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Abstract

Research on automated mental health assessment tools has been growing in recent years,
often aiming to address the subjectivity and bias that existed in the current clinical
practice of the psychiatric evaluation process. Despite the substantial health and
economic ramifications, the potential unfairness of those automated tools was
understudied and required more attention.

In this work, we systematically evaluated the fairness level in a multimodal remote
mental health dataset and an assessment system, where we compared the fairness level
in race, gender, education level, and age. Demographic parity ratio (DPR) and equalized
odds ratio (EOR) of classifiers using different modalities were compared, along with the
F1 scores in different demographic groups. Post-training classifier threshold
optimization was employed to mitigate the unfairness.

No statistically significant unfairness was found in the composition of the dataset.
Varying degrees of unfairness were identified among modalities, with no single modality
consistently demonstrating better fairness across all demographic variables.
Post-training mitigation effectively improved both DPR and EOR metrics at the
expense of a decrease in F1 scores.

Addressing and mitigating unfairness in these automated tools are essential steps in
fostering trust among clinicians, gaining deeper insights into their use cases, and
facilitating their appropriate utilization.

Author summary

In this work, we systematically explored and discussed the unfairness reporting and
mitigation of automated mental health assessment tools. These tools are becoming
increasingly important in mental health practice, especially with the rise of telehealth
services and large language model applications. However, they often carry inherent
biases. Without proper assessment and mitigation, they potentially lead to unfair
treatment of certain demographic groups and significant harm. Proper unfairness
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reporting and mitigation of these tools is the first step to building trust among
clinicians and patients and ensuring appropriate application.

Using our previously developed multimodal mental health assessment system, we 1

evaluated the unfairness level of using various types of features of the subjects for 2

mental health assessment, including facial expressions, acoustic features of the voice, 3

emotions expressed through language, general language representations generated by 4

large language models, and cardiovascular patterns detected from the face. We analyzed 5

the system’s fairness across different demographics: race, gender, education level, and 6

age. We found no single modality consistently fair across all demographics. While 7

unfairness mitigation methods improved the fairness level, we found a trade-off between 8

the performance and the fairness level, calling for broader moral discussion and 9

investigation on the topic. 10

Introduction 11

Mental disorders are the second most common cause of years lived with disability 12

worldwide [1], and approximately one billion people worldwide live with at least one 13

mental disorder, most without access to effective care [2, 3]. The adoption of telehealth 14

has been growing rapidly for mental health services, especially since the COVID-19 15

pandemic, to reduce cost and improve access [4–7]. Moreover, the current state of 16

mental health clinical practice is compromised by inherent subjectivity and potential 17

biases in the diagnostic and evaluative procedures [8, 9]. For example, African American 18

individuals are disproportionally diagnosed with psychotic disorders [10] using both 19

structured and unstructured clinical interviews [11]. Self-rated mental health 20

questionnaires such as General Anxiety Disorder-7 (GAD-7) [12], and Patient Health 21

Questionnaire-9 (PHQ-9) [13] are also highly subjective and over-reported compared to 22

clinical diagnoses [14]. 23

Objective automated digital assessment tools and corresponding digital biomarkers 24

have been widely developed to aid clinicians in addressing the access, subjectivity, and 25

bias challenges [15]. Those tools have been evaluated in various types of mental health 26

disorders, using single data modality [16–18] or multiple modalities [19–21], in both 27

lab-controlled [22] and remotely collected datasets [23,24]. Although promising results 28

have been shown in those studies, the potential bias inherent in the proposed 29

methodologies could impede the fair diagnosis and evaluation of the underprivileged or 30

underrepresented groups, leading to detrimental health consequences. 31

Addressing the potential adverse health outcomes necessitates an examination of the 32

origins of biases in automated systems. These biases primarily stem from three sources: 33

the mental health condition labels used for training, the construction of the dataset, and 34

the use of pre-trained models with inherent biases. While addressing the first issue 35

requires collaboration with clinical experts, improving fairness in the latter two aspects 36

can be achieved during system development. There has been a growing interest in 37

fairness research, particularly in measuring and mitigating bias in binary classification 38

models [25]. 39

Building upon this, a critical aspect of fairness research is the evaluation of dataset 40

disparities, commonly assessed through the mean difference of positive labels across 41

various demographic groups [25].A key concept in fairness evaluation based only on 42

model output is demographic parity (DP) [26], which defines fairness as the equal 43

proportion of positive predicted or estimated labels for privileged and unprivileged 44

groups. Another type of fairness metric defines fairness as the fair 45

prediction/classification performance of privileged and unprivileged groups, among 46

which equality of odds (EO) and equality of opportunity [27] are the most adopted, which 47

gauge fairness by examining disparities in true positive rates and false positive rates 48
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across different groups. To alleviate the unfairness originating from dataset formulation, 49

training procedures, and classifier operating point selection, a range of bias mitigation 50

strategies have emerged. These include pre-processing techniques like re-sampling and 51

re-weighting of training data based on labels and demographic groups [28], as well as 52

in-training fairness regularization and post-training fairness optimization 53

approaches [27,29], which have gained considerable traction in recent years. 54

As the popularity of machine learning approaches grows in medical applications, 55

more studies have started assessing and reducing unfairness in proposed systems [30–32]. 56

In the last two years, A growing number of studies have also applied those approaches 57

to the mental health domain, such as drug prescription [33], phone usage-based mental 58

health assessment [34], electrocardiogram-based anxiety prediction [35] and arrhythmia 59

detection [36], and electronic health record-based drug misuse and depression 60

classification [37,38]. However, a notable research gap exists in standardized 61

reporting [39] and evaluating the fairness of automated mental health assessment 62

systems that employ computer vision, linguistic, and acoustic analysis techniques. 63

Despite their longstanding central role in real-time mental health research, focused 64

studies on their fairness, particularly in comparing different modalities and evaluating 65

self-rated versus clinically diagnosed labels, are markedly scant. Existing studies [40, 41] 66

primarily concentrate on gender fairness in unimodal or bimodal classifiers, leaving a 67

significant aspect of this research area unexplored. 68

To address the challenges above, we evaluated the unfairness level in a multimodal 69

remote mental health assessment system proposed in [19] for detecting mental health 70

conditions (MHC), which was trained on a relatively diversely constructed remote 71

mental health interview dataset. Fairness levels of the dataset itself and fairness levels 72

of classifiers on individual features and the combination of features from diverse 73

modalities, including facial, vocal, linguistic, and cardiovascular, were evaluated. Then, 74

post-training threshold adjusting was applied to mitigate the unfairness in the evaluated 75

system, and the effects of the mitigation were measured. 76

Group fairness metrics were adopted in this study because of the critical nature of 77

equitable treatment across different demographics. Historical biases and systemic 78

inequities, notably prevalent in mental health practices, can lead to disparate outcomes 79

and significant harm to disadvantaged groups, regardless of the overall accuracy of the 80

system. In this study, we evaluated group fairness criteria, including DP, EO, and equal 81

accuracies across different groups, to directly assess and mitigate the long-standing 82

biases in mental health assessments, ensuring that all groups receive equitable care. 83

The main contribution of this study is twofold: (1) We have provided the first 84

systematic evaluation of the fairness level in a multimodal remote mental health 85

assessment system, where we compared the fairness level of different modalities and 86

different types of features, including hand-crafted features, features from supervised 87

pre-trained deep learning models, and embedding from self-supervised-learned 88

transformer-based [42] foundation models. (2) We have demonstrated that the existing 89

unfairness in the system can be substantially mitigated, with reasonable trade-offs in the 90

overall classification performance. This was achieved utilizing post-training adjustments, 91

highlighting a promising avenue for enhancing fairness in mental health assessments. 92

Materials and methods 93

Dataset 94

The same dataset described in our previous study [19] was used in this study. The 95

Emory University Institutional Review Board and the Grady Research Oversight 96

Committee granted approval for this study (IRB# 00105142). For the initial screening, 97
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interviewees were recruited for either a control group (no history of mental illness within 98

the past 12 months) or a group currently experiencing depression. After the 99

semi-structured interview, all final diagnoses and group categorizations were verified 100

and finalized by the overseeing psychiatrist and clinical team. 101

The remote interview was divided into three parts: 1) A semi-structured interview, 102

2) a sociodemographic section, and 3) clinical assessments, which included clinical 103

evaluation and self-reported ratings such as General Anxiety Disorder-7 [12] and Patient 104

Health Questionnaire-9 [13]. 105

Briefly, data from 73 subjects were included in the analyses. They were aged 18− 65 106

and were native English speakers. All interviews were conducted remotely via Zoom’s 107

secure, encrypted, HIPAA-compliant telehealth platform. Both Video and Audio were 108

recorded. 109

Subjects were categorized into three different binary categorizations based on 110

self-rated scales or clinicians’ diagnoses. The primary categorization we discuss in this 111

work is based on clinical diagnoses, where they were grouped into control (n = 22) vs. 112

subjects with mental health conditions (MHC, n = 51). The latter included subjects 113

diagnosed with any mental health condition currently or a history of diagnosis within 12 114

months. The control group included the remaining subjects. The categorization details 115

can be found in our previous study [19]. 116

Additionally, we adopted categorization based on PHQ-9 and GAD-7 scores and 117

considered subjects self-rated depression or anxiety when the score was higher than 10. 118

For the primary categorization, we did not find statistically significant differences in age 119

or years of education between the control and MHC groups using Mann-Whitney rank 120

tests. Subjects from demographic groups that did not form significantly large groups 121

(n < 5) were excluded. Specifically, subjects who self-identified as Hispanic (n = 2) or 122

other (n = 4) were not included in race-related analyses, and subjects who identified as 123

non-binary gender (n = 2) were not included in gender-related analyses. 124

Recording quality assessment 125

Recording qualities varied across the dataset due to the differences in the subjects’ 126

network conditions and device capabilities. While no perceivable quality difference was 127

found for audio recordings, there exist noticeable differences in video quality. We 128

defined a video as “low quality” if one or more of the following issues were presented in 129

the video: having a lower resolution than “720p”, the camera not looking directly at the 130

face, the face not fully presented due to obstruction or movement, the lighting was too 131

dark or too bright. Then, we analyzed whether the video quality was correlated with 132

the gender, race, age, and education level of the subjects and the performance of the 133

classifiers using video-derived features (described in Section Multimodal assessment of 134

mental health conditions). 135

Multimodal assessment of mental health conditions 136

A multimodal analysis framework was proposed and evaluated in our previous 137

study [19]. For each audiovisual interview recording, It extracted visual, vocal, language, 138

and remote photoplethysmography (rPPG) time series signals at the frame or segment 139

level, summarizes those time series with statistical and temporal dynamic features at 140

the subject level (except for text embedding from the large language model, where the 141

model directly generated subject-level embedding), and evaluates the performance of 142

these features in clinical diagnoses (control vs. MHC) or self-rated depression/anxiety 143

classification tasks. The details of the processing steps and system components can be 144

found in [19]. 145
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Facial expressions and cardiovascular features were extracted from the videos, where 146

frames were extracted, and face and facial landmarks were detected at each frame. 147

Then, the heart rate of the subject was estimated at each frame (25 Hz) from rPPG 148

using the pyVHR package [43,44]. The probability of the presence of seven basic 149

emotions (neutral, happiness, sadness, surprise, fear, disgust, and anger) and 12 facial 150

action units [45] (AU1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, 24) was estimated using 151

convolutional neural network (CNN) based models [46,47]. The fairness of the visual 152

foundation model described in our previous study [19] was not evaluated due to its poor 153

performance. 154

Linguistic and acoustic features were derived from the patient-side audio during the 155

semi-structured interview. Only patient-side audio during the semi-structured interview 156

section was used to avoid using subjects’ answers to sociodemographic or clinical 157

assessment questions. PyAudioAnalysis [48] package was used to extract acoustic 158

features at each 100ms window with 50% overlap, including zero crossing rate, energy, 159

entropy of energy, spectral centroid/spread/entropy/flux/rolloff, Mel frequency cepstral 160

coefficients (MFCC), and 12 chroma vector and corresponding standard deviations. For 161

linguistic features, audio files were transcribed into texts using Amazon Transcribe on 162

HIPAA-compliant Amazon web services at Emory, following the protocol detailed 163

in [49]. The probability of each utterance being neutral, happy, sad, surprised, fearful, 164

disgusted, and angry was estimated using a distilled RoBERTa model [50,51], along 165

with the estimation of being negative or positive using another RoBERTa-based 166

model [52]. Beyond the language sentiments features, LLAMA-65B [53], a transformer 167

model with 65 billion parameters, was used to generate a text embedding for the entire 168

transcripts during the semi-structured interview. 169

Statistics of the time series extracted above were used as subject-level features. Both 170

average and standard deviations over time were used for lower-dimensional (< 100) time 171

series, including time series of facial expressions, acoustic features, language sentiments, 172

and estimated heart rates from rPPG. 173

LLAMA-65B embedding of the entire semi-interviews was directly used as 174

subject-level features. Additionally, hidden Markov models (HMM) with four states and 175

a Gaussian observation model were used to model the dynamics of the low dimensional 176

time series, using SSM package [54]. The statistics (duration and frequency of inferred 177

states) of the unsupervisedly learned HMMs were used as subject-level features. 178

We evaluated features generated from the above-described processes in three binary 179

classification tasks described in Section Dataset, including control vs. MHC, moderately 180

depressed (PHQ-9 scores > 10, n = 24) vs. rest (PHQ-9 scores <= 10, n = 43), and 181

moderate GAD severity (GAD-7 scores > 10, n=16) vs. rest (GAD-7 scores <= 10, 182

n = 49). Two types of multimodal late fusion were used. The first type of fusion was 183

the majority vote of each unimodal classifier, and the second type of fusion was a 184

weighted vote using the probability output of the unimodal classifiers as weights. 185

Classification performances were measured by the average macro-averaged F1 score and 186

accuracy using a 100 times repeated stratified five-fold cross-validation. 187

Fairness metrics 188

The fairness of the dataset and classifications were evaluated. We analyzed the fairness 189

level of both self-rated and clinically-rated labels and focused the algorithmic fairness 190

analysis on classifying clinically rated labels. 191

Demographic and label distribution of the constructed dataset 192

The number of subjects from different demographic groups and the selection rates (SR) 193

in different groups were calculated. The selection rate was defined as the percentage of 194
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samples being “positive”, meaning clinically-rated MHC or self-rated depression, or 195

self-rated anxiety. 196

Demographic parity ratios of the classifications 197

Following the DP defined in [26], we used two definitions of the demographic parity 198

ratio to measure the fairness level of the classifications. For sensitive demographic 199

variable k with G different groups and a g∗ social-economically privileged group: The 200

first demographic parity ratio (DPR) captured overall parity between any pairs of 201

groups and was defined as: 202

Dk = min
g

Sk
g /max

g
Sk
g

and g ∈ Gk; The second demographic parity ratio focused on the parity compared to 203

the privileged group and was defined as: 204

Dk
g∗ = min

g
Sk
g /Sk

g∗,

where g ̸= g∗ and S is the Selection Rate of the utilized classifier, i.e., the ratio of 205

positive classification. 206

As privileged groups, we defined “male” for gender parity analysis, “white” for race 207

parity analysis, “Older (≥ 40)” for age parity analysis, and “ College or below (≤ 16 208

years of education)” for education parity analysis. Using classification results of the test 209

folds in 100 repeated fold-fold cross-validation (detailed descriptions in 210

Section Multimodal assessment of mental health conditions and [19]), DPRs of classifiers 211

trained with features from different modalities were calculated. DPR being further from 212

one means a larger disparity between the privileged and unprivileged groups. 213

Equalized odds ratios of the classifications 214

Similar to DPR metrics defined in the above section, we followed EO definition proposed 215

in [27] and defined the overall and over-privileged equalized odds ratios (EOR) based on 216

false positive rate (FPR) and true positive rate (TPR). The first EOR was defined as: 217

Ok = min(
ming TPRk

g + δ

maxg TPRk
g + δ

,
ming FPRk

g + δ

maxg FPRk
g + δ

).

The second equalized odds ratio was defined as: 218

Ok
g∗ = min(

ming TPRk
g + δ

TPRk
g∗ + δ

,min
g

FPRk
g∗ + δ

FPRk
g + δ

),

where g ̸= g∗ and δ was set to 0.001 to avoid ratios being divided by zero. Similarly, 219

EORs were calculated for each classifier. EOR of one means that all groups have the 220

same TPR and FPR.Fairness metrics The fairness of the dataset and classifications were 221

evaluated. We analyzed the fairness level of both self-rated and clinically-rated labels 222

and focused the algorithmic fairness analysis on classifying clinically rated labels. 223

Demographic and label distribution of the constructed dataset 224

The number of subjects from different demographic groups and the selection rates (SR) 225

in different groups were calculated. The selection rate was defined as the percentage of 226

samples being “positive”, meaning clinically-rated MHC or self-rated depression, or 227

self-rated anxiety. 228
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Demographic parity ratios of the classifications 229

Following the DP defined in [26], we used two definitions of the demographic parity 230

ratio to measure the fairness level of the classifications. For sensitive demographic 231

variable k with G different groups and a g∗ social-economically privileged group: The 232

first demographic parity ratio (DPR) captured overall parity between any pairs of 233

groups and was defined as: 234

Dk = min
g

Sk
g /max

g
Sk
g

and g ∈ Gk; The second demographic parity ratio focused on the parity compared to 235

the privileged group and was defined as: 236

Dk
g∗ = min

g
Sk
g /Sk

g∗,

where g ̸= g∗ and S is the Selection Rate of the utilized classifier. 237

As privileged groups, we defined “male” for gender parity analysis, “white” for race 238

parity analysis, “Older (≥ 40)” for age parity analysis, and “ College or below (≤ 16 239

years of education)” for education parity analysis. Using classification results of the test 240

folds in 100 repeated fold-fold cross-validation (detailed descriptions in Section 241

Multimodal assessment of mental health conditions and [19]), DPRs of classifiers 242

trained with features from different modalities were calculated. DPR being further from 243

one means a larger disparity between the privileged and unprivileged groups. 244

Equalized odds ratios of the classifications 245

Similar to DPR metrics defined in the above section, we followed EO definition proposed 246

in [27] and defined the overall and over-privileged equalized odds ratios (EOR) based on 247

false positive rate (FPR) and true positive rate (TPR). The first EOR was defined as: 248

Ok = min(
ming TPRk

g + δ

maxg TPRk
g + δ

,
ming FPRk

g + δ

maxg FPRk
g + δ

).

The second equalized odds ratio was defined as: 249

Ok
g∗ = min(

ming TPRk
g + δ

TPRk
g∗ + δ

,min
g

FPRk
g∗ + δ

FPRk
g + δ

),

where g ̸= g∗ and δ was set to 0.001 to avoid ratios being divided by zero. Similarly, 250

EORs were calculated for each classifier. EOR of one means that all groups have the 251

same TPR and FPR. 252

Mitigating unfairness 253

For each demographic variable (gender, race, education level, age), the classifying 254

threshold of each demographic group was learned by optimizing accuracy with equalized 255

odds constraints, following the scoring function derived non-discriminating predictors 256

method from Hardt et al. [27]. EORs were used as the measure for effective mitigation. 257

Specifically, for each demographic variable, threshold adjusting was added to the 258

cross-validation process using Fairlearn python package [55]. 259

Statistical Analyses 260

Mann-Whitney rank sum tests were used to assess the differences in (1) ages and years 261

of education between controls and subjects with mental health conditions and (2) the 262

fairness and performance of classification resulting from features from different 263

modalities. Chi-square tests were used to assess the independence of demographic 264

variables and video quality. Significance was assumed at a level of p < 0.05 for all tests. 265
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Results 266

Fairness of the constructed dataset 267

The number of subjects and selection rates of being MHC from different demographic 268

groups are shown in Fig 1. No statistically significant dependence was found between 269

being MHC, having self-rated depression, or having self-rated anxiety and demographic 270

variables. No statistically significant video quality differences were found either. 271

Fig 1. Counts and selection rates grouped by demographic groups.

Fairness of individual modalities and in combination 272

Fig 2. Classification performance and fairness level of different feature types
in detecting MHC. (A) Classification performance by modalities. (B) Fairness by
modalities. The top row shows the overall fairness metrics and the bottom row shows
the fairness level when compared to the privileged group defined in Section Fairness
metrics. Different colors indicate classifiers using different types of features.
“Multimodal Vote” refers to the majority voting of all the unimodal classifiers. Each
boxplot shows the interquartile range (IQR), where the center line shows the median
value. ♦ marks outliers that are at least 1.5 IQR above the first quartile or 1.5 IQR
below the third quartile.

Panel A in Fig 2 shows the macro-weighted F1 scores for detecting MHC using 273

different classifiers of different demographic groups. While the number of samples 274

available often matters to the training of the classifiers, the majority group does not 275

always have better performance. For example, following Section Statistical Analyses, 276

the older group significantly outperformed (p < 0.001) the majority younger group 277

considering all classifiers, and the male group significantly outperformed (p < 0.001) the 278

female group. Additionally, the more privileged group may not necessarily have better 279

performance, especially when the features were less affected by the demographic 280

variable in the analysis. For instance, the less educated group significantly 281

outperformed (p < 0.001) the more educated group overall but underperformed 282

significantly (p < 0.001) when the language sentiments (“Language sentiments”) were 283

used. In contrast to education level, the privileged group in race (white group) 284

significantly (p < 0.001) outperformed the underprivileged groups (Asian and Black 285

group), while no significant differences in overall classifier performances were found 286

between underprivileged groups. 287

Panel B in Fig 2 shows the fairness level (DPRs and EORs) of different classifiers in 288

gender, race, education level, and age. It is worth noting that the fairness level of a 289

classifier varied enormously, and the classifier that used certain types of features from 290

one modality might have drastically different ranking among other classifiers when a 291

different demographic variable was analyzed. Moreover, high-performing classifiers, such 292

as multimodal voting (“Multimodal Vote”) and cardiovascular dynamics (“rPPG”), did 293

not result in higher fairness levels. Overall, voting with probability weighting 294

significantly (p < 0.001) outperformed the naive voting in both DPRs and EORs, while 295

having just slightly lower F1 scores as shown in Fig 2. Interestingly, while large 296

foundation models like LLAMA-65B were known to have biases toward certain 297

demographic groups [53], classifiers based on those features showed reasonable fairness 298

levels except for race. Using LLAMA-65B for non-white groups led to significantly lower 299

(p < 0.001) F1 scores compared to the privileged group, as shown in the EOR plots and 300
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the race plots in Fig 2. Across different demographic variables, EORs and DPRs were 301

significantly lower for race (p < 0.05) compared to any other demographic variables. 302

No significant dependence was found between video quality and the classification 303

performances of the classifiers using video-derived facial and cardiovascular features. 304

Improved fairness after mitigation 305

Fig 3. Effects of post-training mitigation on classifier performance and
fairness. Different demographic variables used in the mitigation process were encoded
as different colors. Similar to Fig 2, boxplots were plotted with interquartile ranges and
outliers to visualize F1 scores or the EORs.

Fig 3 shows the effect of unfairness mitigation by optimizing thresholds for optimal 306

equalized odds for different demographic variables. The results of all modalities were 307

combined into a single box in the boxplots. 308

Adjusting thresholds effectively made classifiers fairer, as indicated by the increased 309

EORs, both overall and compared to the privileged group, shown in Fig 3. Significant 310

differences (p < 0.001) were found in EORs before and after mitigation. Notably, EORs 311

increased for all demographic variables, even when only a single EO of one demographic 312

variable was optimized. However, as a trade-off to increased EORs, F1 scores decreased 313

by an average of 0.06 across all demographic factors and modalities (statistically 314

significant, p < 0.001). Please note that no-mitigation F1 scores for different sensitive 315

features were slightly different because not all demographic variables were available for 316

all subjects. Please refer to Fig 1 for details. 317

The effect of mitigation grouped by classifier modalities can be found in S1 Fig. 318

Increased EORs and decreased F1 scores, except for classifiers using LLAMA-65B and 319

cardiovascular dynamics, were found. 320

Discussion 321

Limitations 322

One key limitation of this study is the relatively small number of subjects included in 323

the analyses. This led to subjects in minority demographic groups with extremely small 324

numbers of subjects being excluded, such as people who self-identified as non-binary 325

gender or people who self-identified as Hispanic. While statistical tests were performed 326

to help quantify all the comparisons made in the study, results should be interpreted 327

accordingly. Another limitation related to the dataset is the distribution of demographic 328

groups might not represent real-world situations. For example, while no statistically 329

significant dependence was found between having clinician-rated or self-rated mental 330

health conditions and being in certain demographic groups in this dataset, dependence 331

could exist in other situations. Additionally, the subjects in the dataset were highly 332

educated, with an average of more than 16 years of education(college graduate). 333

Additional fairness mitigation approaches could be applied. For example, in-training 334

approaches such as training with multiple demographic fairness constraints [29] and 335

adversarial training [56] could be used. Preliminary results for adding EO constraints in 336

training following the “reduction” method proposed in [29] was found to be less effective 337

compared to the post-training adjustment of thresholds. While the scope of this study 338

did not include the comparison of the efficacy of different mitigation approaches, more 339

mitigation approaches should be tested and developed to address the fairness issue in 340

the mental health domain in the future. 341
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Fairness of labels and modalities 342

Although no significant selection rate differences were found between demographic 343

groups in either self-rated or clinically-rated labels (shown in Section Fairness of the 344

constructed dataset), fairness issues might arise when the number of subjects gets larger 345

or the distribution shifts. Clinically-rated labels were known to carry bias from the 346

clinicians due to differences in the interview process and personal experience [8], yet 347

self-rated labels were also susceptible to subjectivity and over-reporting (higher 348

selection rate) [14], which could be affected by demographic variables. Although this 349

issue cannot be easily addressed, standardized reporting of the selection rate could help 350

reduce the chance of building unfair datasets. 351

Furthermore, demographic variables gathered in medical applications may not 352

comprehensively capture the physiological condition of subjects, particularly in more 353

vaguely defined attributes such as race. Race information may carry potential biases in 354

the data collection process when collected by clinicians and still suffer from genetic and 355

cultural heterogeneity within commonly delineated racial groups. 356

Differences in fairness across modalities were partially discussed in Section Fairness 357

of individual modalities and in combination. Many confounding variables might affect 358

the fairness of classifiers for different demographic variables. While no significant 359

dependence was found between video quality and the classification performances of the 360

classifiers using video-derived facial and cardiovascular features in this dataset, the 361

quality of the recordings could bias feature extraction models to favor certain 362

demographic groups. For example, racial disparity was widely found in speech 363

recognition [57], and face detection [58]. With the growing use of representation 364

embeddings in the era of large language models and other foundation models, it is 365

critical to understand, measure, and mitigate bias in each of the system’s building 366

blocks. 367

Future directions 368

With the rapid development and potential adoption of automated tools for mental 369

health assessment in the near future, the implication of unfair evaluation and treatment 370

could be tremendous. 371

Standardized fairness reporting 372

As the first barrier of unfairness in those tools, clinicians, researchers, and developers 373

should work together to raise awareness of fairness evaluation and standardize fairness 374

reporting practices. Understanding the fairness levels of the systems leads to the safer 375

application of the system to minimize the risks toward underrepresented groups, even 376

when the unfairness is not straightforward to be addressed technically [59], or when the 377

number of subjects is relatively small. 378

Health-oriented unfairness mitigation 379

General fairness mitigation approaches might not fit directly into the health-related 380

machine learning application due to the vast differences in the societal consequences due 381

to unfair systems impacting intersections of demographic variables and health 382

conditions. Creating unfairness mitigation methods with a clear understanding of their 383

impact is key to the safe application of automated systems. Alday et al. [36] 384

demonstrated that biases manifest as a function of model architecture, population, cost 385

function, and optimization metric, all of which should be closely considered when 386

selecting mitigation approaches. Furthermore, modality-specific debiasing methods [60] 387

may not adapt to multi-modal health-related machine learning contexts. 388
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Performance-fairness trade-off 389

Trade-offs between model performance and fairness should be discussed. Currently, no 390

consensus has been made on the acceptable levels of unfairness except the U.S. Equal 391

Employment Opportunity Commission’s “80% rule” in racial disparity presented in 392

hiring [61]. Trade-offs in medical applications frequently demand decisions requiring 393

broader moral discussion, especially when the overall utility cannot be clearly defined 394

and directly measured, potentially giving rise to ethical dilemmas reminiscent of the 395

trolley problem [62]. While specific thresholds would vary by domain and specific tasks, 396

more research, such as investigation of the quantitative impact of unfair treatment (and 397

of misdiagnosis), could shed light on this challenge. 398

Conclusion 399

In this study, we rigorously assessed the fairness levels of a multimodal mental health 400

assessment system before and after implementing unfairness mitigation strategies. 401

These evaluations were quantitatively measured utilizing demographic parity ratios and 402

equalized odds ratios, focusing on key demographic attributes: race, gender, education 403

level, and age. The fairness of different modalities was compared for different 404

demographic attributes, and post-training classifier threshold optimization successfully 405

mitigated the unfairness with reasonable trade-offs in the overall classification 406

performance. 407

Supporting information 408

S1 Fig. Effects of post-training unfairness mitigation on the F1 scores and 409

EORs of classifiers using different modalities. 410
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