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ABSTRACT 

Background: Sleep apnea (SA) has been linked to an increased risk of dementia in numerous 

observational studies; whether this is driven by neurodegenerative, vascular or other mechanisms 

is not clear. We sought to examine the bidirectional causal relationships between SA, Alzheimer’s 

disease (AD), coronary artery disease (CAD), and ischemic stroke using Mendelian 

randomization (MR).  

Methods: Using summary statistics from four recent, large genome-wide association studies of 

SA (n=523,366), AD (n=64,437), CAD (n=1,165,690), and stroke (n=1,308,460), we conducted 

bidirectional two-sample MR analyses. Our primary analytic method was fixed-effects inverse 

variance weighted MR; diagnostics tests and sensitivity analyses were conducted to verify the 

robustness of the results.  

Results: We identified a significant causal effect of SA on the risk of CAD (odds ratio (ORIVW) 

=1.35 per log-odds increase in SA liability, 95% confidence interval (CI) =1.25-1.47) and stroke 

(ORIVW=1.13, 95% CI =1.01-1.25). These associations were somewhat attenuated after excluding 

single-nucleotide polymorphisms associated with body mass index (BMI) (ORIVW=1.26, 95% CI 

=1.15-1.39 for CAD risk; ORIVW=1.08, 95% CI =0.96-1.22 for stroke risk). SA was not causally 

associated with a higher risk of AD (ORIVW=1.14, 95% CI =0.91-1.43). We did not find causal 

effects of AD, CAD, or stroke on risk of SA.  

Conclusions: These results suggest that SA increased the risk of CAD, and the identified causal 

association with stroke risk may be confounded by BMI. Moreover, no causal effect of SA on AD 

risk was found. Future studies are warranted to investigate cardiovascular pathways between 

sleep disorders, including SA, and dementia. 

Keywords: sleep apnea; Alzheimer’s disease; cardiovascular diseases; coronary artery disease; 

stroke; mendelian randomization; causal inference 
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INTRODUCTION  

Sleep apnea (SA), a common respiratory disorder in the elderly, has been linked to an 

increased risk of dementia in numerous epidemiological studies (1–3). However, the types of 

dementia associated with SA remain uncertain. Some studies have suggested an association 

between SA and Alzheimer’s disease (AD) (1,4,5), whereas others have highlighted a link with 

vascular dementia (1,3). Currently, two main mechanistic pathways are hypothesized. Firstly, SA 

may promote the accumulation of AD proteins such as amyloid-β and tau proteins in the brain (6–

8). Secondly, SA may increase the risk of cardiovascular disease (CVD) (9) and CVD risk factors, 

which are themselves established risk factors for dementia (10,11). However, these hypotheses 

primarily rely on findings from observational studies which are limited by biases including residual 

confounding and reverse causality. Moreover, it is difficult to differentiate between 

neurodegenerative and cerebrovascular pathways since mixed pathology is often more prevalent 

than pure forms of AD (12), especially with increasing age. Clarifying the causality between SA 

and AD and CVD might help understanding the biological mechanisms underlying the SA-

dementia relationship, which is an important research area given the potential of sleep as a 

modifiable factor to prevent dementia. 

Mendelian randomization (MR) is a method that estimates causal effects by leveraging 

naturally randomized genetic variation. This approach limits confounding bias due to the random 

assignment of genes at conception and minimizes reverse causality bias because diseases 

cannot affect an individual’s germline genetic variation. In the literature, two previous MR studies 

did not detect a causal effect of SA on AD (13,14), whereas heterogeneous results have been 

found for SA and CVD outcomes (15–20). These studies were limited by use of older genome-

wide association study (GWAS) datasets, low-powered genetic instruments for SA (14), and lack 

of investigation into potential reverse causal associations (16–20). Furthermore, SA may also be 

a consequence of AD and CVDs (9,21), and so new approaches are needed to better understand 
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the potential bidirectionality of these relationships. Therefore, our goal was to examine the 

bidirectional causal relationships between SA and the risks of AD and CVDs (coronary artery 

disease (CAD) and stroke) by performing MR analyses using the most recent GWAS available.  

METHODS 

Study design and data sources 

We conducted this MR study using summary-level data obtained from large, recent, and 

publicly accessible GWAS (Supplementary Table S1). All GWAS were restricted to European 

ancestry to minimize potential bias due to population stratification, and ethical approval was 

granted in original studies. 

For the exposure, we obtained GWAS summary statistics (GWAS-SS) from the most recent 

and largest GWAS on SA (n = 523,366 from five cohorts, including 20,008 SA cases) (22). This 

GWAS used a multi-trait analysis approach to enhance statistical power, leveraging the high 

genetic correlations between SA and snoring. SA cases were identified using the International 

Classification of Diseases (ICD) 9/10 Revision diagnostic codes from electronic health records or 

self-reported data (either through diagnostic information or answer to the item “stop breathing 

during sleep”). All cohorts included age, sex, genotype batch (where relevant), and genetic 

ancestry principal components derived from genotype data as covariates. 

Genetic variants association estimates with the risk of late-onset AD, CAD, and stroke were 

used as the outcomes. For AD, we used GWAS-SS from the largest available GWAS of clinically 

diagnosed AD, conducted by the International Genomics of Alzheimer’s Project (n = 94,437) (23). 

For CAD, GWAS-SS were taken from the latest GWAS available combining eight cohorts with the 

CARDIoGRAMplusC4D consortium (n = 1,165,690) (24). For stroke, we obtained GWAS-SS from 

the GIGASTROKE consortium, the latest and largest GWAS available (n = 1,308,460) (25) 

(Supplementary Table S1). 
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Selection of instrumental variables  

To estimate causal effects, MR analysis uses genetic variants as instrumental variables (IVs), 

which must satisfy three core assumptions: (i) the IVs should be associated with the exposure 

(relevance); (ii) the IVs should not be associated with any confounding factors (independence); 

and (iii) the IVs should affect the outcome solely through their impact on the exposure (exclusion-

restriction) (26). Based on these assumptions, we identified IVs as independent single-nucleotide 

polymorphisms (SNPs) that were significantly associated with SA at a genome-wide level (p-value 

< 5x10-8). To ensure their independence, we excluded duplicate SNPs and performed linkage 

disequilibrium clumping (r2 > 0.001, 10 MB window, using the 1000 Genomes Project as the 

European reference panel). We calculated the F-statistic for the exposure to evaluate the strength 

of the IVs, as previously described (27). Then, we extracted these IVs in each of the three 

outcome GWAS datasets. If a specific SNP was not present, we used a proxy SNP with high 

linkage disequilibrium (r2 > 0.8, using a European reference). To ensure consistency, we 

harmonized the exposure and outcome GWAS datasets so that the effects corresponded to the 

same alleles. Finally, we applied additional filtering criteria, removing palindromic and ambiguous 

SNPs (minor allele frequency >0.42) as well as SNPs with incompatible alleles (26). SNPs 

showing genome-wide significance for the outcome were also excluded from the analyses (28). 

For the analyses involving AD, we further excluded variants located ± 250 kb from the APOE ε4 

defining SNP, rs429358, due to its pleiotropic nature which represents a violation of the exclusion-

restriction assumption (29).  

Statistical analysis 

We conducted two-sample MR analyses to estimate the causal effects of genetically predicted 

SA on the risk of AD, CAD, and stroke. Fixed-effects inverse variance weighted (IVW) approach 

was carried out as the primary method. To evaluate if the causal estimates were robust to 
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violations of MR assumptions, diagnostics tests were performed. We employed the MR-Egger 

regression intercept test to assess for directional horizontal pleiotropy (26), while Cochran’s Q 

test was used to estimate between-SNP heterogeneity in the estimate of the causal effect. 

Moreover, the impact of outlier genetic instruments was assessed by two methods: (i) we 

performed leave-one-out analysis (for IVW and MR-Egger approaches), excluding one IV at a 

time, to explore the contribution of individual SNPs to the overall effects; and (ii) we conducted 

radial-MR analysis (“RadialMR” version 1.1 package) to identify data points with large 

contributions to Cochran’s Q statistic, and we used PhenoScanner (r2 > 0.8, using a European 

reference) to obtain further information on these SNPs. Detected outliers were removed from the 

analyses. If diagnostics issues were identified, sensitivity analyses using MR-Egger, weighted 

median, and weighted mode methods were applied. Random-effects IVW method was also 

performed in a supplementary analysis. Additionally, if significant causal associations were 

observed, three further sensitivity analyses were carried out. First, to address any potential bias 

from sample overlap between the exposure and outcome datasets, cross-trait linkage 

disequilibrium score regression was performed, allowing us to calculate the corrected IVW causal 

effect estimate using the “MRlap” version 0.0.3 package (30). Second, considering the well-known 

associations between obesity and SA (31) and the potential strong confounding effect of obesity 

in the SA-CVD association (Supplementary Figure S1), multivariable MR (MVMR) analysis using 

the IVW approach was conducted, adjusting for genetically predicted body mass index (BMI) (see 

Supplementary Table S1 for GWAS-SS details) (32). Third, due to the low statistical power in the 

MVMR analyses, we also assessed the impact of obesity on the results by excluding the SNPs 

associated with BMI at a genome-wide level (p-value < 5x10-8) in any BMI GWAS dataset. These 

SNPs were identified via online PhenoScanner. Finally, we explored potential reverse causation 

by conducting MR analyses in the reverse direction, with the SA phenotype as the outcome and 

AD and CVDs as the exposures. All statistical analyses were carried out using R version 4.3.0, 

with the “TwoSampleMR” version 0.5.7 package (26). Codes is publicly accessible online 
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(https://github.com/ccavailles/Sleep-apnea-AD-MR;https://github.com/ccavailles/Sleep-apnea-

CAD-MR; https://github.com/ccavailles/Sleep-apnea-stroke-MR).  

RESULTS 

We used 32 genetic variants associated with SA as IVs in this MR analysis. In each analysis 

involving CAD and stroke, one SNP was excluded respectively due to its identification as an 

outlier. The SNPs used as IVs, their harmonized effects, the identified outliers, and the BMI-

associated SNPs are displayed in Supplementary Tables S2 and S3. Supplementary Figures S2 

to S7 show the results from leave-one-out and radial-MR analyses. Results using the random-

effects IVW approach are presented in Supplementary Table S4 as they were similar to the ones 

obtained with the fixed-effects IVW method.  

Causal effects between SA and AD 

Genetically predicted SA did not influence the risk of AD (odds ratio (ORIVW) = 1.14 per log-

odds increase in SA liability, 95% confidence interval (CI) = 0.91-1.43; Table 1 and Figure 1). 

There was no evidence of heterogeneity (Cochran’s Q statistic, p-value = 0.09) or pleiotropy (MR-

Egger intercept, p-value = 0.36) effects were observed. In the reverse direction, genetically 

predicted AD did not influence the risk of SA (ORIVW = 1.01, 95% CI = 0.99-1.02; Table 1 and 

Figure 2). 

Causal effects between SA and CAD 

Genetically predicted SA was associated with higher risk of CAD (ORIVW = 1.35, 95% CI = 

1.25-1.47; Table 1 and Figure 1). Heterogeneity was detected (Figure 1), but MR sensitivity 

analyses were significant, except for the MR-Egger estimate, and were consistent in effect 

direction. A significant difference between observed and corrected effects was found in the 

analysis correcting for sample overlap. After correction, genetically predicted SA was still 
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significantly associated with higher risk of CAD, although the estimate was somewhat attenuated 

(ORIVW-corrected = 1.13, 95% CI = 1.06-1.20). In the MVMR analysis adjusting for BMI, the causal 

relationship became nonsignificant (ORIVW = 1.05, 95% CI = 0.92-1.21; Supplementary Table S5). 

However, this specific analysis was limited by weak instruments (conditional F-statistics <10) 

which represents a violation of the relevance MR assumption. Therefore, we explored the impact 

of excluding the BMI-associated SNPs on the results and found that genetically predicted SA still 

significantly increased the risk of CAD (ORIVW = 1.26, 95% CI = 1.15-1.39; Supplementary Table 

S6). In the bidirectional analysis, a significant causal effect of genetically predicted CAD on SA 

risk was found using the IVW approach (ORIVW = 1.02, 95% CI = 1.00-1.03; Table 1 and Figure 

2). However, there was evidence of heterogeneity, and all the sensitivity analyses were 

nonsignificant, suggesting a potential bias in the IVW causal estimate.  

Causal effects between SA and stroke 

We found a significant causal effect of genetically predicted SA on stroke (ORIVW = 1.13, 95% 

CI = 1.01-1.25; Table 1 and Figure 1); there was no evidence of heterogeneity (Cochran’s Q 

statistic, p-value = 0.43) or pleiotropy as evidenced by the Egger intercept (p-value = 0.29). 

Analysis correcting for sample overlap did not reveal a significant difference between observed 

and corrected effects, suggesting that the IVW estimate are not biased by sample overlap. In the 

MVMR analysis adjusting for BMI, the causal relationship became non-significant (ORIVW = 1.03, 

95% CI = 0.91-1.16; Supplementary Table S5) suggesting that BMI could confound the 

association; but this analysis was limited by weak instruments (conditional F-statistics <10). After 

excluding the BMI-associated SNPs, the causal effect also became non-significant (ORIVW = 1.08, 

95% CI = 0.96-1.22; Supplementary Table S6). Finally, the bidirectional MR analysis indicated no 

causal effect for genetically predicted stroke on the risk of SA (ORIVW = 1.01, 95% CI = 0.98-1.04; 

Table 1 and Figure 2). 
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DISCUSSION 

Using the most recent GWAS datasets available, this MR study revealed that genetically 

predicted SA increased the risk of CAD, while the causal association with stroke risk may be 

confounded by BMI. Furthermore, findings do not support evidence of a causal link between 

genetically predicted SA and AD risk. In the bidirectional analyses, no causal effects were 

observed for genetically predicted AD, CAD, or stroke on the risk of SA. Taken together, these 

findings suggest that cerebrovascular pathology may play a more important role than AD 

pathology in the relationship between SA and dementia. 

Numerous observational studies have established a link between SA and an increased risk of 

cognitive impairment and all-cause dementia (1–3,33). However, it remains controversial which 

type of dementia is driving this association. Some studies have found an association between SA 

and AD (1,4,5), whereas others have not (34). Moreover, very few studies have investigated the 

association between SA and vascular dementia, also reporting conflicting findings (1,3,35). These 

discrepancies might be due in part to the limitations of observational studies which are more prone 

to several sources of bias (e.g., confounders bias and reverse causality). In this study, we used a 

MR approach to overcome these limitations. We did not yield evidence supporting a causal effect 

of SA on AD, aligning with the results of the two previous MR studies examining this causal 

relationship (13,14). However, our findings suggest that cerebrovascular pathology would be a 

more important pathway in the SA-dementia relationship. This is consistent with the well-

established vascular risk factors of dementia (10,11,36) as well as the vascular consequences of 

SA (9).  

Notably, most observational studies, but not all (37,38), have reported an association between 

SA and increased risk of CAD and stroke (39–41). In contrast, previous MR studies did not 

establish a causal effect of SA on stroke risk (15–18), whereas results for CAD were mixed 
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(15,16,19,20). Specifically, SA did not increase the risk of CAD in two MR studies (16,19), while 

a suggestive association was observed in two other studies (15,20). Our findings contribute to the 

literature by highlighting a strong causal relationship between genetically predicted SA and higher 

risk of CAD, and by showing that the causal association with stroke risk was confounded by BMI. 

These differences may be attributable to the use of smaller GWAS datasets for the exposure 

and/or outcomes in previous MR studies, along with a limited number of valid IVs. 

Given the strong genetic correlation between SA and obesity, accounting for BMI is important 

as their pathways leading to CVDs may be confounded. Indeed, the role of BMI in the SA-CVDs 

associations remains controversial. In observational studies, some research has shown 

associations between SA, CAD, and stroke independently of BMI (37,38,40), while some others 

have not (37,41,42). Similarly, we found that genetically predicted SA increased the risk of CAD 

independently of BMI, while the causal effect of genetically predicted SA on stroke risk was 

confounded by BMI. Further studies with higher statistical power are warranted to replicate these 

results. Although we do not have a clear explanation for these differences, our results primarily 

hallmark the important role of BMI and suggest that it may explain the entirety (e.g., stroke risk) 

or only a part (e.g., CAD) of the SA-CVD association. SA might impact CVDs through several 

mechanisms including, but not limited to, intermittent hypoxia, oxidative stress, inflammation, 

endothelial dysfunction, white matter lesions, and atherosclerosis (2,9).  

Overall, these findings suggest a greater role for cerebrovascular pathology than AD 

pathology in the relationship between SA and dementia. This observation aligns with mounting 

evidence involving vascular damage, such as infarcts and white matter changes, as a common 

feature in various types of dementia (12,43). It il also consistent with the importance of vascular 

cognitive impairment and dementia (44), underscoring the complex interplay between 

neurodegenerative and vascular mechanisms. Future studies should investigate these causal 

relationships using amyloid/tau and cerebrovascular phenotypes rather than clinical phenotypes. 
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While it remains possible that both pathologies contribute to dementia in varying degrees, 

addressing vascular risk factors and SA through lifestyle modifications and medical interventions 

may be an important strategy in reducing the risk of dementia (45,46). 

Strengths of our study include a bidirectional MR approach allowing a better understanding of 

the direction of the causal effects, the use of large-scale GWAS-SS, a small magnitude of weak 

instrument bias in the main analyses (F-statistics of the IVs were greater than 10 for all 

exposures), and multiple sensitivity analyses to confirm the robustness of the results. However, 

our findings should be interpreted in light of several limitations. First, considering SA is a binary 

exposure, our estimates represent the average causal effects in “compliers” (i.e., individuals for 

whom SA would be present if they have the genetic variant and absent otherwise) (47). Therefore, 

estimates should be interpreted as the effect of liability to SA on the outcome, rather than exact 

causal effect. Second, since SA was evaluated from primary care records or self-reported data, 

underdiagnosis is possible which might bias the results of the associations between the genetic 

variants and SA towards the nulls. Third, potential bias toward observational associations might 

be present when the exposure and the outcome datasets overlap (48). To address this, we 

performed a cross-trait linkage disequilibrium score regression analysis to verify the reliability of 

the identified causal effect of SA on CAD and stroke risks (around 20% overlap for both datasets), 

and results remained unchanged. Fourth, despite the use of the largest and more recent GWAS 

datasets available, we didn’t have enough statistical power to report robust conclusions in the 

MVMR analyses adjusting for BMI. Further studies are needed to decipher the potential mediating 

role of BMI in the SA-CVDs associations. In addition, we were not able to directly assess vascular 

dementia as no sufficiently robust GWAS has been published to date. Fifth, competing risks with 

death and other CVDs cannot be excluded and may lead to false null findings. This limitation is 

particularly relevant for late onset diseases such as AD. Future studies are thus warranted to 
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confirm the current results. Finally, we restricted our analyses to European-ancestry participants 

which might limit the generalizability of our findings to other populations. 

Among individuals of European ancestry, this MR study supports the hypothesis that 

genetically predicted SA increased the risk of CAD, whereas the causal effect on stroke risk was 

confounded by BMI. Furthermore, genetically predicted SA may not have a causal effect on the 

development of AD. These findings may prompt subsequent investigations aimed at exploring 

therapeutic approaches targeting SA to prevent CVD risks (49,50), while also elucidating the role 

of BMI in these associations. Furthermore, they could lead to additional research investigating 

cardiovascular mediating pathways between sleep and dementia development, thereby 

enhancing our comprehension of the biological mechanisms that underlie this association. 
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Table 1. Mendelian randomization estimates for the effect of genetically predicted sleep apnea on the risk of Alzheimer 

disease, coronary artery disease, and stroke, and their reverse causality. 

  SNP 

n 

outlier 

F-

statisitcs  Fixed-effects IVW 

 

MR-Egger Weighted median Weighted mode  

Cochran’s 

Q Test 

MR-Egger 

intercept 

Exposure Outcome     OR (95%CI)  OR (95%CI) OR (95%CI) OR (95%CI)  Q p-value p-value 

Forward               

SA AD  32 0 41.0  1.14 (0.91;1.43)  0.67 (0.21;2.11) 1.10 (0.79;1.52) 1.47 (0.78;2.77)  0.09 0.36 

SA CAD 31 1 40.2  1.35 (1.25;1.47)  1.02 (0.58;1.80) 1.43 (1.25;1.64) 1.53 (1.16;2.00)  6.48E-07 0.33 

SA Stroke 31 1 41.2  1.13 (1.01;1.25)  0.87 (0.55;1.40) 1.16 (1.01;1.34) 1.23 (0.93;1.62)  0.43 0.29 

Reverse              

AD SA 23 0 56.1  1.01 (0.99;1.02)  0.99 (0.94;1.05) 1.01 (0.99;1.03) 1.01 (0.98;1.05)  0.51 0.64 

CAD SA 159 4 79.2  1.02 (1.00;1.03)  0.99 (0.96;1.02) 1.01 (0.99;1.03) 1.01 (0.98;1.03)  1.62E-07 0.06 

Stroke SA 22 1 44.0  1.01 (0.98;1.04)  0.91 (0.71;1.17) 1.00 (0.95;1.05) 0.95 (0.85;1.06)  0.001 0.43 

Abbreviations: AD, Alzheimer’s disease; CAD, coronary artery disease; CI, confidence interval; IVW, inverse variance weighted; OR, odds ratio; SA, sleep apnea; 

SNP, single nucleotide polymorphism 
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Figure 1. Scatter and funnel plots for each relationship between sleep apnea and the 

different outcomes (Alzheimer’s disease, coronary artery disease, and stroke). 

 

Scatter plots show the sleep apnea variant effect size against the outcome variant effect size and 

corresponding standard errors. Funnel plots show the Mendelian randomization (MR) causal 
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estimates for each variant against their precision, with asymmetry in the plot indicating potential 

violations of the assumptions of MR. Regression lines show the corresponding causal estimates: 

fixed effect inverse-weighted (red line) meta-analysis; MR-Egger regression (green line); 

weighted median based estimator (purple line); and weighted mode based estimator (purple line). 
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Figure 2. Scatter and funnel plots for each relationship in the bidirectional analysis 

between the different exposures (Alzheimer’s disease, coronary artery disease, and 

stroke) and sleep apnea. 

 

Scatter plots show the exposure variant effect size against the sleep apnea variant effect size and 

corresponding standard errors. Funnel plots show the Mendelian randomization (MR) causal 
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estimates for each variant against their precision, with asymmetry in the plot indicating potential 

violations of the assumptions of MR. Regression lines show the corresponding causal estimates: 

fixed effect inverse-weighted (red line) meta-analysis; MR-Egger regression (green line); 

weighted median based estimator (purple line); and weighted mode based estimator (purple line).  
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