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Abstract 

Background: Although observational studies indicate a complex, bidirectional association 

between major depressive disorder (MDD) and cerebral small vessel disease (CSVD), the results 

are frequently inconsistent. This study investigated the potential correlation of MDD with both 

CSVD clinical outcomes and imaging markers, utilizing a bidirectional Mendelian randomization 

(MR) study design. 

Methods: Instrumental variables for both MDD and CSVD were extracted from the latest or most 

extensive genome-wide association study (GWAS) data available for each phenotype. Clinical 

outcomes and imaging markers of CSVD were defined using several parameters. The inverse 

variance weighting (IVW) method with additional sensitivity and heterogeneity analyses was used. 

Furthermore, a separate GWAS for depression was used to validate our significant findings. 

Results: In the forward MR analyses, the genetically predicted risk of MDD was positively 

associated with two CSVD phenotypes showing microscopic white matter (WM) damage: mean 

diffusivity (IVW OR = 2.191, 95 % CI 1.226 to 3.917, p = 0.008) and WM-enlarged perivascular 

space (OR = 1.053 95 % CI 1.006 to 1.101, p = 0.026). The use of an independent database for 

depression yielded no significant risk of depression associated with these two CSVD traits. 

Furthermore, reverse MR analyses showed no evidence of reverse causality between MDD and an 

altered CSVD risk. 

Conclusions: This study utilizing MR imaging findings supports a substantial causal association 

between MDD and CSVD-related indicators of impaired WM microstructure. It is necessary to 

exercise caution when extending these results to individuals with depression. 

 

Keywords: major depressive disorder; depression; cerebral small vessel disease; Mendelian 

randomization; microscopic white matter damage 

Introduction 

Major depressive disorder (MDD) is a global public health concern with a substantial 

socio-economic burden. Almost 20 % of individuals experience at least one episode of MDD 

during their lifetime (Kupfer, Frank, & Phillips, 2012). Cerebral small vessel disease (CSVD) 

comprises several syndromes affecting the small vessels of the brain. The most acute 

manifestations of CSVD are intracerebral hemorrhage (ICH) and small vessel ischemic stroke 

(SVS) (Markus & de Leeuw, 2023), and the principal neuroimaging markers include lacunar 

infarcts, white matter hyperintensities (WMH), brain microbleeds (BMBs), enlarged perivascular 

space (PVS), and cerebral atrophy (Chen et al., 2019). Interestingly, three decades of accumulated 

research evidence suggests a complex bidirectional relationship between MDD and CSVD, with 

WMH being the most extensively researched neuroimaging indicator. 

WMH correlates with the occurrence of depressive symptoms (de Groot et al., 2000; Desmarais et 

al., 2021). Compared to the normal control group, patients with MDD exhibited greater severity of 

deep WMH signals (Brown, Lewine, Hudgins, & Risch, 1992). WMH severity is a crucial 

predictor of future depression risk in patients with CSVD ( Park et al., 2015; Jaroonpipatkul et al., 
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2022; Ottavi, Pepper, Bateman, Fiorentino, & Brodtmann, 2023; F. Zhang, Ping, Jin, Hou, & Song, 

2023). Specifically, those with extensive WMH at baseline are more likely to develop major 

depressive symptoms (Qiu et al., 2017). Increased mean diffusivity (MD) and decreased fractional 

anisotropy (FA) are two key indicators of assessing WM microstructural damage (Liao et al., 2013; 

Nobuhara et al., 2006; Taylor et al., 2004). Lower FA values in adolescents (Vulser et al., 2018) 

and higher MD values (Özel et al., 2023) are correlated with greater individual risk and 

occurrence of depressive symptoms, respectively. 

Both lacunar infarcts (Direk et al., 2016; Özel et al., 2023) and BMBs (Direk et al., 2016; Xu et al., 

2017) are associated with the occurrence of depressive symptoms and disorders. CSVD severity 

correlates with the diagnosis of depression before and after ICH (Castello et al., 2022). In patients 

with MDD, a significant correlation was observed between the number of traumatic events and 

overall PVS volume (Ranti et al., 2022). However, these observational studies may be subject to 

reverse causation and residual confounding factors, leading to conflicting results (Ahmed et al., 

2022; Mewton et al., 2019). Therefore, the causative link between MDD and CSVD remains to be 

elucidated. 

Mendelian randomization (MR) represents a potent, up-and-coming method that employs genetic 

variance as an instrumental variable (IV) to evaluate the causal impact of an exposure on a given 

outcome (Emdin, Khera, & Kathiresan, 2017; Sekula, Del Greco M, Pattaro, & Köttgen, 2016). 

Herein, we conducted a bidirectional two-sample MR analysis to comprehensively evaluate the 

relationship between MDD and clinical outcomes associated with CSVD (ICH or SVS, lobar ICH 

or SVS, and non-lobar ICH or SVS) and radiological markers of CSVD (WMH, FA, MD, BMBs, 

and PVS). In addition, we used a separate depression genome-wide association study (GWAS) to 

validate our significant findings. 

Materials and methods  

Study design 

This study was conducted in accordance with the STROBE-MR checklist (Supplement file 1: 

Table S1) (Skrivankova et al., 2021). We described our rationale, study design, and procedures in 

Figure 1. All data used in this study were publicly available and therefore did not require ethics 

approval. 

 

Data sources 

Details of the GWAS data sets are listed in Table 1. For MDD, we used the latest and largest 

GWAS summary statistics from the UK Biobank (UKB), which analyzed 170,756 MDD cases and 

329,443 controls, and the Psychiatric Genomics Consortium (PGC) GWAS datasets, which 

analyzed 8,483,301 variants (Howard et al., 2019). The definition of MDD used by the UKB was 

based on self-reported symptoms, treatment, or electronic records (Howard et al., 2018). The 

definition of MDD used by the PGC was based on structured diagnostic interviews (Wray et al., 

2018). To analyze depression, data were obtained from the FinnGen Study Release 9 of the 
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GWAS for depression, F5_DEPRESSIO (Kurki et al., 2023), which included 43,280 patients and 

329,192 controls. Depression was defined according to the International Classification of 

Diseases. 

The CSVD clinical outcomes were obtained from a meta-analysis of ICH GWAS results by 

location and SVS GWAS results from the MEGASTROKE study, which comprised “all location 

ICH or SVS,” “lobar ICH or SVS,” and “non-lobar ICH or SVS.” The study sample included 

6,255 ICH or SVS cases and 233,058 controls of European ancestry (Chung et al., 2019). 

The seven radiological markers of CSVD included WMH, FA, MD, BMBs, WM-PVS, basal 

ganglia (BG)-PVS, and hippocampal (HIP)-PVS. 

WMH represents pathological changes in MRI scan results, whereas FA and MD demonstrate 

greater sensitivity to the disruption of normal function and structure than measuring pathology in 

isolation. GWAS data for three WM markers, WMH (N = 18,381), FA (N = 17,663), and MD (N 

= 17,467), were obtained from the UKB, Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE), and WMH-Stroke multi-ethnic studies (Persyn et al., 2020). The 

WMH volume was measured using T1, T2, and fluid-attenuated inversion recovery sequences. FA 

and MD data were obtained from diffusion tensor imaging measurements of 48 brain regions. 

The BMBs GWAS data were obtained from 11 population-based cohorts and 3 stroke cohort 

studies with case-control or case-only designs (Knol et al., 2020). BMBs were defined as small, 

low-signal lesions identifiable on a susceptibility-weighted imaging or T2-weighted gradient echo 

sequence. The study sample included 3,556 case and 22,306 control individuals, of whom 94 % 

were of European ethnicity. 

The PVS data in European populations were obtained from a meta-analysis of 18 cohorts, 

including 9,317 case and 29,281 control individuals for WM-PVS, 8,950 case and 29,953 control 

individuals for BG-PVS, and 9,163 case and 29,708 control individuals for HIP-PVS (Duperron et 

al., 2023). PVSs were defined as fluid-filled spaces with the same signal as the cerebrospinal fluid 

and no high signal rim on T2-weighted or FLAIR sequences. The PVS burden was quantitatively 

defined by different scales, including the visual semiquantitative rating scale, among others. 

Selection of instruments 

The filtering of instrumental variables (IVs) must fulfill three core assumptions (Figure 1). In the 

forward MR analysis, SNPs satisfying a genome-wide significance level of p < 5E-08 were 

initially selected (Zhang et al., 2023). For fewer than three remaining SNPs, a relaxed threshold of 

p < 1E-05 was used. Relaxing the statistical threshold for IVs has been employed in several MR 

studies in the psychiatric domain (Lee et al., 2023; Li et al., 2023; Pan et al., 2023). To exclude 

genetic variants with strong correlations, the clumping process was performed using the 1000 

Genomes Project European reference panel (R2 < 0.001 and a window size of 10,000 kb). The 

SNPs and corresponding statistics were extracted from the CSVD GWAS dataset, deleting SNPs 

with minor allele frequency (MAF) < 0.01. Further, the MDD and CSVD data were harmonized 

by removing all palindromic SNPs. To satisfy the independence assumption, SNPs from the 
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PhenoScannerV2 database that were significantly associated with confounding variables (Kamat 

et al., 2019) were collected. SNPs directly associated with CSVD were also excluded. We used the 

same rigorous criteria for selecting IVs in the reverse MR analysis. The variance explained (R2) by 

each SNP was calculated using the formula: R2 = 2 × MAF × (1−MAF) × beta2 (Si et al., 2021). 

The F-statistic was utilized to assess the strength of the genetic instrument. SNPs with F-statistic 

values < 10 (implying weak IVs) were removed from subsequent analyses (Burgess & Thompson, 

2011). 

Statistical analysis 

The primary analytic method used in this survey was the inverse variance weighting (IVW) 

method, which is known for its superior detection power (Burgess, Butterworth, & Thompson, 

2013). Four other methods, namely weighted median, simple mode, weighted mode, and 

MR–Egger, were used for complementary analyses. For heterogeneity analysis, we used Cochran's 

Q test (Greco M, Minelli, Sheehan, & Thompson, 2015) and leave-one-out analysis (Wu et al., 

2021) to assess the level of heterogeneity among SNPs. The possible presence of pleiotropic effect 

was evaluated by the intercept of the MR–Egger regression test (Bowden, Davey Smith, & 

Burgess, 2015) and MR pleiotropy residual sum and outlier (MR-PRESSO) test (Verbanck, Chen, 

Neale, & Do, 2018). We used the same statistical analysis in the reverse MR analysis. We 

calculated odds ratios (ORs) to measure the causal effect between MDD and CSVD phenotypes. 

Considering the partial sample overlap between MDD and WMH in the UKB, we conducted a 

bias and type I error analysis to evaluate the potential bias risk attributable to sample overlap. 

Given the exploratory nature of this study, we did not perform correction of multiple comparisons. 

The statistical software R (version 4.1.0, R Foundation for Statistical Computing, Vienna, Austria; 

https://www.R-project.org) was used to perform all statistical analyses and visualize the results 

obtained. The software packages were TwoSampleMR, MR-PRESSO, and Forestplot. 

Results 

Genetic instrument strength and sample overlap 

For the 10 genetically related MDD-CSVD pairs, we only performed an MR analysis on pairs 

containing at least two qualifying IVs. In the forward MR analysis, all 10 pairs had SNPs available 

for analysis. In the reverse MR, two phenotypes, BG-PVS and HIP-PVS, had no IV remaining 

after the removal of the weak instrument (even when a loose threshold of p < 1E-05 was used); 

hence, they were not included in the MR analysis. The range of SNPs utilized as genetic 

instruments varied from 3 to 41, accounting for 0.16–23.63 % of the phenotypic variance, with 

F-statistics > 10 (range 20.92–1350.80) for all phenotypes, indicating the good strength of the IVs 

(Supplement file 1: Table S2). Details of all the SNPs included in the MR analysis are provided in 

the supplementary file (Supplement file 1: Table S3). The risk of bias due to sample overlap in the 

assessment was minimal (< 0.01, regardless of the overlap proportion). 

Causal relationship between MDD and CSVD 
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First, to comprehensively assess the effect of MDD on CSVD clinical outcomes and radiological 

markers, we used the IVW approach for the main analysis. Notably, as shown in the forest plot 

(Figure 2), we found a significant effect of MDD on two radiological markers of CSVD: MD and 

WM-PVS. 

The IVW approach demonstrated that a genetically determined higher risk of MDD was 

associated with increased MD (OR = 2.191, 95 % CI 1.226 to 3.917, p = 0.008). MR–Egger (OR = 

97.532, 95 % CI 6.110 to 1556.906, p = 0.002) and weighted median (OR = 2.274, 95 % CI 1.117 

to 4.631, p = 0.024) results were consistent with the IVW results (Figure 2). The MR–Egger 

intercept indicated the absence of pleiotropy (intercept = −0.116, p = 0.009) (Table 2), which may 

have caused the MR–Egger method to produce an OR with a wide range of results. Cochrane’s Q 

test showed no heterogeneity (Cochrane Q = 53.499, p = 0.061). The leave-one-out method 

showed no significant change in the IVW causal estimates after deleting any variant, suggesting 

the robustness of the results (Supplemental file 2: Figure S1). In addition, the MR-PRESSO test 

detected no significant outliers (p = 0.051). 

A genetically determined higher risk of MDD was also associated with an increased risk of 

WM-PVS (OR = 1.053 95 % CI 1.006 to 1.101, p = 0.026) (Figure 2). The other four methods 

(MR–Egger, weighted median, simple mode, weighted mode) did not yield significant results (p > 

0.05) (Supplemental file 1: Table S2). The sensitivity and heterogeneity analyses passed the test 

(all p > 0.05) (Table 2). The leave-one-out analyses indicated that the observed associations were 

stable (Supplemental 2: Figure S1). 

For the other phenotypes, there was no evidence of an effect of MDD on the risk of clinical CSVD 

outcomes (all p > 0.05). There was also no evidence of an effect of MDD on the risk of WMH, FA, 

BMBs, BG-PVS, and HIP-PVS (Figure 2). 

Depression data from the FinnGen database revealed no association between depression and the 

risk of MD (OR =1.084, 95 % CI 0.557 to 2.110, p = 0.812) and WM-PVS (OR = 0.872, 95 % CI 

0.722 to 1.052, p = 0.151) by the IVW method (Supplemental 1: Table S4). 

Causal relationship between CSVD and MDD 

In reverse MR, we examined the effect of eight phenotypes with qualified IVs on the risk of MDD. 

There was no evidence that ICH or SVS, lobar ICH or SVS, non-lobar ICH or SVS, WMH, FA, 

MD, BMBs, and WM-PVS affected the genetically predicted risk of MDD (Figure 2). Because 

there were only three SNPs in WM-PVS, the MR PRESSO Global test was not performed. No 

horizontal pleiotropy or heterogeneity (all p > 0.05) was found for the remaining phenotypes 

except for the BMBs (Cochrane Q = 30.089, p = 0.037, MR PRESSO Global test p = 0.046), 

suggesting that the results are reliable (Table 2). 

Discussion 
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To our knowledge, this is the first MR study to comprehensively investigate the causal association 

of MDD with CSVD clinical outcomes (ICH or SVS) and radiological markers (WMH, MD, FA, 

BMBs, and PVS). In forward MR, we found that the genetically predicted risk of MDD was 

positively associated with increased MD and the presence of WM-PVS. However, when the 

FinnGen dataset on depression was used, no genetically predicted risk of depression was found to 

be associated with these two CSVD traits (MD, WM-PVS), thus validating the study results. 

Additionally, reverse MR did not identify any causal association between CSVD risk and MDD. 

Since genetic variants are assigned to the offspring during meiosis, MR analyses can reflect 

lifelong exposure, reducing interference from reverse causation and confounding factors in 

comparison to observational studies. The aforementioned findings indicate a correlation between 

MDD and CSVD, implying that the genetically predicted risk of MDD could result in weakened 

microstructural integrity of cerebral WM. Consequently, curative measures or prevention of MDD 

may prove to be beneficial in averting future occurrences of CSVD. 

Numerous epidemiological studies have investigated the intricate reciprocal association between 

MDD (or depression) and cerebral WM lesions (Gu et al., 2022; Pasi et al., 2016; Zhang et al., 

2021). Patients with CSVD exhibiting depressive symptoms demonstrate a notable decrease in 

network efficiency and WM integrity compared to their counterparts without such symptoms (Lu 

et al., 2022; van Uden et al., 2015). The current MR study evaluated the mutually influential 

association of MDD with the WM macrostructure (WMH volume) and microstructure (FA and 

MD). Surprisingly, the analyses showed no evidence of a genetic association between MDD and 

WMH. This outcome is comparable to the results of two recent cohort studies: Clancy et al. 

discovered that heightened WMH was not linked to depression (2023), whereas Ali et al. 

illustrated that the load of WMH was not associated with depression 1 year after a stroke (2023). 

Another study, which implemented a machine learning algorithm, demonstrated that the severity 

of depression over time was unaffected by WMH volume (Ahmed et al., 2022). 

Furthermore, the genetically predicted risk of MDD was associated with increased MD but not 

with FA. As WMH volume indicates the accumulation of WM damage over time, microstructural 

measurements may have greater sensitivity, implying that damage to microstructural integrity 

precedes WMH. The disparity between the two microscopic indicators could be attributed to MD 

being linked to blood-brain barrier (BBB) leakage, which occurs earlier in WMH progression and 

may be more receptive to identifying minor injuries. Conversely, FA seems to be affected more 

directly by myelin changes and may identify more severe injuries (Cubon, Putukian, Boyer, & 

Dettwiler, 2011; O’Dwyer et al., 2011; Song et al., 2003). 

This study demonstrated that the MDD correlated positively with another form of WM 

microstructure damage: the WM-PVS. A possible explanation relates to perturbations in the 

central nervous system microenvironment in patients with MDD, including impaired BBB 

permeability (Yarlagadda, Alfson, & Clayton, 2009), leading to the recruitment and accumulation 

of blood immune cells and immune mediators around blood vessels (Winkler et al., 2021), 

resulting in PVS enlargement (Wuerfel et al., 2008). 

A prior MR study explored the causal link between MDD and ischemic stroke, specifically SVS, 

and found that MDD was associated with a higher risk of SVS (Cai et al., 2019). We used a 
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cross-phenotypic GWAS (Chung et al., 2019) and found no effect of genetically predicted risk of 

MDD on CSVD clinical phenotypes (ICH or SVS, lobar ICH or SVS, non-lobar ICH or SVS). 

One possible explanation for this discrepancy in results is that Cai et al.’s study used a looser 

genome-wide significance threshold (p < 1E-06) to allow the inclusion of more SNPs that 

contributed to MDD risk. In contrast, we used a more stringent threshold of p < 5E-08 when 

examining the three pairwise associations between MDD and CSVD clinical phenotypes. 

Furthermore, a recent MR in 2023 examined the risk association between MDD and ICH and 

found no causal relationship (Wang et al., 2022). Because we used larger and more comprehensive 

GWAS datasets for both MDD and CSVD clinical phenotypes, our findings may provide more 

reliable evidence of an association between the two. 

Our study had some limitations. First, the positive results regarding the causal relationship 

between MDD and CSVD were not replicated with the FinnGen depression data. This suggests an 

association between MDD rather than depression and increased susceptibility to CSVD; therefore 

caution is needed in extending the results to individuals with depression who do not meet clinical 

diagnostic criteria for MDD. 

Second, the association between CSVD and late-life depression (LLD), based on the “vascular 

depression hypothesis,” has been extensively studied previously (Aizenstein et al., 2016; 

Alexopoulos et al., 1997). However, in the current study, the lack of high-quality GWAS data on 

LLD limited more precise analyses of the association between depressive subtypes and CSVD. 

Future studies are expected to explore the complex bidirectional relationship between CSVD and 

depression subtypes using more extensive GWAS data. 

Third, women have a significantly higher prevalence of depression (Kessler, McGonagle, Swartz, 

Blazer, & Nelson, 1993; Kuehner, 2017). An observational study found a significant association 

of depressive symptoms with periventricular WMH, deep WMH, and the number of asymptomatic 

infarcts in women but not in men (Wendell et al., 2010). Although the original GWAS dataset 

used was adjusted for sex, sex-stratified data were lacking. Further future studies that stratify 

differential effects by sex would be valuable. 

Finally, despite the various sensitivity analyses, the possibility of uncontrolled pleiotropy or 

heterogeneity cannot be excluded. More large-scale prospective studies are needed in the future to 

verify the causal relationship between MDD and CSVD. 

Conclusion 

In conclusion, the association between the risk of MDD and CSVD may have far-reaching 

physiological value and clinical implications, as identified in this MR study. The implication of 

this potential association involves the proactive identification of individuals at risk for the 

development and progression of CSVD, leading to the implementation of prevention strategies 

and improved clinical outcomes. 
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Table 1. Characteristics of the genome-wide association study used in this study. 

  Ethnicity Sample size Adjusted URL (data download) Pubmed ID 

Exposure 
     

MDD European 
170 756 cases and 329 443 

controls 
Sex, age, genotyping array, and the first 8 PCs 

https://datashare.ed.ac.uk/handl

e/10283/3203 
30718901 

Depression European 43 280 cases and 329 192 controls Sex, age, genotyping batch, and 10 PCs 
https://r9.risteys.finngen.fi/pheno

code/F5_DEPRESSIO 
36653562 

Outcome 
     

ICH or SVS European 6 255 cases and 233 058 controls Age, sex, and first 4 genetic PCs 
https://cd.hugeamp.org/downloa

ds.html 
31430377 

Lobar ICH or SVS European 5 208 cases and 233 058 controls Age, sex, and first 4 genetic PCs 
https://cd.hugeamp.org/downloa

ds.html 
31430377 

Non-lobar ICH or SVS European 5 468 cases and 233 058 controls Age, sex, and first 4 genetic PCs 
https://cd.hugeamp.org/downloa

ds.html 
31430377 

WMH European 18 381 individuals 

Age at MRI, sex, genotyping array, the UK 

Biobank assessment center, the first 10 PCs, 

and MRI head motion indicators 

https://cd.hugeamp.org/downloa

ds.html 
32358547 

FA European 17 663 individuals 

Age at MRI, sex, genotyping array, the UK 

Biobank assessment center, the first 10 PCs, 

and MRI head motion indicators 

https://cd.hugeamp.org/downloa

ds.html 
32358547 

MD European 17 467 individuals 

Age at MRI, sex, genotyping array, the UK 

Biobank assessment center, the first 10 PCs, 

and MRI head motion indicators 

https://cd.hugeamp.org/downloa

ds.html 
32358547 
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BMBs 
Multiethnic (mainly 

European, 94%) 
3 556 cases and 22 306 controls 

Age, sex, PCs, family, and relations (if 

applicable) 

https://cd.hugeamp.org/downloa

ds.html 
32913026 

WM-PVS European 9 317 cases and 29 281 controls 
Age, sex, intracranial volume, PCs, and study 

site 

https://www.ebi.ac.uk/gwas/studi

es/GCST90244151 
37069360 

BG-PVS European 8 950 cases and 29 953 controls 
Age, sex, intracranial volume, PCs, and study 

site 

https://www.ebi.ac.uk/gwas/studi

es/GCST90244153 

37069360 

HIP-PVS European 9 163 cases and 29 708 controls 
Age, sex, intracranial volume, PCs, and study 

site 

https://www.ebi.ac.uk/gwas/studi

es/GCST90244155 

37069360 

Abbreviations: GWAS, genome-wide association study, MDD, major depressive disorder; ICH, intracerebral hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter hyperintensities; 

FA, fractional anisotropy; MD, mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, perivascular space; BG, basal ganglia; HP, hippocampal; PCs, principal components 
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Table 2. Results of the pleiotropy and heterogeneity test results for major depressive disorder (MDD) and cerebral small vessel disease (CSVD). 

Exposure Outcome nSNP 
Cochrane's Q  MR Egger regression MR PRESSO Global test 

Q value P value intercept P value P value 

MDD ICH or SVS 36 25.949  0.867  0.027  0.174  0.852  

MDD Lobar ICH or SVS 37 36.115  0.463  0.035  0.048  0.437  

MDD Non-lobar ICH or SVS 36 29.395  0.735  0.028  0.033  0.740  

MDD WMH 40 53.176  0.065  -0.029  0.003  0.068  

MDD FA 40 88.348  ＜0.001 0.099  0.085  0.237  

MDD MD 40 53.499  0.061  -0.116  0.009  0.051  

MDD BMBs 40 34.709  0.666  0.044  0.123  0.681  

MDD WM-PVS 41 47.365  0.197  0.001  0.844  0.210  

MDD BG-PVS 41 61.910  0.015  0.005  0.239  0.018  

MDD HIP-PVS 41 47.971  0.181  -0.004  0.264  0.183  

ICH or SVS MDD 14 23.763  0.033  0.005  0.394  0.132  

Lobar ICH or SVS MDD 13 20.619  0.056  -0.003  0.640  0.060  

Non-lobar ICH or SVS MDD 28 32.248  0.223  -0.002  0.621  0.213  

WMH MDD 6 3.600  0.608  -0.009  0.288  0.651  

FA MDD 5 4.693  0.320  -0.009  0.281  0.408  

MD MDD 4 0.203  0.977  -0.001  0.948  0.980  

BMBs MDD 19 30.089  0.037  0.003  0.562  0.046  

WM-PVS MDD 3 0.396  0.820  -0.002  0.859  NA 

BG-PVS MDD 0 NA NA NA NA NA 

HIP-PVS MDD 0 NA NA NA NA NA 

Abbreviations: nSNP, number of SNP; MDD, major depressive disorder; ICH, intracerebral hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter hyperintensities; FA, fractional 

anisotropy; MD, mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, perivascular space; BG, basal ganglia; HIP, hippocampal; NA, not applicable. 
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Figure Captions 

 

Figure 1. Diagrammatic overview of this MR study. The GVs selected as IVs met three core assumptions. (1) the relevance assumption: IVs should be strongly related to the exposure; (2) the 

independence assumption: the IVs should not be associated with other confounding factors; (3) the exclusion restriction assumption: the effect of the IVs on outcome should be exclusively through 

exposure. Abbreviations MDD, major depressive disorder; CSVD, cerebral small vessel disease; ICH, intracerebral hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter 

hyperintensities; FA, fractional anisotropy; MD, mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, perivascular space; BG, basal ganglia; HP, hippocampal; nSNP, number of SNP; 

GVs, genetic variants; IVs, instrumental variables. 

 

Figure 2. Bidirectional causal relationships between MDD and CSVD using the IVW approach. A The foward MR analyses examined the effect of MDD on CSVD clinical outcomes (n=3) and 

CSVD radiological markers (n=7). B The reverse MR analyses examined the effect of CSVD clinical outcomes (n=3) and CSVD radiological markers (n=4) on MDD. BG-PVS and HIP-PVS did not 

have a qualified IV available for analysis, even with a relaxed threshold (P=1E-05), and were therefore not included in the reverse MR analysis. Abbreviations nSNP, number of SNP; OR, odds ratio; 

CI, confidence interval; CSVD, cerebral small vessel disease; ICH, intracerebral hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter hyperintensities; FA, fractional anisotropy; MD, 

mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, perivascular space; BG, basal ganglia; HIP, hippocampal. 
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Figure 1. Diagrammatic overview of this MR study. The GVs selected as IVs met three core assumptions. (1) the 

relevance assumption: IVs should be strongly related to the exposure; (2) the independence assumption: the IVs 

should not be associated with other confounding factors; (3) the exclusion restriction assumption: the effect of the IVs 

on outcome should be exclusively through exposure. Abbreviations MDD, major depressive disorder; CSVD, cerebral 

small vessel disease; ICH, intracerebral hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter 

hyperintensities; FA, fractional anisotropy; MD, mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, 

perivascular space; BG, basal ganglia; HP, hippocampal; nSNP, number of SNP; GVs, genetic variants; IVs, 

instrumental variables. 
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Figure 2. Bidirectional causal relationships between MDD and CSVD using the IVW approach. 

A The foward MR analyses examined the effect of MDD on CSVD clinical outcomes (n=3) and CSVD radiological 

markers (n=7). B The reverse MR analyses examined the effect of CSVD clinical outcomes (n=3) and CSVD 

radiological markers (n=4) on MDD. BG-PVS and HIP-PVS did not have a qualified IV available for analysis, even with 

a relaxed threshold (P=1E-05), and were therefore not included in the reverse MR analysis. Abbreviations nSNP, 

number of SNP; OR, odds ratio; CI, confidence interval; CSVD, cerebral small vessel disease; ICH, intracerebral 

hemorrhage; SVS, small-vessel ischemic stroke; WMH, white matter hyperintensities; FA, fractional anisotropy; MD, 

mean diffusivity; BMBs, brain microbleeds; WM, white matter; PVS, perivascular space; BG, basal ganglia; HIP, 

hippocampal. 
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