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Abstract
Background: Postoperative delirium (POD) contributes to severe outcomes such as 
death or development of dementia. Thus, it is desirable to identify vulnerable 
patients in advance during the perioperative phase. Previous studies mainly 
investigated risk factors for delirium during hospitalization and further used a 
linear logistic regression (LR) approach with time-invariant data. Studies have not 
investigated patients’ fluctuating conditions to support POD precautions.
Objective: In this single-center study, we aimed to predict POD in a recovery room 
setting with a non-linear machine learning (ML) technique using pre-, intra-, and 
postoperative data. 
Methods: The target variable POD was defined with the Nursing Screening Delirium 
Scale (Nu-DESC) ≥ 1. Feature selection was conducted based on robust univariate 
test statistics and L1 regularization. Non-linear multi-layer perceptron (MLP) as well 
as tree-based models were trained and evaluated – with the receiver operating 
characteristics curve (AUROC), the area under precision recall curve (AUPRC), and 
additional metrics – against LR and published models on bootstrapped testing data. 
Results: The prevalence of POD was 8.2% in a sample of 73,181 surgeries 
performed between 2017 and 2020. Significant univariate impact factors were the 
preoperative ASA status, the intraoperative amount of given remifentanil, and the 
postoperative Aldrete score. The best model used pre-, intra-, and postoperative 
data. The tree-based model achieved a mean AUROC of 0.854 and a mean AUPRC of 
0.418 outperforming linear LR, well as best applied and retrained baseline models.  
Conclusions: Overall, non-linear machine learning models using data from multiple 
perioperative time phases were superior to traditional ones in predicting POD in the 
recovery room. Class imbalance was seen as a main impediment for model 
application in clinical practice.
Keywords: Postoperative delirium; recovery room; machine learning; multi-layer 
perceptron, prediction models
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Author Summary
Currently, the pathophysiology of postoperative delirium (POD) is unknown. Hence, 
there is no dedicated medication for treatment. Patients who experience POD are 
oftentimes mentally disturbed causing pressure on related family members, 
clinicians, and the health system. With our study, we want to detect POD before 
onset trying to give decision support to health professionals. Vulnerable patients 
could be transferred to delirium wards mitigating the risk of severe outcomes such 
as permanent cognitive decline. We also provide insides into clinical parameters - 
recorded before, during, and after the surgery - that could be adapted for reducing 
POD risk. Our work is openly available, developed for clinical implementation, and 
could be transferred to other clinical institutions. 

Introduction
Postoperative delirium (POD) as an acute state of brain dysfunction after a surgery 
has been found to be related to adverse long-term effects – such as increased length 
of hospitalization, development of dementia, and death [1-3]. Reported incidences 
(3-50%) vary substantially depending on the cohort definition and are elevated in 
major surgical cases as well as in elderly patients [4-7]. Recent studies stress the 
need for an early assessment of POD onset in the recovery room enabling clinicians 
to improve patients’ outcomes [2, 4, 8]. Assessment scores for a recovery room 
setting which are validated against DSM-5 criteria comprise the Confusion 
Assessment Method (CAM) and the Nursing Screening Delirium Scale (Nu-DESC) [8-
10]. In contrast to the CAM, the Nu-DESC is a purely observational score that has 
been validated to have a sensitivity of up to 80% for scores ≥ 1 [8, 10].

Due to the high relevance in perioperative care, previous POD studies were not 
limited to finding predisposing factors – such as comorbidity or age – and 
precipitating factors – such as surgical complications or intraoperative blood loss [2, 
8, 11, 12]. Studies went further by applying multivariable prediction models. Most of 
them evaluated the delirium onset during hospitalization with the CAM and used a 
linear logistic regression (LR) technique [13-17]. Popular models by Boogaard et al. 
and Wassenaar et al. show good test performance as measured by the area under 
the receiver operating characteristics curve (AUROC=0.75-0.89) [18-20] but 
diminished performance on external data (AUROC=0.62) [21]. A few authors trained 
non-linear machine learning algorithms predicting POD [4, 22, 23, 24]. Xu et al. used 
ICD-9 encoded POD as a target variable for a deep multi-layer perceptron (MLP) 
architecture. Using pre- and intraoperative variables extracted from 111,888 
electronic health records (EHRs) as features, the authors achieved an AUROC of 0.72 
[22]. Although Xu et al. capture the fluctuating physiology in the intraoperative 
phase, a meta-study by Ruppert et al. highlights that most of the published 
prediction models use values from a single point in time [25]. 

Our aim was to identify patients vulnerable to suffering from POD in the recovery 
room. Pre-, intra-, and postoperative variables were extracted from EHRs and 
combined into different prognostic non-linear models. We used the Nu-DESC in a 
recovery room setting for defining POD. An automated risk assessment after the end 
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of the surgery could help transferring vulnerable patients to specialized noise-
reduced wards improving their outcome [8, 26, 27]. 

Methods

Ethics Statement
This study was performed under ethics approval granted by the independent ethics 
committee at Charité – Universitätsmedizin Berlin (vote EA4/254/21). We 
performed analysis on pseudonymous data. Data processing consent was obtained 
by a formal in-hospital treatment contract. 

Cohort and Target Variable 
EHRs were extracted for admissions between 01/01/2017 and 12/31/2020. 
Patients who underwent cardiovascular or craniotomy procedures were excluded 
due to the increased risk of postoperative complications [5, 14, 17, 28]. All other 
adult patients (≥ 18 years) who were assessed with at least one Nu-DESC in the 
recovery room were included. The POD positive (y=1) group consisted of surgeries 
on patients who were evaluated with at least one Nu-DESC score ≥ 1 in the recovery 
room [8]. If all Nu-DESC scores in the recovery room were equal to 0, the surgery 
was assigned to the negative group (y=0). 

Figure 1: Cohort definition based on inclusion criteria. Number of patients, - hospital stays and - surgeries are 
provided at each step. A positive target variable y=1 was defined based on the presence of at least one Nu-DESC 
score ≥ 1. A negative y=0 was defined if all Nu-DESC scores were equal to 0.
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Table 1: Baseline characteristics for all patients in the POD positive (y=1) and negative (y=0) groups. The mean, 
[1st, 2nd, 3rd] quartiles are shown for numerical values, counts are displayed otherwise. The type of surgery is 
defined using clinical codes described in Extended Table 2 in Appendix 1.

Unit All POD Positives (y=1) POD Negatives (y=0)
     

Counts     
Patients - 61,187 5,709 55,478
Stays - 69,974 5,883 64,091
Surgeries - 73,181 6,004 67,177
Surgeries per stay - 1.15, [1, 1, 1] 1.15, [1, 1, 1] 1.14, [1, 1, 1]
Previous admissions - 0.90, [0, 0, 1] 1.00, [0, 0, 1] 0.80, [0, 0, 1]
Previous surgeries 
per stay - 0.51, [0, 0, 1] 0.53, [0, 0, 1] 0.49, [0, 0, 1]

Demographics     
Age years 56, [42, 60, 73] 60, [46, 62, 76] 52, [36, 53, 67]

Gender -
28,013 male (46%)
33,174 female (54%)

2,927 male (51%)
2,782 female (49%)

25,086 male (47%)
30,392 female (53%)

BMI kg/m²
26.91, [22.80, 25.70, 
29.47]

26.91, [22.85, 25.76, 
29.38]

26.91, [22.75, 25.64, 
29.57]

ASA status - 2.07, [2, 2, 3] 2.37, [2, 2, 3] 2.04, [2, 2, 3]
OP N urgency class - 4.00, [3, 5, 5] 3.89, [3, 5, 5] 4.02, [3, 5, 5]

Hospitalization     
Length of hospital 
stay days 8.66, [3.25, 5.09, 9.05]

10.53, [3.08, 6.00, 
11.00] 6.80, [2.22, 3.78, 7.09]

Length of anesthesia hours 2.22, [1.14, 1.69, 2.54] 2.44, [1.45, 2.14, 3.06] 1.99, [1.12, 1.65, 2.49]
Length of surgery hours 1.28, [0.48, 0.86, 1.50] 1.43, [0.63, 1.13, 1.88] 1.14, [0.47, 0.84, 1.46]
Length of recovery 
room stay hours 2.51, [1.08, 1.59, 2.32] 2.92, [1.45, 2.08, 3.01] 2.11, [1.05, 1.54, 2.24]

Nu-DESC evaluation
Number of Nu-DESC 
evaluations - 1.09, [1, 1, 1] 1.12, [1, 1, 1] 1.09, [1, 1, 1]
Duration between 
recovery room 
admission and 1st 
Nu-DESC evaluation minutes

50.52, [7.79, 32.03, 
69.22]

35.55, [4.03, 10.84, 
38.99]

51.83, [8.67, 34.26, 
71.05]

Duration between 
last Nu-DESC 
evaluation and 
recovery room 
discharge minutes

75.02, [17.97, 40.12, 
80,54]

133.33, [50.46, 93.34, 
144.25]

69.90, [17.00, 37.19, 
74.15]

Type of surgery
Locomotive organs - 20,369 (37%) 2,293 (38%) 18,103 (27%)
Organs of the head - 12,680 (19%) 743 (12%) 11,937 (18%)
Nervous system - 8,205 (12%) 1,034 (17%) 7,171 (11%)
Digestive tract - 8,674 (13%) 764 (12%) 7,910 (13%)
Skin and tissue - 7,580 (11%) 890 (15%) 6,690 (11%)
Urinary system - 6,381 (10%) 597 (9%) 5,784 (9%)
Blood vessels - 3,061 (5%) 344 (6%) 2,717 (4%)
Respiratory tract - 3,705 (6%) 395 (7%) 3,310 (5%)
Hormone system - 807 (1%) 114 (2%) 693 (1%)

Type of anesthesia     
General balanced - 36,730 (50%) 2,819 (47%) 33,911 (50%)
Total intravenous - 31,720 (43%) 3,255 (54%) 28,465 (42%)
Epidural - 2,639 (3%) 131 (2%) 2,508 (4%)
Spinal - 3,776 (5%) 49 (1%) 3,727 (6%)
Analgo - 1,145 (1%) 91 (2%) 1,054 (2%)
Other - 3,405 (4%) 258 (4%) 3,147 (5%)

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.21.23298802doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298802
http://creativecommons.org/licenses/by/4.0/


5

Figure 1 summarizes the inclusion criteria yielding the cohort of 61,187 patients 
with 69,974 hospital stays and 73,181 performed surgeries. POD incidence was 
9.3%, 8.4% and 8.2% for distinct patients, hospital stays and surgeries respectively. 
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Table 1 displays baseline characteristics for the selected cohort. Additional 
characteristics are shown in Extended Table 1, 2, and in Extended Figure 1 in 
Appendix 2.

Perioperative Time Phases
The hospital stays were divided into three distinct perioperative time phases. Data 
from the preoperative (T1) -, intraoperative (T2) -, and postoperative (T3) phase as 
well as time-invariant (TI) data were considered rather than focusing on one value 
from a single point in time. Figure 2 highlights the start - and end events for T1-T3. 

Figure 2: Hospitalization schema with relevant intraoperative points in time. Definition of time phases T1-T3 are 
based on highlighted events. TI holds time-invariant data and is not included in the graphic. When multiple Nu-
DESC evaluations were performed in the recovery room, the timestamp of the first one was chosen for phases 
including T3.

For the POD prediction task, distinct time phases (T1-T3) were considered 
individually or combined. A different model (M1-M123) was trained and evaluated 
for each combination with data from assigned time phases (see Table 2). In the 
following, time phases and their combinations are named as T1-T123, data from TI 
is always included. 

Table 2: Models which are fed with data from corresponding time phase combinations. The start 
(from) and end (to) of each combination is introduced as well. TI data is included for all models. 

Model Time Phases From To

M1 T1 hospital admission anesthesia start
M2 T2 anesthesia start anesthesia end

M3 T3 anesthesia end
1st Nu-DESC evaluation in the recovery 
room

M12 T12 (T1+T2) hospital admission anesthesia end

M23 T23 (T2+T3) anesthesia start
1st Nu-DESC evaluation in the recovery 
room

M123 T123 (T1+T2+T3) hospital admission
1st Nu-DESC evaluation in the recovery 
room 

Feature Extraction and Preprocessing
Data were extracted from the clinical information systems (CIS) of three sides at our 
clinical center. Based on literature review and clinical expertise [11-25], a total of 
549 clinical variables – including 253 categorical and 296 numerical ones – were 
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identified with respect to T1-T3 and TI. Extended Table 3 in Appendix 2 shows the 
number of extracted variables per time phase and clinical domain. 

EHRs might suffer from integrity issues due to distributed CIS [29, 30]. Thus, 
extraction scripts were refined until there were no discrepancies with the front-end 
for a sample of 50 surgeries. For numerical variables, valid thresholds (lower and 
upper bounds) were applied to remove impossible values (e.g., negative oxygen 
saturation) (see Extended Table 1 in Appendix 1). Extended Table 4 in Appendix 2 
outlines further details about feature encodings. 

Univariate Test Statistics
Robust Mann-Whitney U (MWU) tests [31] were used to evaluate the discriminatory 
power of numerical parameters with respect to the POD target. False discovery rate 
(FDR) correction [32] with alpha=0.05 was applied to identify statistically 
significant variables. The AUROC – which can be derived from the MWU statistic 
[33] – was used to quantify effect-sizes. AUROC values are normalized between 0 
and 1, where 1 indicates a perfect positive association, 0 indicates a perfect negative 
association, and 0.5 indicates chance-level discrimination. The absolute strength of 
an effect – regardless of the direction – was calculated for each significant variable 
as e=2|AUROC-0.5|. For categorical variables, we used the odds ratio (OR) of a 
univariate logistic regression [34] as a measure of effect size. A direction 
independent measure of effect size was defined as o=|log(OR)|. We have performed 
feature selection processes based on univariate tests and based on a L1-norm 
regularization. The concrete implementation is described in Appendix 2 under 
Feature Selection. 

Data Splitting, Cross-Validation and Standardization
The extracted data were initially split (80/20%) into train – and test sets. To avoid 
dependencies between these sets we used patient identifiers to perform the 
splitting. Stratification with the target variable was done so that the incidence of 
POD was preserved in both sets. As a result, the testing set comprised 12,238 
patients, the training set included 48,949 patients. 

The training data were used to evaluate models with different feature sets and 
hyperparameters. A 3-fold cross validation (CV) technique [35] was applied where a 
configuration was determined from 66.6% and evaluated on 33.3% of the training 
data. This evaluation was iteratively performed three times. For each model variant 
(M1-M123), each feature set was used in a hyperparameter search. The best 
performing configuration across all CV iterations per feature set was chosen on 
basis of the lowest validation loss for the final evaluation on the test set. 
Numerical features were standardized using z-transformation [36]. Feature mean 
values as well as standard deviations were calculated on the training data, applied 
to validation – and eventually to the test data. Extracted training set mean values 
were also used to impute missing values in train, validation, and test sets.
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Machine Learning Techniques and Hyperparameter Search
Two types of non-linear models were trained in comparison to linear-, and baseline 
models. First, deep multi-layer perceptrons (MLPs) [37-39] were trained to predict 
POD. Extended Table 5 in Appendix 2 outlines the ranges of values optimized with 
Grid - [40] or Random Search [41] for a fully connected MLP architecture. We used 
focal loss [42] or weighted binary cross-entropy (BCE) [43] since they have been 
shown to be able to deal with unbalanced classification problems such as ours. L1-
norm regularization [44] was applied on the first layer of the MLP when using all 
available features instead of feature subsets. Extended Table 6 in Appendix 2 
displays results from the CV process.

In addition to MLPs, we included two non-linear ensemble machine learning 
approaches based on decision trees. Random forest and gradient boosting classifier 
were integrated into Random Search [45, 46]. Extended Table 7 in Appendix 2 
outlines the parameter search space for tree-based models. Weighted BCE was 
configured for both algorithms. Appendix 2 displays results from the CV process 
with tree-based models.

We further compared the highly non-linear architectures with a linear logistic 
regression (LR) using a weighted BCE. LR models incorporated all available features 
per corresponding time phase (T1-T123). Constructed models (M1-M123) were also 
compared to LR models by Wassenaar and Boogaard [18-20]. The authors predicted 
delirium onset during an intensive care unit (ICU) stay assessed with the CAM. Due 
to the simplicity and open accessibility, we applied pre-trained models on data from 
time phase combinations (T1-T123). Models by Wassenaar and Boogaard were 
retrained and evaluated with a LR, a MLP and boosted tree technique.

The performance of the obtained predictions was assessed by means of either the 
AUROC or the area under the precision recall curve (AUPRC) [47, 48]. The AUROC is 
less suitable - biased towards large values - for highly imbalanced classification 
problems such as ours. This problem is less pronounced for the AUPRC [48, 49], 
which focuses the minority class. Additionally, the F1-score was computed [50]. To 
estimate standard errors of the mean model performances, bootstrapping – random 
sampling with replacement – was applied 1000 times on the test data [51].

Code Availability and Reporting
The code including trained models, preprocessing scripts, usage notes, and 
descriptions are openly accessible [52]. The data has not been published due to 
German data protection regulations. Results are reported in accordance with the 
TRIPOD guidelines (see Extended Table 6 in Appendix 2) [53].
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Results

Perioperative Variables
Table 3: Ten most discriminative numerical variables per time phase sorted by effect size defined as e=2|AUROC-0.5| and 
calculated via univariate Mann-Whitney U tests on the training set. The effect direction is indicated by (+)/ (–). P-values are 
FDR corrected with alpha=0.05. Significant variables are included solely (all P-values <.001). Missing rates are reported as 
fraction of patients having values for a given variable from all patients. For time-resolved measurements, performance of 
aggregate scores is reported, where the 10th, 50th, and 90th percentiles are denoted as p10, p50, and p90, the median absolute 
deviation is denoted as map, and the sum across time is denoted as sum. Time invariant (TI), preoperative (T1), intraoperative 
(T2) and postoperative (T3) variables are included. 

Variable 2|AUROC-0.5| AUC Missing rate
     

TI    
Age (+) 0.232 0.616 0.000
Number of previous diagnoses (+) 0.134 0.566 0.000
History of psychiatric disorder (+) 0.121 0.560 0.000
History of unspecific delirium (+) 0.073 0.536 0.000
History of hypertension (+) 0.068 0.533 0.000
Number of previous admissions (+) 0.068 0.533 0.000
Body length (–) 0.051 0.474 0.547
History of dementia (+) 0.043 0.521 0.000
History of respiratory failure (+) 0.043 0.521 0.000
History of diabetes mellitus (+) 0.040 0.519 0.000

T1    
ASA status p90 (+) 0.179 0.589 0.476
Metabolic equivalents p50 (–) 0.178 0.410 0.866
SpO2 p10 (–) 0.155 0.422 0.360
Hematocrit in blood p90 (–) 0.140 0.430 0.891
Calcium in blood p10 (–) 0.139 0.430 0.890
Hospitalization duration (+) 0.129 0.564 0.000
Erythrocytes in blood p10 (-) 0.116 0.442 0.436
Hemoglobin in blood p0.1 (-) 0.108 0.446 0.431
Ppeak p90 (+) 0.100 0.550 0.844
BP systolic (+) 0.082 0.541 0.497

T2    
Anesthesia duration (+) 0.218 0.609 0.000
Amount remifentanil p50 (+) 0.200 0.600 0.695
Surgery duration (+) 0.183 0.591 0.000
Amount remifentanil sum (+) 0.178 0.588 0.695
SEF right p50 (–) 0.175 0.412 0.807
SEF left p10 (–) 0.173 0.414 0.807
PCV ventilation therapy duration (+) 0.166 0.582 0.000
Endotracheal tube access duration (+) 0.152 0.575 0.000
Hospitalization duration (+) 0.146 0.573 0.000
BP systolic p90 (+) 0.143 0.571 0.217

T3    
Aldrete score p90 (–) 0.347 0.327 0.079
Recovery room duration (–) 0.232 0.384 0.000
Anesthesia duration (+) 0.219 0.609 0.000
Surgery duration (+) 0.183 0.591 0.000
Respiratory rate p10 (+) 0.179 0.589 0.745
PCV ventilation therapy duration (+) 0.161 0.580 0.000
Endotracheal tube access duration (+) 0.151 0.575 0.000
Heart rate p10 (+) 0.144 0.572 0.233
Respiratory rate p50 (+) 0.143 0.571 0.745
Pulse map (–) 0.139 0.431 0.518
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Table 4: Top 5 most discriminative categorical variables per time phase, sorted by effect size. The effect size is 
defined as |log(OR)| and calculated on the training set using univariate linear logistic regression. The effect 
direction is indicated by (+)/ (–). Time invariant (TI), preoperative (T1), intraoperative (T2) and postoperative 
(T3) variables are included. The OR 95% confidence interval (CI) serves as an uncertainty estimate.

 Variable |log(OR)| OR 95% CI
    

TI    
OPS history nervous system (+) 0.86 2.35 [1.95, 2.82]
OPS nervous system (+) 0.82 2.26 [1.93, 2.63]
OPS hormone system (+) 0.75 2.11 [1.64, 2.70]
OPS history hormone system (+) 0.67 1.96 [1.46, 2.61]
OPS visual organs (–) 0.62 0.54 [0.35, 0.81]

T1    
Type spinal anesthesia (–) 2.63 0.07 [0.02, 0.22]
Dementia (+) 2.48 11.92 [8.21, 17.3]
Dissociative disorder (+) 2.01 7.45 [1.24, 44.60]
Cognitive impairment (+) 1.68 5.39 [2.77, 10.45]
Parkinson disease (+) 1.45 4.28 [3.22, 5.69]

T2    
Dementia (+) 3.33 27.96 [5.42, 144.15]
Urine drain access complication (+) 2.82 16.77 [2.80, 100.38]
Amputation (+) 2.70 14.91 [3.33, 66.63]
Drug related disorder (+) 2.01 7.45 [1.24, 44.60]
Peripheral vascular disease (+) 1.96 7.12 [2.75, 18.37]

T3    
Dementia (+) 3.11 22.36 [4.09, 122.12]
General op complication (+) 2.41 11.18 [2.25, 55.40]
Drug class benzodiazepine (+) 1.53 4.61 [2.47, 8.59]
Peripheral arterial disease (+) 1.01 2.74 [1.45, 5.15]
Parkinson disease (+) 0.98 2.68 [1.42, 5.04]

Univariate correlations between individual numerical as well as categorical 
variables and the POD target are presented in Table 3 and 
Table 4. Highly correlated clinical variables were age (e=0.232, with e=2|AUROC-
0.5|) for TI, the ASA status (e=0.179) for T1, the intraoperative (T2) amount of 
remifentanil (e=0.200), and the Aldrete score (e=0.347) measured in the recovery 
room (T3). The anesthesia-, and the surgery durations calculated for each timeline 
are highly discriminative in both, the intraoperative - (T2) and the postoperative 
(T3) phase. In some cases, variables with relatively high effect size had high missing 
rate – like the 50th percentile of the right intraoperative spectral edge frequency 
(SEF) (e=0.175, 0.807 missing rate).

As seen in 
Table 4, dementia is the categorical variable with the highest positive association 
with POD encoded as EHR for all three timelines T1-T3 (o=2.48, o=2.48, o=3.33). 
Uncertainty according to the 95% confidence interval (CI) calculated with the odds 
ratio [69] was very high for this variable. OPS surgical procedure history regarding 
the nervous system (o=0.86), the absent application of spinal anesthesia (o=2.63), 
urine drain access complication (o=2.82) as well as general op complication 
(o=2.41) are strong discriminative factors within TI, TL1-TL3 respectively.
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Model Evaluation
Figure 3: POD classification performance of different models according to the area under the receiver operating 
characteristics curve (AUROC), and the area under the precision-recall curve (AUPRC) calculated on the test set. 
Metrics are evaluated either for the MLP or tree model per variant (M1-M123, corresponding to time phases T1-
T123, upper graphs) or per machine learning model class applied only to the intraoperative phase (T12, lower 
graphs). Every model variant includes time-invariant data (TI). Referenced baseline models are indicated by 1st 
author’s name – Wassenaar or Boogaard - as prefix, recalibrated models are indicated as rec. Baseline models 
were either pre-trained (pretr), retrained using logistic regression - (lr) or retrained using a multi-layer 
perceptron (mlp).

Table 5: Performance metrics (mean, [95% confidence interval]) on bootstrapped test sets for trained logistic 
regression (lr), multi-layer-perceptron (mlp), tree-based models (tree), or pre-trained (pretr) models. The best 
baseline models according to the AUROC and AUPRC metrics (Wassenaar and Boogaard) are also included. 
Sensitivity and specificity are calculated for the threshold that maximizes their sum. Precision is calculated for 
the highest threshold for which recall > 0.70. Model variants (M1-M123) consume data from time phases and 
their combinations T1-T123. Data from TI is included for every model.

Model AUROC AUPRC Sensitivity Specificity Precision F1-Score
T1

M1_lr 0.698,
[0.697, 0.699]

0.181,
[0.180, 0.182]

0.615,
[0.609, 0.621]

0.677,
[0.670, 0.683]

0.125,
[0.124, 0.125]

0.231,
[0.230, 0.233]

M1_mlp 0.708,
[0.706, 0.709]

0.206,
[0.205, 0.207]

0.582,
[0.574, 0.589]

0.713,
[0.706, 0.720]

0.126,
[0.125, 0.127]

0.239,
[0.238, 0.241]

M1_tree 0.715,
[0.714, 0.716]

0.224,
[0.223, 0.226]

0.618
[0.612, 0.624]

0.691,
[0.684, 0.697]

0.128,
[0.127, 0.128]

0.240,
[0.238, 0.241]

Boogard_mlp 0.610,
[0.610, 0.611]

0.146,
[0.145, 0.146]

0.438,
[0.437, 0.439]

0.740,
[0.740, 0.741]

0.098,
[0.098, 0.098]

0.203,
[0.201, 0.203]
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Wassenaar_mlp 0.610,
[0.609, 0.611]

0.139,
[0.138, 0.141]

0.452,
[0.451, 0.453]

0.722,
[0.721, 0.723]

0.097,
[0.096, 0.098]

0.198,
[0.198, 0.199]

T2

M2_lr 0.711,
[0.710, 0.712]

0.183,
[0.182, 0.184]

0.662,
[0.656, 0.668]

0.658,
[0.653, 0.664]

0.135,
[0.134, 0.136]

0.237,
[0.236, 0.239]

M2_mlp 0.766,
[0.766, 0.767]

0.253,
[0.252, 0.255]

0.742,
[0.737, 0.747]

0.649,
[0.644, 0.655]

0.161,
[0.160, 0.161]

0.258,
[0.256, 0.259]

M2_tree 0.771,
[0.770, 0.772]

0.273,
[0.272, 0.275]

0.732,
[0.728, 0.736]

0.676,
[0.672, 0.681]

0.167,
[0.167, 0.168]

0.269,
[0.268, 0.270]

Boogard_mlp 0.609,
[0.608, 0.611]

0.146,
[0.145, 0.147]

0.450,
[0.446, 0.454]

0.728,
[0.724, 0.732]

0.098,
[0.098, 0.099]

0.202,
[0.201, 0.203]

Wassenaar_mlp 0.609,
[0.608, 0.610]

0.139,
[0.138, 0.140]

0.459,
[0.452, 0.467]

0.716,
[0.709, 0.723]

0.097,
[0.097, 0.098]

0.198,
[0.197, 0.199]

T3

M3_lr 0.768,
[0.767, 0.769]

0.238,
[0.237, 0.239]

0.692,
[0.688, 0.697]

0.715,
[0.710, 0.719]

0.169,
[0.167, 0.170]

0.279,
[0.278, 0.280]

M3_mlp 0.763,
[0.762, 0.764]

0.254,
[0.252, 0.255]

0.784,
[0.782, 0.786]

0.629,
[0.627, 0.631]

0.163,
[0.163, 0.164]

0.259,
[0.259, 0.260]

M3_tree 0.799,
[0.799, 0.800]

0.285,
[0.284, 0.287]

0.740,
[0.737, 0.743]

0.741,
[0.738, 0.744]

0.211,
[0.210, 0.212]

0.315,
[0.313, 0.316]

Boogard_mlp 0.606,
[0.605, 0.607]

0.137,
[0.136, 0.138]

0.449,
[0.445, 0.454]

0.723,
[0.719, 0.728]

0.097,
[0.096, 0.097]

0.197,
[0.196, 0.198]

Wassenaar_mlp 0.609,
[0.608, 0.61]

0.135,
[0.134, 0.136]

0.442,
[0.436, 0.448]

0.736,
[0.731, 0.741]

0.098,
[0.097, 0.098]

0.201,
[0.20, 0.202]

T12

M12_lr 0.722,
[0.721, 0.723]

0.201,
[0.200, 0.202]

0.639,
[0.633, 0.644]

0.695,
[0.691, 0.700]

0.137,
[0.136, 0.138]

0.249,
[0.248, 0.251]

M12_mlp 0.777,
[0.776, 0.778]

0.269,
[0.268, 0.271]

0.760,
[0.752, 0.767]

0.652,
[0.644, 0.659]

0.167,
[0.167, 0.168]

0.265,
[0.263, 0.267]

M12_tree 0.740,
[0.739, 0.741]

0.246,
[0.244, 0.247]

0.651,
[0.644, 0.659]

0.696,
[0.689, 0.704]

0.142,
[0.141, 0.143]

0.255,
[0.253, 0.256]

Boogard_tree 0.613,
[0.612, 0.613]

0.139,
[0.138, 0.139]

0.486,
[0.485, 0.487]

0.698,
[0.697, 0.699]

0.101,
[0.100, 0.102]

0.202,
[0.201, 0.203]

Wassenaar_mlp 0.609,
[0.608, 0.609]

0.151,
[0.15, 0.152]

0.663,
[0.659, 0.667]

0.598,
[0.594, 0.601]

0.121,
[0.121, 0.122]

0.214,
[0.214, 0.215]

T23

M23_lr 0.751,
[0.750, 0.752]

0.227,
[0.226, 0.229]

0.708,
[0.703, 0.713]

0.676,
[0.672, 0.681]

0.159,
[0.159, 0.160]

0.262,
[0.260, 0.263]

M23_mlp 0.816,
[0.815, 0.817]

0.341,
[0.339, 0.342]

0.767,
[0.764, 0.770]

0.728,
[0.726, 0.730]

0.216,
[0.214, 0.217]

0.314,
[0.313, 0.315]

M23_tree 0.851,
[0.850, 0.852]

0.410,
[0.408, 0.412]

0.778,
[0.773, 0.782]

0.779,
[0.774, 0.783]

0.277,
[0.275, 0.279]

0.362,
[0.359, 0.365]

Boogard_mlp 0.616,
[0.615, 0.617]

0.145,
[0.144, 0.156]

0.480,
[0.475, 0.484]

0.710,
[0.706, 0.714]

0.100,
[0.100, 0.101]

0.206,
[0.205, 0.207]

Wassenaar_mlp 0.608,
[0.607, 0.609]

0.137,
[0.136, 0.138]

0.445,
[0.439, 0.451]

0.730,
[0.724, 0.735]

0.097,
[0.097, 0.098]

0.199,
[0.198, 0.199]

T123

M123_lr 0.778,
[0.776, 0.779]

0.260,
[0.258, 0.262]

0.689,
[0.682, 0.697]

0.733,
[0.725, 0.74]

0.176,
[0.174, 0.178]

0.291,
[0.288, 0.293]

M123_mlp 0.820,
[0.819, 0.821]

0.333,
[0.331, 0.336]

0.749,
[0.744, 0.754]

0.754,
[0.749, 0.76]

0.227,
[0.225, 0.229]

0.328,
[0.326, 0.331]

M123_tree 0.854,
[0.853, 0.855]

0.418,
[0.415, 0.421]

0.790,
[0.784, 0.796]

0.772,
[0.766, 0.778]

0.281,
[0.278, 0.283]

0.360,
[0.356, 0.363]

Boogard_tree 0.616,
[0.615, 0.617]

0.150,
[0.149, 0.151]

0.450,
[0.450, 0.450]

0.724,
[0.724, 0.724]

0.098,
[0.098, 0.098]

0.198,
[0.198, 0.198]

Wassenaar_mlp 0.608,
[0.607, 0.609]

0.134,
[0.133, 0.135]

0.438,
[0.432, 0.444]

0.737,
[0.731, 0.743]

0.098,
[0.098, 0.098]

0.200,
[0.199, 0.201]

Figure 3 summarizes the POD prediction performance of models on the test set 
according to the AUROC and AUPRC metrics. The upper two graphs display MLP and 
tree-based model performances across all time phase combinations (T1-T123). 
Performance was highest for models M3, M23 and M123 taking postoperative data 
(T3) into account. Models M12–M123 incorporating data from multiple time phases 
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seemed to perform better than models M1–M2 focusing on one single phase. Except 
for the combined pre- and intraoperative phase (T12), tree-based models 
outperformed MLPs. Tree-based model M123 ingesting all perioperative data 
(T123) showed highest AUROC as well as AUPRC metrics (see Figure 3).

Prediction performance of MLP, LR, tree, and baseline models – adopted from 
Wassenaar et al. and Boogaard et al. – applied to pre- and intraoperative data (T12), 
are shown in the two lower graphs of Figure 3. The proposed MLP model was 
superior to the linear LR model as well as the retrained or applied reference models. 
The best reference model for T12 was the retrained MLP model based on Boogard et 
al. (see Figure 3). Extended Figure 2 and Extended Figure 3 – included in Appendix2 
– display AUROC and AUPRC graphs for all model variants, baselines, and time 
phase combinations.

Table 5 summarizes further evaluation metrics for models per time phase 
combination (T1-T123) evaluated on the bootstrapped test set. The best baseline 
models (for Wassenaar or Boogaard) are presented as well. Non-linear tree-based 
models outperformed linear LR across all time phase combinations (T1-T123). 
Tree-based models showed higher evaluation metrics than MLP models except for 
one time phase (T12) (see Table 8). Non-linear MLPs outperformed linear LR with 
respect to the AUPRC metric for all time phases (T1-T123). Both non-linear models 
variants – MLPs and trees – clearly outperformed baseline models.

The best performing non-linear tree-based model variant M123 was trained on all 
perioperative data (T123). This model showed a mean AUROC of 0.854 (95% CI 
[0.853, 0.855]) and a mean AUPRC of 0.418(95% CI [0.415, 0.421]]). Model variant 
M12, which incorporated data from the preoperative- (T1) and intraoperative (T2) 
phase omitting postoperative data (T3), yielded a mean AUROC of 0.777 (95% CI 
[0.776, 0.778]), a mean AUPRC of 0.269 (95% CI [0.268, 0.271]). Extended Table 9 in 
Appendix 1 shows metrics achieved on the training dataset without a tendency of 
under- or overfitting. 

Discussion

Principal Results
Our results show that non-linear models can better predict POD onset in the 
recovery room than linear LR models especially when ingesting features from 
multiple perioperative phases. Tree-based models outperformed MLP models in 
time phases T1-T123 except for T2. This observation could be explained by the 
selected feature set that was different for MLPs determined via cross-validation on 
the training data (see Extended Table 4 and Extended Table 5 in Appendix 1). 
Retrained and applied baseline models by Wassenaar and Boogaard – originally 
developed as delirium prediction models for the intensive care admission – yielded 
moderate performance in the recovery room setting. 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.21.23298802doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298802
http://creativecommons.org/licenses/by/4.0/


14

Although most of the univariate significant variables – like ASA score – are already 
known from clinical studies [54-57], it could be shown that additional parameters 
like intraoperative EEG edge frequencies and procedure durations were 
discriminative as well. Results must be interpreted carefully since no cohort 
matching – e.g., for reducing cofounding bias in a case-control study – was done. 

Clinical Relevance
In clinical practice, it is desirable to know the risk for POD at the end of the 
intraoperative phase. This knowledge could be used to initiate preventive measures 
such as transportation to a noise-reduced ward after the surgery [8, 26, 27]. Models 
ingesting T12 make predictions before the admission to a recovery room. Thus, the 
physician can decide to transfer the patient to a specialized ward. 

Assuming 100 surgeries per day through all three hospital sites including 10 real 
cases of POD. The application of the MLP M12 with a fixed sensitivity at 0.80 and a 
corresponding precision of 0.20 would lead to 8 correct transfers – of patients really 
suffering from POD – and 32 incorrect transfers – of patients not suffering from POD 
– to a specialized ward after surgical procedures. With a usual ICU size of 15-20 
patients, the results highlight that a low precision is a main impediment for 
implementing trained models in a real clinical setting. 

Comparison with Related Work 
Original work by Wassenaar et al. and Boogard at al. focused on delirium prediction 
based on data available early after admission [18-20]. We could achieve a maximum 
AUROC of 0.61 using preoperative data by retraining their models, which seems to 
be complementary to external validation studies [21]. In our setup, the highest 
observed AUROC achieved for this time phase was 0.715. Xue et al. combined pre- 
and intraoperative data for training a MLP, reporting an AUROC of 0.715 and an 
AUPRC of 0.731 on data with 52.6% prevalence [22]. MLP model M12, which was 
also trained on pre- and intraoperative data, achieved a similar mean AUROC value 
(0.777). Due to the reduced prevalence, the mean AUPRC was noticeably lower 
(0.269). Low POD prevalence was explicitly addressed by Davoudi et al. using 
oversampling [6], we wanted to train an applicable model without changing the 
prevalence. Davoudi et al. and Bishara et al. achieved promising AUROC values over 
0.80 with non-linear models on preoperative data, but did not report any AUPRC 
metrics [6, 24]. This would have been beneficial for a comprehensive comparison. 
Racine et al. compared a linear LR with a MLP approach. Their MLP model achieved 
an AUROC of 0.71 and a linear LR model achieved an AUROC of 0.69 [23]. Most 
related work investigating the application of machine learning for POD prediction 
with linear LR during a clinical trial incorporating few samples and specialized 
attributes [13-17]. Scores explicitly designed for assessing cognitive impairments – 
like the Mini-Mental State Examination (MMSE) – are highly correlated with 
delirium and were included in these studies as predictor variables [23, 14]. Positive 
ICD or CAM values during hospitalization were used by referenced work for the 
target definition [20-24]. To our knowledge, no previous study focused on a Nu-
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DESC POD assessment in a recovery room setting. Our models are openly accessible 
and can be evaluated in other medical centers. 

Limitations
Due to the vast amount of records, there was no chance of ensuring clinical 
correctness for all extracted EHRs. The feature selection process based on 
univariate test statistics moreover ignored dependencies between covariates, which 
may have been beneficial for the predictive performance [58]. Some features also 
showed high predictive power but low availability. We did not use feature 
interpretation methods – such as LIME or SHAP – as such methods are themselves 
poorly understood and may lead to wrong conclusions about model and data [58, 
59]. Since we conducted a single-center study, results could have benefited from 
external validation. 

Models incorporating T3 provide a POD assessment without relying on the actual 
observed Nu-DESC. Results were displayed to assess the relevance of covariates 
measured into the recovery room. We focused our clinical interpretation solely on 
MLP model M12 ingesting data up to T2. Cases with later POD onsets in ICUs or 
cases bypassing the recovery room were ignored but can be investigated in further 
studies. A prospective study that validates the predictions of our models also 
focusing on a clinical assessment regarding the Nu-DESC would be beneficial 
towards a clinical application. 

Conclusion
This study demonstrates that machine learning can be used to predict POD assessed 
by the Nu-DESC in the recovery room, where the incorporation of different 
intraoperative phases as feature sets proved useful. Overall, non-linear models were 
superior to linear LR techniques as well as known published models. However, 
strategies for highly imbalanced data must be developed to implement solutions in 
clinical practice. 
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Abbreviations
AUC: Area under the curve 
BP: Blood pressure
CAM: Confusion Assessment Method
CI: Confidence Interval
CRP: C-reactive protein
CV: Cross validation 
EHR: Electronic health records
ESA: European Society of Anaesthesiology
ICU: Intensive Care Unit
IQCODE: Informant Questionnaire on Cognitive Decline in the Elderly 
LIME: Local interpretable model-agnostic explanations
LR: Logistic regression
MAD: Median absolute deviation 
MLP: Multi-layer perceptron
MMSE: Mini-Mental State Examination 
MWU: Mann-Whitney U
Nu-DESC: Nursing Screening Delirium Scale 
OR: Odds ratio
PCV: Pressure Control Ventilation
SEF: Spectral edge frequency 
SHAPE: Shapley Additive exPlanations
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