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Abstract 

Epigenetic clocks, an estimate of biological age based on DNA methylation (DNAmAge) 

are gaining prominence as potential markers of brain ageing. However, consensus is lacking as the 

repertoire of DNAmAges expands, particularly concerning their ability to predict age-related 

cognitive changes. In our cohort of 785 elderly, we examined 11 DNAmAges, evaluating their 

associations with brain ageing in cross-sectional and longitudinal settings. Our results highlighted 

DNAmAges as strong predictors of cognitive change compared to baseline cognition, albeit 

varying performance across cognitive domains. DunedinPACE excelled in predicting baseline 

cognition, while Zhang's clocks and principal component-based PhenoAge (PCPheno) performed 

best in predicting cognitive decline. DNAmAges elucidated substantial cognitive variability, 

matching or surpassing the predictive power of vascular risk factors and ApoE4 genotypes. 

Notably, in ApoE4 carriers, Zhang's clock and PCPheno exhibited significantly larger effects, 

explaining over five times the variability in memory decline compared to non-carriers.  
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Background 

Brain ageing is a multifaceted process marked by complex physiological, cellular, and 

molecular changes leading to cognitive decline and age-related neuropathological conditions. The 

quest to understand these changes and their implications for health outcomes has led to the 

emergence of biomarkers1,2. 

Epigenetic clocks are molecular markers based on DNA methylation (DNAm) that estimate 

an individual's biological age based on DNAm changes (DNAmAge)2,3. The difference between a 

person's predicted biological and chronological age is called age acceleration (AA) and indicates 

the speed of biological ageing relative to chronological ageing. The initial DNAmAges classified 

as first-generation clocks, namely the Horvath3 and the Hannum4 clocks were primarily designed 

to estimate an individual's chronological age2,3. Zhang and colleagues later developed near-perfect 

age predictors using Elastic Net (Zhang-ENP) and Best Linear Unbiased Prediction (Zhang-

BLUP) algorithms, trained on 13,000+ samples5. The second-generation DNAmAges, PhenoAge6 

and GrimAge7, incorporated both indicators of physiological state and chronological age to 

identify DNAm patterns. DunedinPACE (Pace of Aging Calculated from the Epigenome) is a third-

generation clock that quantifies changes in the pace of biological ageing over 20 years offering a 

unique longitudinal perspective8. Recent enhancements to Horvath, Hannum, Pheno, and Grim 

DNAmAges utilised CpG principal components (PC). These refined versions, PCHorvath, 

PCHannum, PCPheno, and PCGrim, increased the reliability of the existing clocks9.  

Recently epigenetic clocks were explored in brain ageing, predicting age-related cognitive 

differences and decline. Despite linking DNAmAges to cognition and neurodegenerative diseases, 

consensus is lacking across DNAmAges and cognitive domains10–16. Studies simultaneously 

examining cross-sectional and longitudinal relationships within a cohort are scarce, hindering 
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temporal insights15,17. Few have investigated the link between DNAmAges and MRI markers like 

brain volume and white matter hyperintensities (WMH)16. Lastly, the potential of enhanced PC-

based DNAmAges in brain ageing and the modulatory effects of vascular risk and genetic factors 

on the DNAmAge-cognition connection remain underexplored. 

To address these knowledge gaps, we conducted an exploratory analysis using both cross-

sectional and longitudinal data from the Austrian Stroke Prevention Study (ASPS)18,19. Our study 

had several key objectives: 1) assessing the reproducibility of DNAmAges, including the impact 

of different DNAm processing pipelines. 2) evaluating three generations of DNAmAges, and their 

PC-based counterparts with brain ageing phenotypes. This encompassed cognitive tests spanning 

various domains such as executive function (Trail making test-part B (TMT-B) and Wisconsin 

Card Sorting Test (WCST)), manual dexterity (Purdue Pegboard Test (PPT)), visual and verbal 

memory, and processing speed as well as dementia screening tools including the mini-mental state 

examination (MMSE) and the Mattis Dementia Rating Scale (MDRS). Additionally, we also 

explored the associations with structural brain ageing markers, specifically brain volume and 

WMH. 3) estimating DNAmAges’ role in explaining unique variability in cognition and cognitive 

decline, comparing them with established risk factors. 4) testing the modulatory effects of risk 

factors through subgroup and interaction analyses on the DNAmAge-cognition association. 
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Results 

 Study design 

The present analysis included 796 ASPS participants with baseline DNAm, cognitive tests 

and brain MRI data. Among them, 485 had a first follow-up after 3 years, and 330 had a second 

follow-up after 6 years. The mean age was 65.8 years (SD:7.9), with 58% females, 69% 

hypertensives, and 19% ApoE4 carriers (Table 1) (Figure 1). 

Figure 1: Study design and workflow.  
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We explored the cross-sectional and longitudinal relationship between brain ageing and 11 

DNAmAges including first-generation (Horvath, Hannum, Zhang-ENP, Zhang-BLUP), second-

generation (Pheno and Grim), and third-generation (DunedinPACE) clocks, along with their PC-

based versions (PCHorvath, PCHannum, PCPheno, and PCGrim). We employed AA as a measure 

of biological ageing in the analyses where positive AA indicates accelerated biological ageing 

relative to chronological age, while negative AA implies slower biological ageing. 

Effect of pre-processing on DNAmAges  

We compared minfi20 and ewastools21 pipelines by evaluating the reliability of DNAmAges 

using intra-class correlation (ICC) within six samples. Except for Hannum (0.64), all clocks had 

excellent reliability (ICC>0.75, Range:0.79 to 1).  PC-based clocks notably exhibited the highest 

reliability (Range:0.90 to 1), surpassing their original versions. Overall, ewastools demonstrated 

slightly superior ICC values for most clocks compared to minfi (Supplementary Table 1). 

Epigenetic age measures  

Quality control excluded nine samples: eight for sex mismatches and one for failing quality 

control thresholds. The final dataset included 785 participants (Figure 1). DNAmAge calculated 

using first-generation clocks ranged from 57.1 to 66.1 years, and 57.0 to 69,9 years using second-

generation clocks. PC-based clocks had higher mean ages than their original counterparts, with 

Hannum showing the largest difference of 12.8 years (Table 1, Supplementary Table 2). 

DunedinPACE had a mean of 1±0.1 years (Range:0.7 to 1.5). 

Correlation Analysis  

First- and second-generation clocks showed age correlations from 0.62 to 0.83, while 

DunedinPACE had a correlation of 0.18. PCHorvath and PCHannum had slightly lower 

correlations, whereas PCPheno and PCGrim exhibited higher correlations than their original 
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counterparts (Figure 2; Supplementary Table 2). First- and second-generation clocks generally had 

strong to very strong correlations (0.74-0.94) among themselves. GrimAge, however, displayed 

moderate to strong correlations (0.62-0.74) with other clocks. DunedinPACE showed low 

correlations (0.25-0.50), highest with GrimAge (0.50). AA measures had strong to very strong 

correlations (0.52-0.97), except for Grim, PCGrim, and DunedinPACE AA (0.18-0.52) (Figure 2, 

Supplementary Table 2). 

 

Figure 2: Correlations between DNAmAges and age acceleration measures. AA: Age 
Acceleration 
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Age acceleration and brain ageing 

We hypothesised that higher AA is associated with impaired cognition, reduced BPF, and 

increased WMH. We employed two nested multiple linear regression models. The first included 

baseline age, sex, and education years as covariates, while the second included additionally 

hypertension, BMI, diabetes, cardiovascular diseases (CVD), smoking, total cholesterol, and 

ApoE4-carrier status. Effect size (beta) and partial R2 values assessed the extent of the associations. 

Age acceleration and cognition at baseline 

Within executive functions, lower WCST performance was significantly associated with 

higher AA in PCHorvath, Hannum, PCHannum, EEAA, Zhang-ENP, Zhang-BLUP, Pheno, 

PCPheno, Grim, and DunedinPACE in both models (Model 1: beta =-5.97 to -0.11, partial R2 = 

0.005 to 0.025; Model 2: beta=-6.56 to -0.12, partial R2=0.006 to 0.024). DunedinPACE exhibited 

the largest effect sizes (≈-6.0), while PCPheno had the highest partial R2 in both models (≈0.03). 

Overall, Model 2 showed higher effect sizes and explained more variability than Model 1. All 

associations (N=14) except for Grim and DunedinPACE remained significant after false discovery 

rate (FDR) correction. DunedinPACE was nominally associated with lower TMT-B performance 

in Model 1 (beta= -40.54; partial R2 = 0.01) (Table 2). 

In the assembly component of PPT evaluating manual dexterity, only DunedinPACE 

showed a nominal association in Model 1 (beta=-4.73, partial R2=0.01) (Table 2).  

In the memory domain, lower visual memory scores were nominally associated with higher 

AA in Hannum, EEAA, Zhang-ENP, Zhang-BLUP, PCPheno, Grim, PCGrim and DunedinPACE 

(beta=-42.22 to -0.50) in Model 1, and with Zhang-BLUP, PCPheno and DunedinPACE AA in 

Model 2 (beta=-34.23 to -0.50). DunedinPACE had the largest effect sizes (beta=Model 1:-42.22; 

Model 2:-34.23), explained the highest variance (partial R2= Model 1:0.02, Model 2:0.01), and 
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passed FDR correction. Verbal memory was only nominally associated with EEAA in Model 1 

(beta=-0.34, partial R2= 0.004) (Table 2). 
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We also observed an unexpected FDR significant association of higher AA in certain clocks 

with better cognition including MMSE (Hannum, Zhang-ENP, Zhang-BLUP), PPT-RLB (Zhang-

ENP) and processing speed (Zhang-ENP, Zhang-BLUP, and PCPheno) (Supplementary Table 3). 

Age acceleration and cognitive decline 

We employed linear mixed models with individual-specific random effects, adjusting for 

baseline age and follow-up time, to estimate annual cognitive changes. We then assessed the 

association with DNAmAges using the two models as described in the cross-sectional analyses 

(Table 2). 

In executive function, faster TMT-B decline in Model 1 was nominally associated with 

Hannum, PCHannum, EEAA, Zhang-ENP, Zhang-BLUP, PCPheno, Grim, PCGrim, and 

DunedinPACE (beta=-1.37 to -0.02). In Model 2, the association persisted with PCHannum, 

Zhang-BLUP, PCPheno, Grim, and PCGrim (beta=-0.05 to -0.02). FDR significance was observed 

for PCHannum, BLUP, PCPheno, Grim, PCGrim, and DunedinPACE in Model 1, as well as 

PCPheno in Model 2. AA explained 0.8% to 2.0% of the variance in TMT-B decline, with PCPheno 

explaining the highest in Model 2 (1.56%) (Table 2). 

Figure 3: Association of DNAmAges with cognitive phenotypes. A. Effect size of cross-

sectional and longitudinal associations between DNAmAges and cognitive phenotypes. B. 

Cognitive variability explained by various DNAmAge measures.  WCST: Wisconsin Card Sorting 

Test, TMT: Trail Making Test Part B, VSM: Visual memory, VRM: Verbal memory, speed: Processing speed, 

DundPACE: DunedinPACE. Circle represent results from model 1 which was adjusted for age, sex and 

Education, Square represent the result from model 2 which was additionally adjusted for hypertension, 

BMI, diabetes, cardiovascular diseases, smoking, total cholesterol, and ApoE4-carrier status. Blue 

indicates FDR significant associations (FDR p<0.05, Green indicates nominally significant associations 

(p<0.05), Grey indicates non-significant associations  
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In manual dexterity, faster decline in PPT-RLB was nominally associated with higher 

Zhang-ENP AA in both models (beta=-0.004, partial R2=0.02) as well as PCPheno AA in model 2 

(beta=-0.002, partial R2= 0.01). Only the association of Zhang-ENP remained significant after 

FDR correction in both models. 

In the memory domain, faster visual memory decline was nominally associated with higher 

AA in all DNAmAges, except Horvath and IEEA, with many associations passing FDR correction. 

DunedinPACE exhibited the largest effect size (beta≈-0.36), surpassing other clocks (beta=-0.01) 

in both models. AA explained variability from 0.9% to 3.3%, with Zhang-BLUP showing the 

highest values in both models. Similarly, verbal memory decline showed a nominally significant 

association with PCHorvath, Hannum, PCHannum, EEAA, Zhang-ENP, Zhang-BLUP, PCPheno, 

Grim and PCGrim (beta=-0.02 to -0.01, partial R2=0.01 to 0.02) in both models.  

Processing speed decline was associated with higher AA in PCHorvath, Hannum, 

PCHannum, EEAA, Zhang-ENP, Zhang-BLUP, PCPheno, and PCGrim in model 1 (beta=-0.15 to 

-0.05, partial R2=0.01 to 0.03) and with PCHorvath, PCHannum, EEAA, Zhang-ENP, Zhang-

BLUP, PCPheno, and PCGrim in model 2 (beta=-0.15 to -0.05, partial R2=0.01 to 0.02). PCGrim 

AA had the highest effect size (beta =-0.15) and explained the most variability (2.1%) among all 

significant DNAmAges (Table 2). 

Unlike cross-sectional results, most clocks unexpectedly showed FDR significant 

associations with annual WCST improvement, suggesting possible practice effects. To address this 

bias, we adjusted WCST scores by subtracting mean differences between the baseline and the first 

follow-up, as well as between the first and second follow-ups for those with improvements. 

Despite this correction, AA remained associated with WCST improvement (Supplementary Table 

4). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298753doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298753
http://creativecommons.org/licenses/by-nc-nd/4.0/


Age acceleration and MRI Markers 

We found no significant associations between AA and decreases in BPF or increases in 

WMH. However, Hannum, EEAA, Zhang-ENP and Zhang-BLUP AA exhibited an unexpected 

FDR significant association with higher BPF (Supplementary Table 5).  

Age acceleration, cognition and MRI markers  

We explored the impact of MRI markers on AA-cognition associations by adjusting for 

WMH in the model for executive functions and for BPF for memory. 

Cross-sectionally, after WMH adjustment, DNAmAges had no association with TMT-B, 

but WCST associations remained unchanged. Longitudinally, WMH adjustment slightly reduced 

second-generation clocks' effect sizes on TMT-B change (Supplementary Table 6).  

Adjusting for BPF in memory analysis retained DunedinPACE's nominal significance in 

visual memory with a minimal effect size reduction. Longitudinally, BPF adjustment slightly 

reduced clock effect sizes for both visual and verbal memory. (Supplementary Table 6). 

Effect of white blood cell counts  

We further incorporated estimates of CD8T, CD4T, Natural killer cells, monocytes, 

neutrophils, and B cells derived from DNA methylation data in the model. These adjustments 

minimally affected the effect sizes of significant associations, both in the cross-sectional and 

longitudinal analyses (Supplementary Table 7).  

Comparing DNAmAges  

In the subsequent analyses, we focused on phenotypes where DNAmAges showed FDR 

significant associations in the expected direction. These were WCST and visual memory cross-

sectionally and TMT-B, visual memory, verbal memory, and processing speed longitudinally.  
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PC-based clocks and cognition 

PC-based clocks generally had higher effect sizes and explained more variability in 

baseline cognition as well as its decline except for the Hannum AA in the memory domain. PC-

training had the most significant impact on PCPheno, doubling effect sizes and explained 

variability compared to Pheno AA in both models (Figure 3, Table 2, Supplementary Table 3 & 4). 

First, second and third-generation clocks and cognition 

DunedinPACE demonstrated the highest effect sizes for baseline WCST and baseline visual 

memory in both models. However, PCPheno accounted for the highest variability in WCST, while 

DunedinPACE for visual memory. Longitudinally, PCGrim AA consistently exhibited the highest 

effect sizes for TMT-B, verbal memory and processing speed decline. DunedinPACE displayed 

the highest effect size for visual memory decline. Nevertheless, PCPheno AA explained the highest 

variability in TMT-B and verbal memory decline, Zhang-BLUP AA in visual memory decline, and 

PCGrim AA in cognitive speed decline (Figure 2, Table 2, Supplementary Table 3 & 4). 

Do all clocks explain the same variability? 

Given the weak correlations between DunedinPACE and Zhang-BLUP AA (r=0.18) and 

their significant associations with baseline visual memory and its decline, we further explored their 

combined predictive power for visual memory. We included both in a regression model adjusted 

for demographics, vascular and genetic risk factors. Cross-sectionally, visual memory was 

significantly associated only with DunedinPACE (beta=-31.0) but not Zhang-BLUP. However, 

visual memory decline was significantly associated with both Zhang-BLUP (beta=-0.01, partial 

R2=0.026), and DunedinPACE (beta=-0.27, partial R2=0.008) (Supplementary Table 8).  
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Subgroup analysis 

We stratified our cohort by age, sex, education, hypertension, BMI, CVD, smoking, 

diabetes, ApoE4 carrier status, and WMH scores.  We chose Zhang-BLUP, PCPheno, Grim, and 

DunedinPACE AA due to their outstanding performance within their respective clock generations. 

We found stronger Zhang-BLUP and PCPheno associations with cognition, especially in memory 

decline, in subgroups of young individuals, females, normotensives, lower education, non-

smokers, and non-diabetic individuals. Notably, there was a significant interaction between 

PCPheno and hypertension in visual (beta=0.01, p=0.04) and verbal memory decline (beta=0.02, 

p=0.04) (Supplementary Table 9). 

The ApoE4-carrier status showed inconsistent patterns in the AA-cognition relationship 

(Figure 4; Supplementary Table 10). In memory, Zhang-BLUP and PCPheno had larger effects and 

explained more variability in carriers that reached significance longitudinally, while 

DunedinPACE displayed larger effect sizes and partial R2 in ApoE4 non-carriers, reaching 

significance in visual memory and its decline. In WCST, Zhang-BLUP and PCPheno were 

significantly associated in both carriers and non-carriers while DunedinPACE only in non-carriers. 

In processing speed decline, Zhang-BLUP was associated in ApoE4 carriers while PCPheno and 

PCGrim in non-carriers. There were significant interactions with ApoE4 carrier status for Zhang-

BLUP on verbal memory decline (beta=-0.04) and processing speed decline (beta=-0.18), and for 

DunedinPACE on processing speed decline (beta=6.92). 
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 We did not find any evidence of the specific influence of the WMH on the AA-cognition 

associations.  

Discussion 

Here we present the comprehensive exploration of the association between epigenetic 

clocks and brain ageing-related cognitive and structural phenotypes including both cross-sectional 

and longitudinal analyses. Our results support the importance of DNAmAges in explaining 

Figure 4: ApoE4-specific subgroup analysis between DNAmAges and cognitive 

phenotypes.  A: Cross-sectional effect sizes B: Cross-sectional explained cognitive variability. 

C: Longitudinal effect sizes. D: Longitudinal explained cognitive variability. WCST: Wisconsin 

Card Sorting Test, TMT: Trail Making Test Part B, VSM: Visual memory, VRM: Verbal memory, speed: 

Processing speed, DundPACE: DunedinPACE, Green indicates nominally significant associations 

(p<0.05), Grey indicates non-significant associations  
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variability in cognitive performance in the elderly and especially highlight their potential for 

predicting longitudinal cognitive changes. Cross-sectionally, DNAmAges were significantly 

associated with executive function (WCST) and visual memory while longitudinally, they were 

linked to executive function (TMT-B), visual memory, verbal memory, and processing speed. 

Importantly, no single DNAmAge performed as a universal predictor of cognition or cognitive 

decline.  

Cross-sectionally the highest effect sizes were observed using Zhang-BLUP in WCST and 

DunedinPACE in visual memory, and for cognitive decline using PCGrim in executive function, 

DunedinPACE in visual memory, Zhang-BLUP in verbal memory, and PCGrim in processing 

speed. DNAmAges contributed 0.5% to 3.0% to explained variability in cognition cross-

sectionally, and 0.8% to 3.2% longitudinally. The difference between the first, second, or third-

generation clocks was negligible. Yet, DunedinPACE performed superior in cross-sectional and 

PCPheno in longitudinal models. Adjusting for vascular risk factors and for ApoE4 status did not 

significantly change the overall variability explained. Although stronger associations were 

observed in specific subgroups, such as age, sex, hypertensives and ApoE4-carriers, formal tests 

for interaction were significant only in hypertensives and ApoE4 carriers for PCPheno and Zhang-

BLUP in memory decline. There was neither an association between AA and MRI markers nor did 

MRI markers modulate the effect of AA on cognition. 

Prior studies have not yielded consistent evidence on the predictive capabilities of DNAmAges 

for cognition and MRI markers22–29. Here, we provide empirical evidence that DNAmAges are 

better predictors of cognitive decline compared to baseline cognition. Significant associations of 

DNAmAges with memory and its subdomains were reported mostly cross-sectionally8,23,25,28–31 

with one study describing also longitudinal associations17. In our study, 10 out of 13 DNAmAges 
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had FDR significant association with visual memory decline and seven with verbal memory 

decline at least in one model. At baseline, only DunedinPACE had an FDR significant association 

with visual memory and none with verbal memory (Figure 5).  

Executive function was the second-most frequently predicted domain by DNAmAges. Its 

decline, assessed by TMT-B, had FDR significant associations with six DNAmAges in at least one 

model, but not in the expected direction when measured by WCST (Figure 5). Conversely, at 

baseline, seven DNAmAges were linked to executive function measured by WCST, but not TMT-

B. This pattern of significant associations with TMT-B decline but not with baseline performance 

aligns with findings from a twin study32. Similar non-significant cross-sectional associations 

between DNAmAges and TMT-B were reported by large studies23,25,32. The association between 

higher DNAmAge and improved WCST scores longitudinally might have been influenced by 

practice effects33. Yet, after accounting for these effects, a significant relationship still persisted. 
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In the domain of processing speed, FDR significant associations of five DNAmAges existed 

exclusively with its decline (Figure 5). This contrasts with prior research that linked higher 

DNAmAges to lower baseline processing speed8,28–30,34 but not to its decline17,28. Cross-sectionally, 

higher Zhang-ENP, Zhang-BLUP, and PCPheno AA were associated with improved processing 

speed. Recently, higher Pheno AA was also linked to reduced variability in processing speed30. 

Figure 5: Overview of significant associations between DNAmAges and cognitive phenotypes. 

A: Cross-sectional results. B: Longitudinal Results. Circle represent results from model 1 which was 

adjusted for age, sex and Education, Square represent the result from model 2 which was 

additionally adjusted for hypertension, BMI, diabetes, cardiovascular diseases, smoking, total 

cholesterol, and ApoE4-carrier status. Blue indicates FDR significant associations (FDR p<0.05), 

Green indicates nominally significant associations (p<0.05), and Grey indicates non-significant 

associations. MMSE: Mini Mental State Examination, MDRS: Mattis Dementia Rating Scale, WCST: Wisconsin 

Card Sorting Test: PPT: Purdue Pegboard Test: AS: Assembly, RLB: Right Left Both, Speed: processing speed, 

TMT: Trail making test part B, VRM: Verbal memory, VSM: Visual memory  
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Finally, in manual dexterity, a higher Zhang-ENP AA was significantly associated with a 

decline in PPT RLB while cross-sectionally with an unexpectedly better performance even after 

FDR adjustment.  

Baseline BPF and WMH did not affect the association between DNAmAges and memory or 

executive functions suggesting that the relation between DNAmAges and cognition is not 

influenced by structural age-related brain changes. 

Visual memory was the only phenotype with significant associations both cross-sectionally 

and longitudinally with remarkably larger variability explained by the clocks in the longitudinal 

setting (Zhang-BLUP, PCPheno, and DunedinPACE 0.52%, 0.62%, and 1.56% cross-sectionally, 

3.2%, 2.31%, and 2.08% longitudinally) (Figure 5; Supplementary Table 11, Table 2). Compared 

to established ageing risk factors, DNAmAges consistently ranked among the top three 

contributors explaining variability in all cognitive domains. They ranked first in baseline executive 

function and processing speed decline, second after education in memory decline, and third in 

executive function decline behind education and diabetes. These findings underscore the 

importance of DNAmAges in predicting cognitive decline, even when compared to well-

established ageing risk factors (Figure 5; Supplementary Table 11). 
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Importantly, we found a significant and independent contribution of Zhang-BLUP and 

DunedinPACE to visual memory decline when including both clocks in the full model indicating 

that Zhang-BLUP and DunedinPACE probably capture distinct aspects of visual memory decline 

related to ageing (Supplementary Table 8).  

When assessing the utility of PC-based DNAmAges, we noticed a more substantial impact of 

PC-training on the association with cognitive decline than on baseline cognition. PCPheno, in 

particular, displayed a significant improvement, with FDR significant associations in verbal and 

visual memory, executive function (TMT-B), and processing speed, while Pheno only in visual 

memory decline. This mirrors findings in the Health and Retirement Study24. Additionally, 

Figure 6: Cognitive variability explained by the complete regression model. A: Cross-

sectional analysis. B: Longitudinal analysis. The X-axis represents DNAmAge used in that model. 

Various colours represent different covariates used in the model. WCST: Wisconsin Card Sorting Test, 

VRM: Verbal memory, VSM: Visual memory, Speed: processing speed.  
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PCPheno's effect size doubled compared to Pheno AA and explained more variability in cognitive 

decline than any other clock (Supplementary Table 4 & 5). 

Contrary to previous studies24,25, we found that first-generation clocks, specifically Zhang-

ENP and Zhang-BLUP, demonstrated comparable or even superior predictive performance 

compared to second- and third-generation clocks. Longitudinally, Zhang-ENP and PCPheno 

displayed the most associations (N=9), followed by Zhang-BLUP, PCGrim, and PCHannum (N=8) 

whereas cross-sectionally, DunedinPACE ranked first (N=6), followed by PCPheno, Zhang-BLUP, 

and EEAA (N=4) (Figure 5). The at-par performance of Zhang-ENP and Zhang-BLUP may be 

attributed to the extensive sample size used to train these measures35. 

Although having the highest effect sizes, DunedinPACE didn't consistently predict cognitive 

decline and didn't explain more variability compared to other clocks. This might be attributed to 

the measurement scale 24, where one-unit change in DunedinPACE equals 10 standard deviations 

(SD), and in other DNAmAges 1/3rd to 1/6th of an SD (Table 1).  

Higher Hannum, Zhang-ENP, and Zhang-BLUP AA were associated with FDR significance 

with better MMSE and MDRS scores cross-sectionally and longitudinally in our study. Previous 

reports were also inconsistent17,24–26,29. These paradoxical findings might be at least partly 

explained by the fact that these tests were not designed to assess cognitive function in the normal 

elderly, and a baseline MMSE<24 was an exclusion criterion in ASPS.  

In the subgroup analysis, Zhang-BLUP and PCPheno behaved similarly, especially in 

memory decline, showing higher effect sizes in young, female, low education, normotensive, and 

non-smoking subgroups, pinpointing to a possible interaction with these factors. The most 

pronounced difference was observed by hypertension status, where a formally significant 

interaction between PCPheno and hypertension was also present. Among normotensives, PCPheno 
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explained 11 times more variability in visual memory decline and eight times more in verbal 

memory decline (Supplementary Table 9). This suggests that DNAmAges’ effect may be masked 

in hypertensives and possibly in other high-risk groups like the elderly and smokers, where 

exposure begins in adulthood.  

In ApoE4-carriers, the full model explained double the cognitive variability compared to 

non-carriers, except for baseline visual memory (Supplementary Table 9).  

Longitudinally, larger effect sizes in ApoE4-carriers were even more pronounced with Zhang-

BLUP, explaining in visual memory five times and in verbal memory 15 times more variability 

than in non-carriers. PCPheno explained eight times more variability in ApoE4-carriers for both 

visual and verbal memory. Zhang-BLUP consistently demonstrated higher effect sizes and 

explained more phenotypic variability in ApoE4-carriers across all cognitive domains. Importantly, 

the interaction was statistically significant when formally tested between ApoE4 and Zhang-BLUP 

for verbal memory and processing speed decline as well as for DunedinPACE for processing speed 

decline. These findings underscore ApoE4-specific effects attributed to Zhang-BLUP and 

PCPheno in executive functions and memory domains, and to Zhang-BLUP in the processing 

speed domain. ApoE is known to play an essential role in human ageing with ApoE4 recorded as 

the pro-ageing and ApoE2 as the longevity allele36.  The observed interaction indicates that the 

ApoE2 allele is able to protect the brain even when biological ageing at the epigenetic level is 

speeded up. Further studies are needed to better understand this both biologically as well as 

prognostically relevant interactions with hypertension as well as ApoE4 status.  

Our study is a comprehensive and meticulous approach with notable strengths. Firstly, we 

ensured methodological robustness by assessing DNAmAge reproducibility and examining the 

effect of data pre-processing using technical replicates. Secondly, we extensively explored both 
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cross-sectional and longitudinal associations between cognitive measures, MRI markers, and 13 

AA measures from three epigenetic clock generations in a well-described population-based elderly 

cohort, using efficient linear mixed models to estimate individualised cognitive change 

trajectories. Thirdly, we highlighted the enhanced DNAmAge-cognition associations resulting 

from PC-training compared to original epigenetic clocks. Fourthly, we discerned variations in 

domain-specific predictive capabilities among first-, second-, and third-generation DNAmAges in 

the context of brain ageing. Moreover, our study emphasized the significance of DNAmAges by 

comparing them to established risk factors for brain ageing. Lastly, we conducted detailed 

subgroup analyses based on social demographics, vascular and genetic risk factors, and the 

presence of brain WMH, employing both subgroup and formal interaction analyses. 

Our study has also certain weaknesses. Firstly, our exploratory analysis involved multiple tests, 

increasing the risk of false positives, even after FDR correction. Secondly, some associations were 

unexpected and mostly nominally significant, necessitating cautious interpretation. Thirdly, 

longitudinal WCST analysis revealed an uncorrectable learning effect that may introduce bias. 

Fourthly, the use of 1.5T MRI didn’t allow for to investigate microstructural changes in the brain. 

Lastly, the relatively short follow-up duration underscores the need for longer-term studies in the 

future. 

In conclusion, we show that DNAmAges are significant predictors of cognitive performance 

and more so of cognitive decline even within a short follow-up period of three to six years. Their 

effect is independent of well-known risk factors, surprisingly explaining more variability than 

many of those including BMI, diabetes or ApoE4-carrier status. Importantly, we observed highly 

significant and clinically relevant interactions between DNAmAges and hypertension as well as 

ApoE4-carrier status that require further explorations of their underlying mechanisms.  None of 
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the available DNAmAges captured all aspects of brain ageing highlighting the need for the 

development of brain-specific methylation clocks. 

Methods 

ASPS cohort 

The ASPS study is a single-centre prospective cohort investigating the impact of vascular 

risk factors on brain structure and function in the elderly population of Graz city18,19. Extensive 

clinical assessments were performed, including brain MRI, neuropsychological tests, blood tests, 

blood pressure measurements, ECG, and echocardiography. The present study analysed a subset 

of 795 participants with DNA methylation, MRI, and cognitive test data. Ethics approval and 

informed consent were obtained. 

DNA methylation  

DNA was extracted from EDTA whole peripheral blood using the phenol-chloroform 

method and quality was checked using nanodrop and gel electrophoresis. DNAs meeting A260/280 

of 1.7-2.0 and displaying high molecular weight bands on gel electrophoresis were chosen for 

methylation analysis.  A total of 750 ng of DNA from each sample was bisulfite treated using the 

Zymo EZ-96 DNA-methylation kit followed by whole genome amplification, fragmentation, and 

hybridization to the Illumina Infinium Methylation EPIC Bead Chip array following the 

manufacturer's protocol (Illumina Inc., San Diego, CA). DNA methylation analysis was performed 

at the Human Genomics Facility of the Genetic Laboratory at Erasmus MC, Rotterdam, the 

Netherlands (http://www.glimdna.org/).  

Data pre-processing pipelines 

To assess the impact of pre-processing on DNAmAge estimates, we analysed six technical 

replicates using two pipelines: minfi20 and ewastools21.  In the ewastools pipeline, default pre-
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processing steps were followed, including probe removal based on high detection p-values (>0.01) 

and dye-bias correction. Normalisation was skipped as recommended by the package authors 21. In 

the minfi pipeline, probes with detection p-values >0.05 and samples with >5% of CpG sites 

having detection p-values >0.05 were removed and data was normalized using the Noob method. 

Samples were excluded based on sex mismatch (N=8) and failed quality control checks (N=1). We 

measured the average absolute agreement between six replicate pairs for 11 DNAmAges using 

intra-class correlation (ICC). We employed a suitable two-way random effect model for ICC 

estimation from the psych R package. 

Epigenetic clocks estimations 

Pre-processed data was uploaded to Horvath's online calculator 

(https://dnamage.genetics.ucla.edu/) for estimating Horvath, Hannum, Pheno, and Grim 

DNAmAges, along with intrinsic (IEAA) and extrinsic (EEAA) epigenetic age acceleration. The 

Horvath is a multi-tissue clock based on 353 CpGs3 and Hannum is a blood-based clock derived 

from 71 CpGs4. These clocks were developed to estimate chronological age based on DNA 

methylation across the genome. IEAA is a residual from a regression of Horvath DNAmAge on 

chronological age, and blood cell count estimates. EEAA is a residual obtained by regressing a 

weighted average of Hannum DNAmAge and estimated measures of specific immune cell types 

against chronological age. EEAA captures both age-related changes in blood cell composition and 

intrinsic epigenetic alterations37. PhenoAge is an estimate of biological age developed using a two-

step approach; first calculating a weighted average of 10 clinical traits and regressing them against 

blood DNA methylation, revealing 513 CpG biomarkers38. GrimAge predicts lifespan by 

regressing surrogate DNA methylation biomarkers of plasma proteins and smoking pack years 

against time-to-death due to all-cause mortality, derived from 1030 CpG sites7.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.21.23298753doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.21.23298753
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al. introduced age predictors in 2019, using Elastic Net (Zhang-ENP) and Best 

Linear Unbiased Prediction (Zhang-BLUP) algorithms on >13,000 samples. Zhang-ENP is based 

on 514 CpG sites, while Zhang BLUP involves 319,607 CpG sites for age estimation35 

(https://github.com/qzhang314/DNAm-based-age-predictor/tree/v1.0.0/). 

We also used the newly proposed principal component-based (PC-based) PCHorvath, 

PCHannum, PCPheno and PCGrim DNAmAges39 that are the proxies of the original Horvath, 

Hannum, Pheno and Grim DNAmAges (https://github.com/MorganLevineLab/PC-Clocks). 

Instead of CpGs, these DNAmAges are calculated using principal components (PCs) of CpGs to 

reduce technical These proxies were based on varying numbers of PCs: PCHorvath (121 PCs), 

PCHannum (390 PCs), PCPheno (652 PCs), and PCGrim (1936 PCs). 

DunedinPACE is one of the newest DNAmAge that measures the rate of ageing over a 

specific 20-year period. It was developed using longitudinal organ-system integrity data of 19 

biomarkers across physiological systems and a DNA methylation algorithm with 173 selected CpG 

sites8 (https://github.com/danbelsky/DunedinPACE ). 

Cognition  

ASPS participants underwent a comprehensive battery of cognitive assessment tests. 

Global cognitive assessment was performed using the Mini-Mental State Examination (MMSE) 

and Mattis Dementia Rating Scale (MDRS).  

We used trail making test part B (TMT-B), Wisconsin card sorting test (WCST), Purdue 

pegboard test (PPT), Bäumler's Lern- und Gedächtnistest and computerised complex reaction time 

task to evaluate various cognitive domains40.  

Executive function was evaluated using the Trail Making Test part B (TMT-B) and the 

Wisconsin Card Sorting Test (WCST). In TMT-B, individuals quickly connect alternating numbers 
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and letters in alternating sequences (e.g., 1-A-2-B-3-C, and so on) swiftly. The time in seconds is 

measured to correctly connect all the numbers and letters in the specified sequence. The WCST 

involves sorting cards based on specific rules, which change during the test. We combined 

categories and perseverative errors, yielding a WCST score.  

Manual dexterity was assessed using the Purdue Pegboard Test (PPT) components: two-

handed performance (RLB) and assembly. The PPT consists of a board with multiple holes and 

pegs of different shapes and sizes. We used two-handed performance (RLB) and assembly 

measures from PPT.  

Bäumler's Lern- und Gedächtnistest was used to evaluate performances in visual and verbal 

memory. Two subsets (tail and design recall) screen for visual memory whereas verbal memory is 

evaluated by three subsets (word and digit association tasks, and story recall) (Schmidt et al. 1999). 

The processing speed was assessed using a computerised complex reaction time task (Wiener 

Reaktionsgerät) that tested subject’s ability to react selectively by pressing a button as quickly as 

possible when a specific combination of a visual and acoustic signal appears 40.  

Performance on the time variable from TMT-B and the reaction time task, as well as 

perseverative errors from WCST, is considered better when lower. To ensure uniformity, the scores 

were transformed to higher-is-better by adding 1 to the maximum value within each dataset and 

then subtracting the respective variable's value. This adjustment aligned the polarity of all 

performance measures in the same direction. 

MRI markers 

MRI marker estimation details have been previously published18,40. In brief, all MRI scans 

were conducted using 1.5T scanners with proton density- and T2-weighted sequences. Brain 

parenchymal fraction (BPF) represents the ratio of brain parenchymal volume to total intracranial 
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volume. White matter hyperintensity (WMH) load in cubic millimetres represents the summation 

of individual lesion volumes. The WMH score was determined using the Fazekas scale for deep 

white matter changes, wherein scores range from 0 (no white matter change) to 3 (large confluent 

areas)18,40. WMH volume was normal log-transformed before the analysis.  

Covariates 

Hypertension was categorised as present when there was a history of hypertension, 

hypertension medication, or mean systolic blood pressure ≥ 140mm Hg or mean diastolic pressure 

≥ 90mm Hg. Diabetes was defined as a history of diabetes, use of antidiabetic treatment, or fasting 

blood sugar level > 140 mg/dl. The presence of cardiovascular disease (CVD) was identified based 

on cardiac abnormalities, coronary heart disease evidence, appropriate ECG findings, or signs of 

left ventricular hypertrophy. Education in years was the number of years of schooling, including 

university and higher education programs. Smoking status was categorised as never, former, or 

current smoker based on self-reported information. ApoE genotyping was performed using PCR-

RFLP to determine the presence of the E4 allele, which was graded as present, or absent. 

Subgroup analysis 

We divided our cohort into subgroups based on age (Young: ≤65years/Old: >65years), sex 

(Male/Female), hypertension (Normotensive/Hypertensive), BMI (normal weight: <25 

Kg/m2/overweight: ≥25 kg/m2), education (Low education: ≤10years/ High education: >10years), 

CVD (No/Yes), diabetes (No/Yes), Smoking (Never/Former/Current), WMH scores(WMHSC 0 & 

1/ WMHSC 2 & 3) and ApoE4 allele (Absent/Present).  The age subgroup was made by dividing 

the cohort based on median age.  We chose Zhang-BLUP, PCPheno, Grim, and DunedinPACE AA 

due to their outstanding performance within their respective generations 
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Interaction analysis 

We conducted a formal assessment of the impact of risk factors on the relationship between 

DNAmAges and cognitive function, utilising interaction terms. In order to streamline our analysis 

and reduce the number of statistical tests due to the numerous subgroups involved, we identified 

the most effective predictor of cognitive performance and focused on the subgroup where the effect 

size exhibited more than a twofold increase compared to others. Nevertheless, we conducted 

ApoE4-specific interaction tests in all phenotypes, utilizing all four epigenetic clocks.  

Statistical analysis 

Epigenetic age acceleration (AA) is the residual resulting from regressing DNAm Ages on 

chronological age. We used AA measures in regression models to test the marker of the ageing 

hypothesis. We calculated per-year cognitive change for longitudinal analysis using linear mixed 

models adjusted for baseline age allowing individual specific intercepts and slopes. We deployed 

two nested linear regression models to test the association of phenotype of interest with various 

AAs. The first model was adjusted for baseline chronological age, sex and education. In the second 

model, in addition, we adjusted for vascular risk factors, namely hypertension, diabetes, presence 

of CVD, BMI, total cholesterol levels, smoking status and Apoe4 allele. The estimates of white 

blood cell type abundance included levels of CD8T, CD4T, natural killer, monocytes, neutrophils 

and B cells and were calculated from DNA methylation data using Salas method 41.  All analyses 

were conducted in R version 4.0.4 using the stats, lme4, tidyverse and psych packages in RStudio42. 

Partial R square was calculated using “pmvd” and “lmg” methods from relaimpo R package43. 
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Tables 

Table 1: Study characteristics 

  N (%) Mean (SD) IQR Minimum Maximum 

Demographics 

Age at baseline (Years) 785 65.8 (7.9) (60.7, 716) 46.1 89.9 

Female 456 (58%)     

Risk Factors 

Hypertension 544 (69%)     

Diabetes 91 (12%)     

CVD 319 (41%)     

Education      

     ≤ 9 Years 223 (28%)     

     10 Years 318 (41%)     

     13 Years 173 (22%)     

     18 Years 71 (9%)     

Smoking      

     Current 83 (11%)     

     Former 223 (29%)     

     Never 476 (61%)     

Apoe4 Present 141 (19%)     

Cholesterol (mg/dl) 784 228.2 (41.6) (200.8, 253) 116 403 

BMI_BL ((kg/m2) 784 26.8 (4) (24.0, 29.1) 17.1 46.7 

Epigenetic clocks 

Horvath Age  785 63.5 (7.2) (58.6, 67.8) 43.8 104.7 

PCHorvath Age  785 65.2 (6.3) (61.3, 69.0) 45.1 105.5 

Hannum Age  785 57.0 (6.8) (52.3, 61.4) 36.7 83.2 

PCHannum Age  785 69.8 (6.5) (65.5, 73.8) 48.5 103.7 

Zhang-ENP Age  785 66.1 (7.1) (60.9, 71.2) 41 91.5 

Zhang-BLUP Age  785 65.8 (7.1) (60.9, 70.7) 41.3 89.8 

Pheno Age  785 57.1 (8.3) (51.5, 62.3) 31.6 91.8 

PCPheno Age  785 68.9 (6.9) (64.1, 72.9) 49.5 92.1 

Grim Age  785 66.3 (7.5) (61.3, 71.1) 39.4 111.6 

PCGrim Age  785 75.8 (6.6) (71.2, 80.3) 59 99.8 

DunedinPACE  785 1.0 (0.1) (1.0, 1.1) 0.7 1.5 

Epigenetic Age Acceleration 

Horvath AA 785 0.0 (5.5) (-3.7, 3.0) -19.2 37.5 

PCHorvath AA 785 0.0 (4.9) (-3.0, 2.5) -19.7 36.8 

Hannum AA 785 0.0 (4.7) (-3.2, 2.5) -19.9 21.8 

PCHannum AA 785 0.0 (4.9) (-3.2, 2.5) -20.9 28.2 

IEAA 785 0.1 (5.2) (-3.3, 2.9) -20.4 34.3 

EEAA 785 0.3 (5.8) (-3.4, 3.6) -22.6 24.2 

Zhang-ENP AA 785 0.0 (4.1) (-2.8, 2.4) -24.5 18.2 

Zhang-BLUP AA 785 0.0 (3.9) (-2.7, 2.3) -23.9 16.5 

Pheno AA 785 0.0 (6.5) (-4.3, 3.9) -25.1 34.8 

Grim AA 785 0.0 (4.1) (-2.8, 2.0) -9.5 20.6 

PCPheno AA 785 0.0 (5.3) (-3.2, 3.0) -26.4 43 

PCGrim AA 785 0.0 (3.0) (-2.2, 1.6) -6.6 14.9 

DunedinPACE AA 785 0.0 (0.1) (-0.08, 0.07) -0.37 0.48 
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Table 2: Significant associations 

  
MODEL 1 MODEL 2 

Phenotype 
Age 

Acceleration 
Beta SE 

Partial 

 R2 

Model 

 R2 
Beta SE 

Partial 

 R2 

Model 

 R2 

Cross-Sectional 

Executive Function 

TMT-B DunedinPACE -40.542* 17.25 0.005 0.252 -32.501 18.91 0.003 0.259 

WCST PCHorvath -0.197**$ 0.06 0.014 0.029 -0.236***$ 0.062 0.019 0.044 

WCST Hannum -0.203***$ 0.061 0.014 0.029 -0.197**$ 0.063 0.014 0.038 

WCST PCHannum -0.225***$ 0.06 0.018 0.033 -0.247***$ 0.062 0.022 0.046 

WCST EEAA -0.183***$ 0.05 0.017 0.032 -0.174***$ 0.051 0.016 0.04 

WCST Zhang-ENP -0.286***$ 0.07 0.021 0.036 -0.305***$ 0.072 0.024 0.048 

WCST Zhang-BLUP -0.273***$ 0.072 0.018 0.033 -0.306***$ 0.074 0.023 0.047 

WCST Pheno -0.115** 0.044 0.009 0.024 -0.117** 0.046 0.009 0.033 

WCST PCPheno -0.248***$ 0.056 0.025 0,040 -0.254***$ 0.057 0.026 0.051 

WCST Grim -0.14* 0.071 0.005 0,020 -0.173* 0.083 0.006 0,030 

WCST DunedinPACE -5.97* 2.476 0.008 0.023 -6.555* 2.724 0.008 0.032 

Manual Dexterity 

PPT 

Assembly 

DunedinPACE -4.727** 1.803 0.006 0.354 -2.953 2.004 0.002 0.364 

Memory 

VSM Hannum -0.601* 0.271 0.005 0.229 -0.518 0.278 0.004 0.244 

VSM EEAA -0.505* 0.223 0.005 0.229 -0.435 0.228 0.004 0.245 

VSM Zhang-ENP -0.618* 0.312 0.004 0.228 -0.594 0.321 0.004 0.244 

VSM Zhang-BLUP -0.69* 0.323 0.005 0.228 -0.676* 0.329 0.005 0.245 

VSM PCPheno -0.56* 0.24 0.006 0.229 -0.500* 0.247 0.005 0.245 

VSM Grim -0.838** 0.308 0.008 0.231 -0.431 0.364 0.002 0.242 

VSM PCGrim -1.162** 0.433 0.008 0.231 -0.614 0.509 0.002 0.242 

VSM DunedinPACE -42.22***$ 10.98 0.015 0.239 -34.231**$ 12.26 0.009 0.249 

VRM EEAA -0.344* 0.17 0.004 0.297 -0.27 0.176 0.002 0.313 

Longitudinal 

Executive Function 

TMT-B  Hannum -0.026* 0.012 0.009 0.057 -0.019 0.012 0.005 0.127 

TMT-B PCHannum -0.029*$ 0.012 0.012 0.06 -0.024* 0.012 0.008 0.131 

TMT-B  EEAA -0.022* 0.01 0.01 0.058 -0.017 0.01 0.006 0.129 

TMT-B Zhang-ENP -0.027* 0.014 0.008 0.056 -0.022 0.014 0.005 0.127 

TMT-B Zhang-BLUP -0.037**$ 0.014 0.013 0.061 -0.031* 0.014 0.009 0.131 

TMT-B PCPheno -0.032**$ 0.01 0.019 0.067 -0.027*$ 0.01 0.013 0.135 

TMT-B Grim -0.041**$ 0.014 0.017 0.065 -0.037* 0.016 0.011 0.133 

TMT-B PCGrim -0.062**$ 0.019 0.02 0.068 -0.055* 0.022 0.012 0.135 

TMT-B DunedinPACE -1.366**$ 0.494 0.015 0.063 -1.056 0.541 0.007 0.130 
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Manual Dexterity 

PPT RLB  Zhang-ENP -0.004**$ 0.002 0.015 0.066 -0.004**$ 0.002 0.015 0.112 

PPT RLB  PCPheno -0.002 0.001 0.007 0.058 -0.002* 0.001 0.008 0.105 

Memory 

VSM  PCHorvath -0.006* 0.003 0.009 0.065 -0.006 0.003 0.008 0.083 

VSM  Hannum -0.010***$ 0.003 0.027 0.083 -0.010***$ 0.003 0.023 0.098 

VSM  PCHannum -0.007*$ 0.003 0.012 0.068 -0.006* 0.003 0.010 0.085 

VSM  EEAA -0.009***$ 0.002 0.03 0.087 -0.008***$ 0.002 0.026 0.101 

VSM  Zhang-ENP -0.012***$ 0.003 0.029 0.085 -0.012***$ 0.003 0.029 0.104 

VSM  Zhang-BLUP -0.014***$ 0.003 0.033 0.09 -0.014***$ 0.003 0.032 0.107 

VSM  Pheno -0.006**$ 0.002 0.016 0.072 -0.006**$ 0.002 0.014 0.089 

VSM  PCPheno -0.009***$ 0.002 0.024 0.08 -0.008**$ 0.003 0.021 0.096 

VSM  Grim -0.012***$ 0.003 0.024 0.08 -0.012**$ 0.004 0.021 0.097 

VSM  PCGrim -0.014**$ 0.005 0.018 0.074 -0.013* 0.005 0.013 0.088 

VSM  DunedinPACE -0.361**$ 0.118 0.018 0.075 -0.351**$ 0.131 0.015 0.090 

VRM  PCHorvath -0.014**$ 0.005 0.013 0.187 -0.013* 0.005 0.011 0.207 

VRM  Hannum -0.016**$ 0.005 0.015 0.19 -0.014* 0.005 0.011 0.207 

VRM  PCHannum -0.014**$ 0.005 0.013 0.187 -0.013* 0.005 0.011 0.206 

VRM  EEAA -0.014**$ 0.004 0.017 0.192 -0.012**$ 0.004 0.013 0.209 

VRM  Zhang-ENP -0.017**$ 0.006 0.014 0.188 -0.015* 0.006 0.011 0.206 

VRM  Zhang-BLUP -0.02**$ 0.006 0.018 0.192 -0.019**$ 0.007 0.014 0.210 

VRM  PCPheno -0.016***$ 0.005 0.021 0.195 -0.015**$ 0.005 0.019 0.215 

VRM  Grim -0.013* 0.006 0.007 0.181 -0.014* 0.007 0.007 0.203 

VRM  PCGrim -0.018* 0.009 0.008 0.182 -0.021* 0.01 0.008 0.204 

Processing Speed 

Speed  PCHorvath -0.078**$ 0.026 0.019 0.022 -0.082**$ 0.027 0.020 0.043 

Speed  Hannum -0.054* 0.027 0.009 0.012 -0.052 0.027 0.008 0.031 

Speed  PCHannum -0.064*$ 0.026 0.013 0.016 -0.066* 0.027 0.013 0.036 

Speed  EEAA -0.047* 0.021 0.01 0.014 -0.047* 0.022 0.010 0.033 

Speed  Zhang-ENP -0.069* 0.03 0.011 0.015 -0.073* 0.031 0.012 0.035 

Speed  Zhang-BLUP -0.085**$ 0.031 0.015 0.019 -0.086**$ 0.033 0.015 0.038 

Speed  PCPheno -0.061**$ 0.023 0.015 0.018 -0.063**$ 0.024 0.015 0.039 

Speed  PCGrim -0.152***$ 0.042 0.026 0.03 -0.155**$ 0.049 0.021 0.045 

Significance: * < 0.05, ** < 0.01, *** < 0.0001, $ FDR Significant 

TMT: Trail Making Test Part B,  

WCST: Wisconsin Card Sorting Test,  

PPT: Purdue Pegboard Test,  

VRM: Verbal memory,  

VSM: Visual memory,  

Speed: processing speed. 
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