) how 80 

these factors are associated with CAD. We investigated the characteristics of 14 CGM-81 

derived indices: 12 relatively well-known CGM-derived indices17 and 2 indices (AC_Mean 82 

and AC_Var) as well as OGTT-derived indices, and investigated the relationship between 83 

these parameters and coronary plaque vulnerability assessed by virtual histology-84 

intravascular ultrasound (VH-IVAS), a strong predictor of coronary events. We showed that 85 

CGM-derived indices are particularly useful in the prediction. In addition, we showed that 86 

three components, namely, value, variability, and autocorrelation, underly blood glucose 87 

level-related indices, and that the three are independently associated with coronary plaque 88 

vulnerability. 89 

 90 

RESULTS 91 

CGM_Mean, CGM_Std, and AC_Var independently contribute to the prediction of 92 

coronary plaque vulnerability  93 

To characterize CGM-derived indices in estimating the risk of CAD, we examined 94 

Spearman’s correlation coefficients (r) between CGM-derived indices and the ratio of 95 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


necrotic core to total plaque volume (%NC) (Figs. 1A, S1). %NC, a widely used parameter of 96 

plaque vulnerability, was assessed by VH-IVUS. We performed this analysis using a 97 

previously described cohort consisting of 8 individuals with normal glucose tolerance (NGT), 98 

16 with IGT, and 29 with T2DM.15 For comparison, we also investigated FBG, HbA1c, 99 

OGTT-derived indices, body mass index (BMI), triglycerides (TGs), low-density lipoprotein 100 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure 101 

(SBP), and diastolic BP (DBP). 102 

 Twelve CGM-derived indices, namely, ADRR, MAGE, JINDEX, CGM_Std (Std of 103 

glucose levels measured by CGM), CGM_Mean (mean glucose levels measured by CGM), 104 

GRADE, MVALUE, AC_Var, LI, HBGI, CONGA, and MODD, exhibited significant 105 

correlations with %NC (Fig. 1A). By contrast, with the exception of the insulinogenic index 106 

(I.I.), OGTT-derived indices, as well as other indices including FBG and HbA1c, displayed 107 

relatively weak correlations with %NC (Fig. 1A, blue, magenta, and green), suggesting that 108 

CGM-derived indices are effective in predicting %NC. Of note, this study enrolled 109 

individuals with well-controlled serum cholesterol and BP levels (Fig. S2). The weak 110 

correlations between cholesterol and BP-related indices and %NC (Fig. 1A) do not mean that 111 

cholesterol and BP are not associated with %NC. Consequently, our subsequent analysis 112 

focused primarily on indices unrelated to cholesterol and BP. 113 

 For a more comprehensive assessment of the association among clinical parameters, 114 

we constructed a correlation network connecting relationships with Q < 0.05 (Fig. 1B). The Q 115 

values were calculated by Spearman’s correlation test followed by multiple testing 116 

adjustment using the Benjamini-Hochberg method. The correlation network showed that 117 

AC_Var was statistically significantly correlated with %NC (r = 0.35; 95% confidence 118 

interval [CI], 0.09–0.57) (Fig. 1B). By contrast, AC_Var displayed relatively weak 119 

correlations with other indices, including CGM_Mean (r = –0.02; 95% CI, –0.30–0.24) and 120 

CGM_Std (r = 0.15; 95% CI, –0.14–0.43) (Fig. 1B, C).  121 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


We previously reported that AC_Var, calculated from the autocorrelation function of 122 

glucose levels, can capture glucose handling capacities that cannot be captured by 123 

conventional CGM-derived indices including CGM_Mean and CGM_Std.18 Based on the 124 

study, we hypothesized that AC_Var can identify individuals with high %NC independently 125 

from CGM_Mean and CGM_Std. To test this hypothesis, we conducted multiple regression 126 

analysis with CGM_Mean, CGM_Std, and AC_Var as input variables and %NC as the 127 

objective variable (Fig. 1D). The variance inflation factor (VIF), an index of 128 

multicollinearity, for CGM_Mean, CGM_Std, and AC_Var was 1.1, 1.1, and 1.0, 129 

respectively, suggesting that CGM_Mean, CGM_Std, and AC_Var had low multicollinearity 130 

with each other. The R2 of the model that predicted %NC from the three indices was 0.36. 131 

CGM_Mean, CGM_Std, and AC_Var had statistically significant independent positive 132 

correlations with %NC (Fig. 1D), suggesting that CGM_Mean, CGM_Std, and AC_Var are 133 

independently associated with %NC. Notably, the R2 of the model that predicted %NC from 134 

FBG, HbA1c, and PG120, which have been used as diagnostic markers of diabetes, was only 135 

0.05 (Fig. 1D). Multivariate analyses including other indices also indicated that AC_Mean 136 

and AC_Var had relatively low multicollinearity with other CGM-derived indices 137 

(Supplementary text). Collectively, we conclude that CGM-derived indices are useful for 138 

predicting %NC compared to indices used for diabetes diagnosis, and that CGM_Mean, 139 

CGM_Std, and AC_Var independently contribute to the prediction of %NC. 140 

 141 

CGM-derived indices, particularly ADRR, AC_Var, MAGE, and LI are effective in 142 

predicting coronary plaque vulnerability 143 

To avoid overfitting and investigate which input variables are particularly useful in 144 

estimating %NC, we performed Least Absolute Shrinkage and Selection Operator (LASSO) 145 

regression (Fig. 2).20 LASSO uses L1 regularization to produce models with fewer 146 

parameters and has been widely applied to feature selection in predictive modeling.21 We 147 
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included BMI, FBG, HbA1c, OGTT-derived indices, and CGM-derived indices as the input 148 

variables. The leave-one-out cross-validation identified the optimal regularization coefficient, 149 

lambda, as 0.849 (Fig. 2A). At the lambda, the coefficients of ADRR, AC_Var, MAGE, and 150 

LI were estimated to be non-zero coefficients (Fig. 2B, C), suggesting that CGM-derived 151 

indices, particularly ADRR, AC_Var, MAGE, and LI, contribute to the prediction of %NC. 152 

Even with the inclusion of SBP, DBP, TG, LDL-C, and HDL-C as additional input variables, 153 

the results remained consistent, with the coefficients of ADRR, AC_Var, MAGE, and LI still 154 

estimated as non-zero coefficients (Fig. S4). 155 

 To further validate the results of the LASSO, we also performed Partial Least 156 

Squares (PLS) regression and investigated the VIP scores22 (Fig. 2D). The VIP scores of 157 

ADRR, AC_Var, MAGE, and LI, which were estimated to be non-zero coefficients by 158 

LASSO, were higher than 1, indicating that these four variables especially contribute to the 159 

prediction of %NC. 160 

 161 

Three components of dysglycemia – high value, high variability, and low 162 

autocorrelation – are associated with coronary plaque vulnerability 163 

To identify factors underlying the clinical parameters and investigate how these factors are 164 

associated with %NC, we conducted exploratory factor analysis. Factor analysis reduces 165 

interrelated indices into a smaller set of underlying common factors, and has been employed 166 

to examine the interdependencies among various clinical parameters23–25 and DM 167 

complications.26  168 

 To determine the optimal number of underlying factors, we investigated Bayesian 169 

information criterion (BIC) and minimum average partial (MAP) methods, indicating that 170 

five or six factors were appropriate, respectively. We first set the number of underlying 171 

factors as 5. Figure 3A indicates that FBG, HbA1c, PG120, I.I., oral DI, CGM_Mean, 172 

CONGA, HBGI, MVALUE, GRADE, JINDEX, and ADRR clustered as factor 1. Given that 173 
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most of these indices are related to the value of blood glucose concentration, factor 1 was 174 

labeled “value.” CGM_Std, MAGE, LI, MAG, MODD, JINDEX, and ADRR clustered as 175 

factor 2. Given that these indices are related to glucose variability, factor 2 was labeled 176 

“variability.” Given that the definition of JINDEX is based on the sum of CGM_Mean and 177 

CGM_Std, and that of ADRR is based on both high and low values of glucose, the result that 178 

JINDEX and ADRR clustered in both factors 1 and 2 is plausible. Given that autocorrelation-179 

derived indices, AC_Mean and AC_Var, clustered as factor 3, factor 3 was labeled 180 

“autocorrelation.” BMI, PG120, composite index, and oral DI clustered as factor 4. Factor 4 181 

did not include any CGM-derived indices. Given that this combination of indices indicates a 182 

decrease in oral DI and associated increase in blood glucose due to decreased insulin 183 

sensitivity, factor 4 was labeled “sensitivity (without CGM)”. PG120, I.I., oral DI, and MAG 184 

clustered as factor 5. Factor 5 did not have positive loadings of any CGM-derived indices. 185 

Given that this combination of the indices indicates a decrease in oral DI and associated 186 

increase in blood glucose due to decreased insulin secretion (I.I.), factor 5 was labeled 187 

“secretion (without CGM).” The cumulative percentages of the total variance of the factors 188 

were 39%, 60%, 70%, 75%, and 80%, respectively.   189 

 The validity of the factor analysis was assessed according to previous studies.23,26 To 190 

evaluate the applicability of the factor analysis, the Kaiser-Meyer-Olkin (KMO) and 191 

Bartlett’s spherical test were performed. The KMO test indicated that the value of the 192 

measure of sampling adequacy for this data was 0.64, and Bartlett’s spherical test indicated 193 

that the variables were statistically significantly intercorrelated (P < 0.01), suggesting that 194 

this dataset was applicable for the factor analysis. To evaluate internal consistency, 195 

Cronbach’s α (Fig. 3B) and item–total correlations were calculated for each factor. 196 

Cronbach’s α was 0.97 for factor 1, 0.93 for factor 2, 0.90 for factor 3, 0.72 for factor 4, and 197 

0.66 for factor 5; these values were larger than 0.65 (Fig. 3B), suggesting that the internal 198 

consistency was satisfactory. While Cronbach’s α of factor 5 was relatively low, exclusion of 199 
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MAG increased the Cronbach’s α to 0.84, indicating that the association between factor 5 and 200 

decrease in oral DI and associated increase in blood glucose due to decreased insulin 201 

secretion could be considered reliable. Item–total correlations ranged from 0.63 to 0.97 for 202 

factor 1, 0.72 to 0.94 for factor 2, 0.82 for factor 3, 0.54 to 0.76 for factor 4, and 0.37 to 0.86 203 

for factor 5. With the exception of MAG, item–total correlations ranged from 0.84 to 0.91 for 204 

factor 5. The correlation coefficient of MAG was 0.37, which can be considered a modest 205 

correlation,23 and the item–total correlations were generally reasonably strong in 206 

demonstrating reliability.  207 

 We also investigated a 6-factor solution (Fig. S5A). Factors 1, 2, and 3 could be 208 

interpreted as value, variability, and autocorrelation, respectively, similar to the 5-factor 209 

solution. Given that factor 6 had no factor loadings ≥ 0.3, we applied the 5-factor solution in 210 

the subsequent analysis. Furthermore, the inclusion of SBP, DBP, TG, LDL-C, and HDL-C 211 

into the input variables did not change the presence of the three components (value, 212 

variability, and autocorrelation) in glucose dynamics (Fig. S5B). Since we only included only 213 

individuals with well-controlled serum cholesterol and BP levels in this study, we applied the 214 

5-factor solution without these indices (Fig. 3A) to the following analysis.  215 

 To further examine the stability of the results of the factor analysis, we also 216 

conducted hierarchical clustering analysis (Fig. S6). The optimal number of clusters was 217 

determined based on silhouette analysis. A large positive silhouette coefficient indicates that 218 

each cluster is compact and distinct from the others. The analysis indicated that the four 219 

clusters were appropriate (Fig. S6A). Clusters 1, 2, and 3 can be interpreted as value, 220 

variability, and autocorrelation, respectively (Fig. S6B). This confirmed the consistency of 221 

the clustering analysis with the factor analysis. 222 

 To investigate the reproducibility of the factor analysis, we conducted factor 223 

analyses using the previously reported datasets (Fig. S7). Factors that can be interpreted as 224 

value, variability, and autocorrelation were observed in both the Japanese18 (Fig. S7A) and 225 
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American27 (Fig. S7B) datasets, suggesting the reproducibility of glucose dynamics with 226 

these three components. 227 

 To investigate the association between these underlying factors and %NC, we 228 

investigated the correlation between the factor scores and %NC (Fig. 3C). The factor value 229 

and variability showed significant positive correlations with %NC, whereas autocorrelation 230 

showed a significant negative correlation. Factors 4 and 5, which were less related to the 231 

CGM-derived indices, showed weaker correlations with %NC. Collectively, we conclude that 232 

glucose dynamics has three components – value, variability, and autocorrelation – and that 233 

these three components are associated with %NC. 234 

 235 

Overview of the three components of dysglycemia: high value, high variability, and low 236 

autocorrelation 237 

We showed the existence of three components of glucose dynamics: value, variability, and 238 

autocorrelation. We also showed that %NC tended to increase with higher value, higher 239 

variability, and lower autocorrelation. To investigate whether each component can be varied 240 

separately, and to overview the characteristics of glucose dynamics with different values of 241 

the components, we simulated glucose fluctuations using a previously reported mathematical 242 

model28 (Figs. 4, S8). 243 

 We could generate glucose fluctuations with almost the same standard deviation 244 

(Std) and AC_Var but with a different mean (Fig. 4A). Similarly, we could also simulate 245 

glucose fluctuations with almost the same mean and AC_Var but different Std, and with 246 

almost the same mean and Std but different AC_Var. These three components could be 247 

changed separately by changing the parameters within the range of values for NGT 248 

individuals (Fig. S8B). Individuals with higher AC_Var tended to have higher %NC (Fig. 1); 249 

however, comparing the glucose dynamics with higher and lower AC_Var, the maximum 250 

value of blood glucose was lower in individuals with higher AC_Var (Fig. 4A). 251 
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 We also investigated the relationship between the three components and shapes of 252 

the glucose response curve after OGTT. Patterns of the glucose response curve after OGTT 253 

were heterogeneous, and four distinct patterns, denoted class 1–4, were previously identified 254 

(Fig. 4B).29 The classes with a high mean did not necessarily have high Std or AC_Var (Fig. 255 

4C). The classes with high Std did not necessarily have high mean and AC_Var (Fig. 4C), 256 

consistent with the result that mean, Std, and AC_Var had low multicollinearity with each 257 

other. Compared to class 2, only class 1 was lower in mean and Std, and was higher in 258 

AC_Var. Compared to class 2, only class 3 was higher in mean, Std, and AC_Var. Compared 259 

to class 2, only class 4 was higher in mean and Std, and lower in AC_Var. Collectively, the 260 

three components could characterize the previously reported four distinct patterns during 261 

OGTT. 262 

 Class 3 was characterized by normal FBG and PG120 values, but is reportedly 263 

associated with increased risk of diabetes and higher all-cause mortality rate, suggesting that 264 

subgroups at high risk may not be identified by investigating only FBG and PG120.29 Std and 265 

AC_Var were high in class 3 (Fig. 4C), suggesting that high Std and high AC_Var indicate 266 

glycemic disability independent of PG120. 267 

 268 

DISCUSSION 269 

Here, we showed the existence of three distinct components in glucose dynamics, namely 270 

value, variability, and autocorrelation. We also showed that the higher the value, the higher 271 

the variability; and the lower the autocorrelation, the more vulnerable the coronary plaque. 272 

We previously reported that AC_Var, an index reflecting autocorrelation, can detect 273 

decreased abilities in glucose regulation independently of other CGM-derived indices 274 

including CGM_Mean and CGM_Std, which reflect value and variability components, 275 

respectively.18 Diabetes diagnosis has been based on elevated FBG, PG120, and HbA1c 276 

levels. However, these indices primarily reflect only the value component of glucose 277 
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dynamics, and consequently the predictive performance of prediction model for %NC using 278 

FBG, PG120, and HbA1c was relatively modest compared to that of the model using all three 279 

components of glucose dynamics. This result is partially consistent with a previous notion 280 

that glucose dynamics include two components: amplitude and timing.30 Collectively, for the 281 

effective prediction of glycemic control capacity and diabetic complications, a 282 

comprehensive examination of all three components (value, variability, and autocorrelation) 283 

is imperative. 284 

 We also showed that CGM-derived indices, especially ADRR and AC_Var, 285 

contribute to the prediction of %NC by using LASSO (Fig. 2). Given that the definition 286 

equation for ADRR is affected by both high and low concentrations of blood glucose,17 it is 287 

likely affected by both glucose concentration values and glycemic variability. Factor analysis 288 

(Fig. 3) also showed that ADRR clustered as both factor 1 (value) and factor 2 (variability). 289 

Since three factors, value, variability, and autocorrelation, contribute independently to the 290 

prediction of the complication, it would be useful to examine ADRR, which is influenced by 291 

both value and variability, and AC_Var, which is influenced by autocorrelation, in 292 

predicting %NC with a minimal number of variables. Therefore, the result of the LASSO 293 

showing that ADRR and AC_Var are particularly effective in predicting %NC is consistent 294 

with the results of the factor analysis that the three components contribute to the prediction. 295 

 This study also provided evidence that autocorrelation can vary independently from 296 

the value and variability components by using simulated data. As shown in Figure 4, these 297 

three components could be varied independently by simply changing the parameters related 298 

to glucose regulation within the range of NGT individuals. In addition, simulated glucose 299 

dynamics indicated that even subjects with low autocorrelation did not necessarily have high 300 

maximum and minimum blood glucose levels. This study also indicated that these three 301 

components qualitatively corresponded to the four distinct glucose patterns observed after 302 

glucose administration, which were identified in a previous study.29 Glycemic variability is 303 
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involved in T2DM complications by oxidative stress and endothelial dysfunction;6,31 304 

however, the reasons why the three components, especially autocorrelation, independently 305 

contribute to the prediction remain unknown. The underlying biological mechanisms and 306 

effects of the three components on living systems need to be investigated in future studies. 307 

The current study had several limitations. LASSO and factor analysis indicated that 308 

CGM-related features were particularly important in predicting %NC. However, these results 309 

do not mean that other clinical parameters do not associate with T2DM complications, 310 

because we only included subjects with well-controlled serum cholesterol and BP levels in 311 

this study. Moreover, a previous study indicated that components of interday variability and 312 

hypoglycemia exist under CGM-derived indices,25 but we did not observe these components. 313 

This may be because the number of T2DM subjects was small and the measurement period 314 

was short (2 days) in this study. Factor analyses of data with a longer measurement period 315 

that include more patients with T1DM and T2DM could change the results. In addition, 316 

although we used three different data sets with a total of 174 subjects, the sample size still 317 

tended to be small to examine the relationship among the variables examined in this study. 318 

Larger and prospective studies are required for a more accurate assessment of the variables in 319 

the prediction of the abnormality. 320 

In conclusion, glucose dynamics has three components: value, variability, and 321 

autocorrelation. These three components are associated with coronary plaque vulnerability. 322 

CGM-derived indices reflecting these three components can be valuable predictive tools for 323 

T2DM complications, compared to conventional diabetes diagnostic markers reflecting only 324 

the value component. To facilitate this CGM-derived prediction, we created a web 325 

application that performs a multiple regression model with these three components as input 326 

variables (https://cgm-basedregression.streamlit.app/). 327 

 328 
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METHODS 329 

Subjects and measurements 330 

A previously reported dataset15 was used in this study. The retrospective observational study 331 

was approved by the ethics committee of Kobe University Graduate School of Medicine 332 

(UMIN000018326; Kobe, Japan). Briefly, a 75-g OGTT, CGM, and percutaneous coronary 333 

intervention (PCI) were carried out on 53 participants. Of note, with a type I error of 0.05, a 334 

power of 0.8, and an expected correlation coefficient of 0.4, a sample size of 47 was required 335 

to detect a significant difference from zero in the correlation coefficient. The iPro2 CGM 336 

system (Medtronic, Northridge, CA, USA) was used, and data from the second and third days 337 

of CGM were analyzed. During PCI, VH-IVUS was carried out to assess the plaque 338 

components.  339 

 Participants aged 20–80 years with LDL-C levels < 120 mg/dL under statin 340 

administration or <100 mg/dL under other treatments for dyslipidemia, including lifestyle 341 

intervention, were included in this study. Participants with acute coronary syndrome, 342 

unsuitable anatomy for virtual VH-IVUS, poor imaging by VH-IVUS, hemodialysis, 343 

inflammatory disease, shock, low cardiac output, or concurrent malignant disease were 344 

excluded from this study. 345 

 346 

Calculation of clinical indices 347 

CGM-derived indices: 348 

Fourteen CGM-derived indices were evaluated: 12 relatively well-known CGM-derived 349 

indices17 and 2 indices (AC_Mean and AC_Var), which were indicated to capture glucose 350 

handling capacities independently of the 12 indices.18 AC_Mean and AC_Var are the mean 351 

and variance of the autocorrelation coefficients at lags 1–30, respectively. CGM_Mean and 352 

CGM_Std indicate the mean value and Std of glucose levels measured by CGM, respectively. 353 

CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, MVALUE, and MAG 354 
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were calculated using EasyGV software.17 The calculating formulae of these indices are 355 

shown in Table S1. They were calculated from the CGM data measured every 5 min. 356 

 357 

OGTT-derived indices: 358 

Three OGTT-derived indices were calculated as previously described.15 I.I. indicates insulin 359 

secretion, which can be calculated from the ratio of the increment of immunoreactive insulin 360 

(IRI) to that of plasma glucose at 30 min after onset of the OGTT. Composite index indicates 361 

insulin sensitivity, which can be calculated from fasting plasma glucose, fasting IRI, mean 362 

blood glucose levels, and mean serum IRI concentrations during the OGTT. Oral DI was 363 

calculated from the product of composite index and the ratio of the area under the insulin 364 

concentration curve from 0 to 120 min to that for plasma glucose from 0 to 120 min, without 365 

using the data measured at 90 min, in the OGTT. 366 

 367 

VH-IVUS-derived index: 368 

VH-IVUS was carried out using the Eagle Eye Platinum 3.5-Fr 20-MHz catheter (Volcano, 369 

Rancho Cordova, CA, USA), as previously described.15 The %NC, a widely used parameter 370 

of plaque vulnerability, was evaluated. 371 

 372 

Prediction models and statistical analyses 373 

In this study, we conducted multiple linear regression, LASSO regression, and PLS 374 

regression. The input variables in these models included the following 26 variables: BMI, 375 

SBP, DBP, TGs, LDL-C, HDL-C, FBG, HbA1c, PG120, I.I., composite index, oral DI, 376 

CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, GRADE, MODD, MAGE, ADRR, 377 

MVALUE, MAG, AC_Mean, and AC_Var. In conducting these models, z-score 378 

normalization on each input variable was performed. 379 
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The predictive performance of multiple linear regression was evaluated by the 380 

coefficient of determination (R2), the adjusted coefficient of determination (Adj R2), and AIC. 381 

The multicollinearity of the input variables was estimated by VIF. LASSO regression is a 382 

kind of linear regression with L1 regularization.20 The optimal regularization coefficient, 383 

lambda, was based on leave-one-out cross-validation and mean-squared error. The 384 

importance of the input variables in predicting %NC was evaluated by the VIP scores22 that 385 

were generated from PLS regression. These models were conducted using scikit-learn, a 386 

python-based tool kit. 387 

Relationships among indices were also evaluated using Spearman’s correlation 388 

coefficients (r), and the correlation coefficients were reported with 95% CIs through 389 

bootstrap resampling. The number of resamples performed to form the distribution was set at 390 

10000. Benjamini–Hochberg’s multiple comparison test was also performed with a 391 

significance threshold of Q < 0.05. 392 

 393 

Factor analysis and hierarchical clustering analysis 394 

The intercorrelations of the clinical parameters and their associations with %NC were 395 

assessed using exploratory factor analyses and hierarchical clustering analyses. We followed 396 

the previously reported approach23,24,26,32 with some modifications in conducting our 397 

exploratory factor analyses. BIC and MAP methods were used to determine the number of 398 

underlying factors. Variables with factor loadings of ≥0.30 were used in interpretation. To 399 

improve the interpretation, orthogonal (varimax) rotation was used. To evaluate the 400 

applicability of the factor analysis, KMO and Bartlett’s spherical test were performed. To 401 

evaluate internal consistency of each factor, Cronbach’s α and item–total correlations were 402 

calculated. The association of the factor scores with %NC was assessed using Spearman’s 403 

correlation. 404 
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 Hierarchical clustering analysis was conducted using a method that combines a 405 

Euclidean distance measure and Ward linkage. It was adopted after Z score normalization. 406 

I.I., composite index, oral DI, and AC_Mean were inverted negatively so that the value of 407 

indices increased in subjects with abnormalities. The quality of the hierarchical clustering 408 

analysis was evaluated based on silhouette analysis.33 409 

 410 

Mathematical model used for simulating the characteristics of glucose dynamics 411 

In simulating the characteristics of glucose dynamics, we used a simple and stable model,28 412 

which can be written as follows: 413 

𝑑𝐺

𝑑𝑡
= −𝑘glu𝐺 − 𝑘sen𝐼𝐺 + 𝑘pro + 𝑓 414 

𝑑𝐼

𝑑𝑡
=

𝑘sec

𝑘tim
∫ 𝐺

𝑡

𝑡−𝑘tim

𝑑𝑠 − 𝑘cle𝐼 415 

where the variables 𝐺 and 𝐼 denote blood glucose and insulin concentrations, respectively. 416 

We simulated 240 min profiles of 𝐺, and calculated the mean, Std, and AC_Var of 𝐺. The 417 

parameters were changed within the range participants could take.28 Five mg/dL/min glucose 418 

was applied for 10 min at 30 min as the external input of glucose 𝑓 (Fig. S8A).  419 

 420 

Characterization of glucose patterns during the OGTT 421 

We investigated the characteristics of previously reported glucose patterns during the 422 

OGTT.29 In the study, 5861 subjects without diabetes underwent the OGTT with 423 

measurements of glucose levels at three time points (0, 30, and 120 min), and four distinct 424 

glucose patterns associated with long-term outcomes including diabetes onset, CVD, and all-425 

cause mortality rate were identified. For the calculation of mean, Std, and AC_Var of glucose 426 

levels, each time point was linearly imputed. Here, AC_Var was calculated from the 427 

autocorrelation function at lags 1–20, as we had glucose data available for only 2 h after the 428 

OGTT. 429 
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 430 

RESOURCE AVAILABILITY 431 

Lead contact 432 

For any additional information and requests regarding resources and reagents, please contact 433 

the lead contact, Shinya Kuroda (skuroda@bs.s.u-tokyo.ac.jp). 434 

Data and code availability 435 

The CGM data that support the findings of this study are available from the GitHub 436 

repository (https://github.com/HikaruSugimoto/CGM_regression_app). The code that 437 

calculates AC_Mean and AC_Var and that performs regression analysis with CGM-derived 438 

indices as input variables are available from the repository 439 

(https://github.com/HikaruSugimoto/CGM_regression_app) and the web application 440 

(https://cgm-basedregression.streamlit.app/). 441 

Materials availability 442 

The study did not generate any new material. 443 
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Figures 453 

 454 

Figure 1. Relationship among clinical parameters.  455 
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(A) The absolute values of Spearman’s correlation coefficients between clinical parameters 456 

and %NC. Bars represent the 95% CIs.  457 

(B) A spring layout of the correlation network involving %NC (black), 14 CGM-derived 458 

indices (red), 3 blood glucose level-related indices (magenta), 3 insulin sensitivity or 459 

secretion-related indices (blue), and 6 other clinical indices (green) obtained from a single 460 

blood test or physical measurement. Connections denote relationships with Q < 0.05. The 461 

width of the edges is proportional to the corresponding correlation coefficient.  462 

(C) Scatter plots for AC_Var versus CGM_Mean (the left), and AC_Var versus CGM_Std 463 

(the right). Each point corresponds to the values for a single subject. Subjects were colored 464 

based on the value of %NC. r is Spearman’s correlation coefficient, and the value in 465 

parentheses is 95% CI. 466 

(D) Multiple regression analysis between %NC and CGM_Mean, CGM_Std, and AC_Var 467 

(the left). That between %NC and FBG, HbA1c, and PG120 (the right). Bars represent the 468 

95% CIs of the coefficients. 469 
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 471 

Figure 2. LASSO and PLS regression analyses for predicting %NC. 472 

(A) Relationship between regularization coefficients (lambda) and the MSE based on the 473 

leave-one-out cross-validation in predicting %NC. Dotted vertical line indicates the optimal 474 

lambda, which provides the least MSE. The optimal lambda was 0.849.  475 

(B) LASSO regularization paths along the lambda in predicting %NC. Cyan, magenta, and 476 

gray lines indicate the estimated coefficients of AC_Mean, AC_Var, and the other input 477 

variables, respectively. Dotted vertical line indicates the optimal lambda.  478 

(C) Estimated coefficients with the optimal lambda. Only variables with non-zero coefficients 479 

are shown. Input variables include the following 21 variables: BMI, FBG, HbA1c, PG120, 480 

I.I., composite index, oral DI, CGM_Mean, CGM_Std, CONGA, LI, JINDEX, HBGI, 481 

GRADE, MODD, MAGE, ADRR, MVALUE, MAG, AC_Mean, and AC_Var. 482 
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(D) VIP generated from the PLS regression predicting %NC. Variables with a VIP ≥ 1 (the 483 

dotted line) were considered to significantly contribute to the prediction. 484 
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 486 

Figure 3. Factor analysis of the clinical parameters. 487 
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(A) Factor analysis after orthogonal rotation. The values and colors were based on the factor 488 

loadings. The columns represent each factor. The rows represent input indices.  489 

(B) Cronbach’s α for each factor. Bars represent the 95% CI. 490 

(C) Scatter plots and fitted linear regression lines for factor scores versus %NC. Each point 491 

corresponds to the values for a single subject. r is Spearman’s correlation coefficient, and the 492 

value in parentheses is the 95% CI. 493 
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 495 

Figure 4. Overview of the three components of glucose dynamics.  496 

(A) 240 min simulated glucose concentration. The colors of the line are based on the mean 497 

value (Mean), Std, and AC_Var of the simulated blood glucose. Red and gray dotted 498 

horizontal lines indicate the minimum or maximum values of blood glucose, respectively. 499 
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(B) Previously reported patterns of blood glucose during the OGTT.29 Green, class 1; light 500 

blue, class 2; dark blue, class 3; red, class 4.  501 

(C) Mean, Std, and AC_Var of the glucose during the OGTT. Colors are based on the class 502 

shown in Figure 4B. 503 

 504 

  505 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


References 506 

1. Fiarni, C., Sipayung, E. M. & Maemunah, S. Analysis and Prediction of Diabetes 507 

Complication Disease using Data Mining Algorithm. Procedia Comput. Sci. 161, 449–508 

457 (2019). 509 

2. Bax, J. J. et al. Screening for coronary artery disease in patients with diabetes. Diabetes 510 

Care 30, 2729–2736 (2007). 511 

3. Ravaut, M. et al. Predicting adverse outcomes due to diabetes complications with 512 

machine learning using administrative health data. NPJ Digit Med 4, 24 (2021). 513 

4. Young, L. H. et al. Cardiac outcomes after screening for asymptomatic coronary artery 514 

disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. 515 

JAMA 301, 1547–1555 (2009). 516 

5. Psoma, O., Makris, M., Tselepis, A. & Tsimihodimos, V. Short-term Glycemic 517 

Variability and Its Association With Macrovascular and Microvascular Complications in 518 

Patients With Diabetes. J. Diabetes Sci. Technol. 19322968221146810 (2022). 519 

6. Monnier, L., Colette, C. & Owens, D. R. Glycemic variability: the third component of 520 

the dysglycemia in diabetes. Is it important? How to measure it? J. Diabetes Sci. 521 

Technol. 2, 1094–1100 (2008). 522 

7. Selvin, E. et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic 523 

adults. N. Engl. J. Med. 362, 800–811 (2010). 524 

8. Gorst, C. et al. Long-term Glycemic Variability and Risk of Adverse Outcomes: A 525 

Systematic Review and Meta-analysis. Diabetes Care 38, 2354–2369 (2015). 526 

9. Zhou, J. J., Schwenke, D. C., Bahn, G., Reaven, P. & VADT Investigators. Glycemic 527 

Variation and Cardiovascular Risk in the Veterans Affairs Diabetes Trial. Diabetes Care 528 

41, 2187–2194 (2018). 529 

10. Gerbaud, E. et al. Glycemic Variability Is a Powerful Independent Predictive Factor of 530 

Midterm Major Adverse Cardiac Events in Patients With Diabetes With Acute Coronary 531 

Syndrome. Diabetes Care 42, 674–681 (2019). 532 

11. Su, G. et al. Association of glycemic variability and the presence and severity of 533 

coronary artery disease in patients with type 2 diabetes. Cardiovasc. Diabetol. 10, 19 534 

(2011). 535 

12. Cai, J. et al. Impact of the complexity of glucose time series on all-cause mortality in 536 

patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 108, 1093–1100 (2023).  537 

13. Service, F. J. Glucose variability. Diabetes 62, 1398–1404 (2013). 538 

14. Tang, X. et al. Glycemic variability evaluated by continuous glucose monitoring system 539 

is associated with the 10-y cardiovascular risk of diabetic patients with well-controlled 540 

HbA1c. Clin. Chim. Acta 461, 146–150 (2016). 541 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


15. Otowa-Suematsu, N. et al. Comparison of the relationship between multiple parameters 542 

of glycemic variability and coronary plaque vulnerability assessed by virtual histology-543 

intravascular ultrasound. J. Diabetes Investig. 9, 610–615 (2018). 544 

16. Okada, K. et al. Association between blood glucose variability and coronary plaque 545 

instability in patients with acute coronary syndromes. Cardiovasc. Diabetol. 14, 111 546 

(2015). 547 

17. Hill, N. R. et al. Normal reference range for mean tissue glucose and glycemic 548 

variability derived from continuous glucose monitoring for subjects without diabetes in 549 

different ethnic groups. Diabetes Technol. Ther. 13, 921–928 (2011). 550 

18. Sugimoto, H. et al. Improved Detection of Decreased Glucose Handling Capacities via 551 

Novel Continuous Glucose Monitoring-Derived Indices: AC_Mean and AC_Var. 552 

medRxiv 2023–2009 (2023). 553 

19. Utzschneider, K. M. et al. Oral disposition index predicts the development of future 554 

diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32, 335–341 555 

(2009). 556 

20. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58, 267–557 

288 (1996). 558 

21. Wei, H. et al. Environmental chemical exposure dynamics and machine learning-based 559 

prediction of diabetes mellitus. Sci. Total Environ. 806, 150674 (2022). 560 

22. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. 561 

Chemometrics Intellig. Lab. Syst. 58, 109–130 (2001). 562 

23. Cappelleri, J. C., Gerber, R. A., Kourides, I. A. & Gelfand, R. A. Development and 563 

factor analysis of a questionnaire to measure patient satisfaction with injected and 564 

inhaled insulin for type 1 diabetes. Diabetes Care 23, 1799–1803 (2000). 565 

24. Oh, J.-Y., Hong, Y. S., Sung, Y.-A. & Barrett-Connor, E. Prevalence and factor analysis 566 

of metabolic syndrome in an urban Korean population. Diabetes Care 27, 2027–2032 567 

(2004). 568 

25. Augstein, P. et al. Q-Score: development of a new metric for continuous glucose 569 

monitoring that enables stratification of antihyperglycaemic therapies. BMC Endocr. 570 

Disord. 15, 22 (2015). 571 

26. Guo, W., Zhou, Q., Jia, Y. & Xu, J. Cluster and Factor Analysis of Elements in Serum 572 

and Urine of Diabetic Patients with Peripheral Neuropathy and Healthy People. Biol. 573 

Trace Elem. Res. 194, 48–57 (2020). 574 

27. Hall, H. et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 16, 575 

e2005143 (2018). 576 

28. De Gaetano, A. & Arino, O. Mathematical modelling of the intravenous glucose 577 

tolerance test. J. Math. Biol. 40, 136–168 (2000). 578 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/


29. Hulman, A. et al. Glucose patterns during an oral glucose tolerance test and associations 579 

with future diabetes, cardiovascular disease and all-cause mortality rate. Diabetologia 580 

61, 101–107 (2018). 581 

30. Cobelli, C. & Facchinetti, A. Yet Another Glucose Variability Index: Time for a 582 

Paradigm Change? Diabetes Technol. Ther. 20, 1–3 (2018). 583 

31. Ceriello, A. et al. Oscillating glucose is more deleterious to endothelial function and 584 

oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57, 585 

1349–1354 (2008). 586 

32. Lakka, H.-M. et al. The metabolic syndrome and total and cardiovascular disease 587 

mortality in middle-aged men. JAMA 288, 2709–2716 (2002). 588 

33. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of 589 

cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). 590 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298816doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298816
http://creativecommons.org/licenses/by/4.0/

	SUMMARY
	INTRODUCTION
	RESULTS
	DISCUSSION
	METHODS
	RESOURCE AVAILABILITY Lead contact
	Acknowledgments
	Figures
	References

