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ABSTRACT  49 

Background. We report the safety and immunogenicity of fractional and full dose 50 

Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously 51 

vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous 52 

SARS-CoV-2 infection.  53 

Methods. A total of 286 adults (with or without HIV) were enrolled >4 months after an 54 

Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of 55 

Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody 56 

dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at 57 

baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 58 

vector was also evaluated. 59 

Results. No vaccine-associated serious adverse events were recorded. The full- and half-60 

dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, 61 

respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing 62 

antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose 63 

Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies 64 

(2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses 65 

followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-66 

cell responses had waned to baseline levels. While we detected strong anti-vector immunity, 67 

there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-68 

specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting.  69 

Conclusion. In the context of hybrid immunity, boosting with heterologous full- or half-dose 70 

BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination 71 

compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-72 

boost. 73 

Trial Registration: South African National Clinical Trial Registry (SANCR): DOH-27-012022-74 

7841; Funding: South African Medical Research Council (SAMRC) and South African 75 

Department of Health (SA DoH).  76 
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Introduction  77 

The development of vaccines against SARS-CoV-2 was unparalleled, with numerous 78 

platforms suited to rapid production dominating use in initial vaccination programs globally. 79 

This included adenovirus-vectored vaccines, such as the Janssen Ad26.COV2.S, replication-80 

incompetent adenovirus 26 vectored SARS-CoV-2 spike protein vaccine. This vaccine is 81 

registered as a single dose, with subsequent boosters recommended. This was the first 82 

vaccine available nationally in South Africa, and health care workers, and later other essential 83 

workers, were offered this vaccine as part of the Sisonke trial [1]. The mRNA-based Pfizer 84 

BNT162b2 Comirnaty vaccine became available in South Africa subsequently as part of the 85 

national vaccine rollout.  86 

The emergence of SARS-CoV-2 variants of concern (VOCs) including the Beta, Delta and 87 

Omicron variants reduced vaccine effectiveness against infection [2-6]. All vaccines based on 88 

the sequence of the SARS-CoV-2 ancestral spike, including the Janssen Ad26.COV2.S and 89 

the Pfizer Comirnaty BNT162b2 vaccines, elicited dramatically lower titers of neutralizing 90 

antibodies against the Omicron subvariants [4, 7-20]. Vaccines incorporating Omicron 91 

subvariant sequences [21] are not available in South Africa. However, the main driver of 92 

increased neutralizing capacity against Omicron variants is hybrid immunity, which is the 93 

combination of vaccine and infection elicited immunity. Population studies in SA showed 94 

seroprevalence levels in excess of 95% by the end of the Omicron BA.1 Wave [22]. 95 

However, given the waning of humoral and cellular immunity over time, COVID-19 vaccine 96 

boosting may be beneficial, especially in individuals at high risk for severe disease. The 97 

choice of booster, timing and dose remain largely dependent on regulatory and national 98 

considerations, including fiscal constraints and capacity of the health care system. Several 99 

studies have demonstrated a more robust humoral and cellular immune response with a 100 

heterologous boost compared to a homologous boost, in particular when boosting is with an 101 

mRNA vaccine [12, 15, 23]. A further consideration is that due to pressure on vaccine 102 

development, cost and equitable access, which are significantly impacted if multiple boosters 103 
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are needed, strategies such as fractional dosing should be considered. Fractional dosing has 104 

previously been used with other vaccines such as yellow fever [24].  105 

South Africa is burdened by more HIV infections than any other country in the world, with 106 

approximately 8 million people living with HIV (PLWH) [25, 26]. PLWH, especially those with 107 

low CD4 T-cell counts, have moderately worse COVID-19 outcomes [27-35]. This is 108 

associated with lower and delayed neutralizing antibody titers in response to SARS-CoV-2 109 

infection [19, 34, 36], more pronounced in PLWH with HIV viremia [19]. However, similar to 110 

results reported for the AstraZeneca ChAdOx and the Pfizer BNT162b2 vaccines [37-41], 111 

there was no observed difference between PLWH and HIV-negative individuals in neutralizing 112 

antibody titers against SARS-CoV-2 spike after Ad26.COV2.S vaccination [19, 36].  113 

Vaccines which use a viral vector to deliver the immunogen may be inhibited by pre-existing 114 

immunity to the virus on which the vector is based [42, 43]. In addition to eliciting immunity to 115 

the vaccine target, vaccination with an adenovirus vectored vaccine has been shown to elicit 116 

neutralizing antibody and T-cell immunity to the vector itself [44-46]. This may reduce the 117 

ability of repeated doses of the vectored vaccine to infect cells or reduce vaccine vector-118 

infected cell survival. The degree of elicited anti-vector immunity could therefore potentially 119 

determine the effectiveness of vectored immunization in a population with previous immunity 120 

to the virus on which the vector is based, or effectiveness if the vaccinees have been 121 

previously immunized with the same vector. However additional factors, including transgene 122 

persistence as well as local or systemic persistence may also impact the effectiveness of viral 123 

vectored vaccines. 124 

In this study, we evaluated the immunogenicity and safety of diverse boost strategies after 125 

primary Ad26.COV2.S vaccination. We tested fractional and full dose heterologous and 126 

homologous booster Ad26.COV2.S and BNT162b2 vaccinations. We also determined the 127 

effects of HIV status, and degree of anti-adenovirus 26 vector immunity before and after 128 

boosting. We observed that heterologous boosting of Ad26.COV2.S with the BNT162b2 129 

mRNA vaccine was the most effective regimen to transiently enhance humoral and T-cell 130 

immunity and HIV status did not have a substantial effect on the outcome. We show that 131 
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homologous boosting with Ad26.COV2.S occurred in the context of high anti-Ad26 vector 132 

immunity. Although, Ad26.COV2.S gave a weak increase in antibody and cellular responses 133 

against SARS-CoV-2 spike, we observed no correlation between vaccine response and anti-134 

Ad26 neutralizing antibody levels, as previously reported [47, 48].   135 
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Methods and Materials 136 

Study Design and Participants. This study, Booster After Sisonke Study (BaSiS), is an 137 

ongoing phase 2, randomized, open-label trial to evaluate the safety and immunogenicity of a 138 

booster vaccination in participants who received a single Ad26.COV2.S vaccine through the 139 

Sisonke phase 3B implementation study or via the South African National Department of 140 

Health COVID-19 vaccine rollout. Participants were healthy adults, who met study eligibility 141 

criteria and included participants with well-controlled comorbidities, except for HIV infection 142 

where there were no immunological or virological exclusions. Full eligibility criteria are 143 

provided in the protocol. We aimed to enrol at least one third of participants as PLWH and at 144 

least 10% >55 years of age. Participants were included if they had no SARS-CoV-2 infection 145 

at least 28 days prior to randomization. The study was conducted at four research sites in 146 

South Africa, two in Johannesburg, one in Durban and one in Cape Town.  147 

Randomization. Participants were randomized 1:1:1:1 to one of four booster vaccinations 148 

including: Arm A: full-dose Ad26.COV2.S (5x1010 vp/mL, 0.25 mL); Arm B: half-dose 149 

Ad26.COV2.S (2.6x1010 vp/mL, 0.13 mL); Arm C: full-dose BNT162b2 Comirnaty vaccine 150 

(30mcg) and Arm D: half-dose BNT162b2 Comirnaty vaccine (15mcg). No masking was 151 

required since the study was open-label.  152 

Procedures. Study visits took place at baseline (randomization), 2 weeks, 12 weeks and 24 153 

weeks. At each visit, medical history, COVID-19 infection history (symptoms or positive test) 154 

and vaccination history (COVID-19 vaccine or other vaccination) was taken, followed by a 155 

targeted clinical examination when necessary. At the baseline visit, participants received a 156 

single booster vaccination, as per the randomization arm. Diary cards were issued and 157 

participants were trained to collect data up to 7 days post booster. Telephonic contact at day 7 158 

was conducted to enquire about severity or ongoing nature of reactogenicity. Blood samples 159 

were drawn at each visit and included HIV testing at baseline (in all except those known to be 160 

PLWH), CD4 count and HIV viral load (in PLWH), full blood count (BL, W2 and additional visits 161 

in PLWH), D-dimers (BL and W2). A nasopharyngeal swab for SARS-CoV-2 PCR was 162 
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conducted at baseline. Interim visits were held for any safety concerns or if a participant had 163 

COVID-19 symptoms or a positive SARS-CoV-2 PCR or antigen test outside of the study.  164 

Safety. Reactogenicity was collected and graded according to criteria included in Food and 165 

Drug Administration (FDA) “The Guidance for Industry: Toxicity Grading Scale for Healthy 166 

Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials” [49]. All grade 167 

3 reactogenicity events, SAEs, SUSARs and adverse drug reactions were reported. A Data 168 

Safety and Monitoring Committee was established to evaluate protocol-defined safety events 169 

and immunogenicity data.  170 

 171 

Immunogenicity 172 

Live virus neutralization assay 173 

Live virus neutralization assay was performed as previously described in our previous work [4, 174 

6, 18]. Briefly, ACE2-expressing H1299-E3 (CRL-5803, ATCC) cells were seeded at 4.5×105 175 

cells per well and incubated for 18-20 h. After washing, the sub-confluent cell monolayer was 176 

inoculated with 500 μL universal transport medium diluted 1:1 with filtered growth medium. 177 

Cells were incubated for 1 h. Wells were then filled with 3 mL complete growth medium. After 178 

4 days of infection (completion of passage 1), cells were trypsinized, centrifuged and 179 

resuspended in 4 mL growth medium. Then, all infected cells were added to Vero E6 cells 180 

(CRL-1586, ATCC). The coculture of ACE2-expressing H1299-E3 and Vero E6 cells was 181 

incubated for 4 days. The viral supernatant from this culture (passage 2 stock) was used for 182 

experiments.  183 

H1299-E3 cells were plated at 30,000 cells/well 1 day pre-infection. Aliquots of cryo-preserved 184 

plasma samples were heat-inactivated and clarified by centrifugation. Virus stocks were used 185 

at approximately 50-100 focus-forming units per microwell and added to diluted plasma. 186 

Antibody–virus mixtures were incubated for 1 h at 37°C. Cells were infected with 100 μL of the 187 

virus–antibody mixtures for 1 h, then 100 μL of a RPMI 1640 (Sigma-Aldrich), 1.5% 188 

carboxymethylcellulose (Sigma-Aldrich) overlay was added without removing the inoculum. 189 

Cells were fixed 18 h post-infection. Foci were stained with a rabbit anti-spike monoclonal 190 
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 8 

antibody (0.5 μg/mL, BS-R2B12, GenScript) overnight at 4°C, washed and then incubated 191 

with a horseradish peroxidase (HRP) conjugated goat anti-rabbit antibody (1 μg/mL, Abcam 192 

ab205718) for 2 h. TrueBlue peroxidase substrate (SeraCare) was then added and incubated 193 

for 20 min. Plates were imaged in an ImmunoSpot Ultra-V S6-02-6140 Analyzer ELISPOT 194 

instrument with BioSpot Professional built-in image analysis (C.T.L). All statistics and fitting 195 

were performed using custom code in MATLAB v.2019b. Neutralization data were fit to: 196 

Tx=1/1+(D/ID50). Tx is the number of foci normalized to the number of foci in the absence of 197 

plasma on the same plate at dilution D and ID50 is the plasma dilution giving 50% 198 

neutralization. FRNT50 = 1/ID50. Values of FRNT50 <1 are set to 1 (undiluted), the lowest 199 

measurable value. As, the most concentrated plasma dilution was 1:25, FRNT50 <25 were 200 

extrapolated. To calculate confidence intervals, FRNT50 or fold-change in FRNT50 per 201 

participant was log-transformed and arithmetic mean plus and minus two standard deviations 202 

were calculated for the log transformed values. These were exponentiated to obtain the upper 203 

and lower 95% confidence intervals on the geometric mean FRNT50 or the fold-change in 204 

FRNT50 geometric means. 205 

Sequences of outgrown ancestral SARS-CoV-2 and the Omicron BA.5 subvariant have been 206 

deposited in GISAID with accession EPI_ISL_602626.1 (ancestral, D614G) and 207 

EPI_ISL_12268493.2 (Omicron/BA.5).  208 

 209 

SARS-CoV-2 spike and nucleocapsid enzyme-linked immunosorbent assay (ELISA) 210 

For ELISA, Hexapro SARS-CoV-2 full spike protein with the D614G substitution were 211 

expressed in Human Embryonic Kidney (HEK) 293F suspension cells by transfecting the cells 212 

with the respective expression plasmid. After incubating for 6 days at 37°C, proteins were first 213 

purified using a nickel resin followed by size exclusion chromatography. Relevant fractions 214 

were collected and frozen at -80°C until use. Two µg/mL of D614G spike or nucleocapsid 215 

protein was used to coat 96-well, high-binding plates (Corning) and incubated overnight at 216 

4°C. The plates were incubated in a blocking buffer consisting of 1x PBS, 5% skimmed milk 217 

powder, 0.05% Tween 20. Plasma samples were diluted to 1:100 starting dilution in a blocking 218 
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 9 

buffer and added to the plates. IgG secondary antibody (Merck) was diluted to 1:3000 in 219 

blocking buffer and added to the plates followed by TMB substrate (Thermofisher Scientific). 220 

Upon stopping the reaction with 1 M H2SO4, absorbance was measured at 450 nm. For spike 221 

ELISA, mAbs CR3022 was used as a positive control and Palivizumab was used as a 222 

negative control. 223 

 224 

Lentiviral pseudovirus production and neutralization assay 225 

Virus production and pseudovirus neutralization assays were done as previously described. 226 

Briefly, 293T/ACE2.MF cells modified to overexpress human ACE2 (provided by M. Farzan, 227 

Scripps Research) were cultured in DMEM (Gibco) containing 10% FBS and 3 μg/mL of 228 

puromycin at 37°C. Cell monolayers were disrupted at confluency by treatment with 0.25% 229 

trypsin in 1 mM EDTA (Gibco). The SARS-CoV-2, Wuhan-1 spike, cloned into pCDNA3.1 was 230 

mutated using the QuikChange Lightning Site-Directed Mutagenesis kit (Agilent Technologies) 231 

and NEBuilder HiFi DNA Assembly Master Mix (NEB) to include D614G (wild-type) or lineage 232 

defining mutations for Beta (L18F, D80A, D215G, 241-243del, K417N, E484K, N501Y, D614G 233 

and A701V), Delta (T19R, 156-157del, R158G, L452R, T478K, D614G, P681R and D950N), 234 

Omicron BA.1 (A67V, Δ69-70, T95I, G142D/Δ143-145, Δ211/L212I, ins214EPE, G339D, 235 

S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, 236 

Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, 237 

Q954H, N969K, L981F) and Omicron BA.4/5 (T19I, L24S, 25-27del, 69-70del,G142D, V213G, 238 

G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N,N440K, L452R, S477N, 239 

T478K, E484A,F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, 240 

D796Y, Q954H, N969K). Pseudoviruses were produced by co-transfection in 293T/17 cells 241 

with a lentiviral backbone (HIV-1 pNL4.luc encoding the firefly luciferase gene) and either of 242 

the SARS-CoV-2 spike plasmids with PEIMAX (Polysciences). Culture supernatants were 243 

clarified of cells by a 0.45 μM filter and stored at -70°C. Plasma samples were heat-inactivated 244 

and clarified by centrifugation. Pseudovirus and serially diluted plasma/sera were incubated 245 

for 1 h at 37°C. Cells were added at 1×104 cells per well after 72 h of incubation at 37°C. 246 
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Luminescence was measured using PerkinElmer Life Sciences Model Victor X luminometer. 247 

Neutralization was measured as described by a reduction in luciferase gene expression after 248 

single-round infection of 293T/ACE2.MF cells with spike-pseudotyped viruses. Titers were 249 

calculated as the reciprocal plasma dilution (ID50) causing 50% reduction of relative light units. 250 

 251 

Antibody-dependent cellular cytotoxicity (ADCC) assay 252 

The ability of plasma antibodies to cross-link FcγRIIIa (CD16) and spike expressing cells was 253 

measured as a proxy for ADCC as previously described. HEK293T cells were transfected with 254 

5 μg of SARS-CoV-2 wild-type variant spike (D614G), Beta, Delta and Omicron BA.1 spike 255 

plasmids using PEI-MAX 40,000 (Polysciences) and incubated for 2 days at 37°C. Expression 256 

of spike was confirmed by binding of CR3022 and P2B-2F6 and their detection by anti-IgG 257 

APC (Biolegend) measured by flow cytometry. Subsequently, 1x105 spike-transfected cells per 258 

well were incubated with heat inactivated plasma (1:100 final dilution) or control mAbs (final 259 

concentration of 100 μg/mL) in RPMI 1640 media supplemented with 10% FBS and 1% 260 

Pen/Strep (R10; Gibco) for 1 h at 37°C. Jurkat-Lucia™ NFAT-CD16 cells (Invivogen) (2x105 261 

cells/well) were added and incubated for 24 h at 37°C. Twenty μl of supernatant was then 262 

transferred to a white 96-well plate with 50 μl of reconstituted QUANTI-Luc secreted luciferase 263 

and read immediately on a Victor 3 luminometer with 1s integration time. Cells were gated on 264 

singlets, live cells (determined by Live/dead™ Viability dye; Thermofisher Scientific), and 265 

those cells that were positive for IgG and spike specific monoclonal antibodies binding to their 266 

surface. Relative light units (RLU) of a no antibody control were subtracted as background. 267 

Palivizumab was used as a negative control, while CR3022 was used as a positive control, 268 

and P2B-2F6 to differentiate the Beta from the D614G variant. To induce the transgene, 1x 269 

cell stimulation cocktail (Thermofisher Scientific) and 2 μg/ml ionomycin in R10 was added as 270 

a positive control. 271 

 272 

Measurement of antigen-specific T cells by flow cytometry 273 
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T-cell responses to SARS-CoV-2 spike or human adenovirus 26 (Ad26) hexon and penton 274 

were measured as previously described [3]. Briefly, cryopreserved PBMC were thawed, 275 

washed and rested in RPMI 1640 (Sigma-Aldrich) containing 10% heat-inactivated FBS 276 

(HyClone) for 4 h prior to stimulation. PBMC were seeded in a 96-well V-bottom plate at 277 

~2x106 PBMC per well and stimulated with either a commercial ancestral SARS-CoV-2 spike 278 

(S) pool (1 µg/mL, Miltenyi Biotec) or a Ad26 peptide pool containing 293 peptides (15mers 279 

with 10-aa overlap) spanning the Ad26 hexon and penton proteins (1 µg/mL). All stimulations 280 

were performed in the presence of Brefeldin A (10 µg/mL, Sigma-Aldrich) and co-stimulatory 281 

antibodies against CD28 (clone 28.2) and CD49d (clone L25) (1 µg/mL each, BD 282 

Biosciences). As a negative control, PBMC were incubated with co-stimulatory antibodies, 283 

Brefeldin A and an equimolar amount of DMSO. After 16 h of stimulation, cells were washed, 284 

stained with LIVE/DEAD™ Fixable Near-IR Stain (Invitrogen) and subsequently surface 285 

stained with the following antibodies: CD14 APC-Cy7 (HCD14), CD19 APC-Cy7 (HIB19), CD4 286 

BV785 (OKT4), CD8 FITC (RPA-T8), CD45RA BV570 (HI100) (Biolegend) and CD27 PE-Cy5 287 

(1A4, Beckman Coulter). Cells were then fixed and permeabilized using a Cytofix/Cytoperm 288 

buffer (BD Biosciences) and stained with CD3 BV650 (OKT3), IFN-g BV711 (4S.B3), TNF-a 289 

PE-Cy7 (Mab11) and IL-2 PE/Dazzle™ 594 (MQ1-17H12) from Biolegend. Finally, cells were 290 

washed and fixed in CellFIX (BD Biosciences). Samples were acquired on a BD Fortessa flow 291 

cytometer and analyzed using FlowJo (v10.8.1, FlowJo LLC). Results are expressed as the 292 

frequency of total memory CD4+ or CD8+ T cells expressing IFN-g, TNF-a or IL-2. Due to high 293 

TNF-a backgrounds, cells producing TNF-a alone were excluded from the analysis. All data 294 

are presented after background subtraction. 295 

 296 

Outcomes 297 

The primary objectives of the study were to evaluate safety and reactogenicity and humoral 298 

and cellular immunogenicity to full and half dose homologous and heterologous booster 299 

vaccinations, at each study visit. Primary endpoint measures included measuring 300 

nucleocapsid binding antibody titers, neutralization titers and T-cell response magnitudes. 301 
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Safety was measured by participant self-report using diary cards and graded according to 302 

FDA standards [49]. The primary immunogenicity endpoint was defined as any study arm 303 

eliciting <75% of the highest geometric mean titre (GMT) response in the study. Together with 304 

the DSMB, the study team used this criteria to determine whether a subsequent booster 305 

should be offered to participants, and which booster if so. In this study, based on results, all 306 

participants except those who received the full dose BNT162b2 vaccination, were offered a 307 

full dose BNT162b2 booster in addition to that received according to their original 308 

randomisation. 309 

 310 

Statistical Analysis 311 

A two-tailed Wilcoxon signed-rank test or a Friedman test with Dunn’s correction was used to 312 

assess statistical differences between paired samples. A Mann-Whitney test or a Kruskal-313 

Wallis test with Dunn’s corrections was used to compare multiple groups. Correlations were 314 

tested by a two-tailed non-parametric Spearman’s rank test. In all cases, P values of less than 315 

or equal to 0.05 were considered significant. 316 

 317 

Data Sharing 318 

Protocol and data underlying the findings described in this manuscript may be obtained from 319 

the lead authors upon request.  320 

 321 

Study Approval 322 

This study has been approved by the South African Health Products Regulatory Authority 323 

(SAHPRA, number: 20210423) and all site-specific Human Research Ethics Committees 324 

(Wits: 211001B, UKZN: BREC/00003487/2021, UCT: 680/202). All participants provided 325 

written informed consent..  326 
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Results  327 

Participants and follow up. 328 

Between December 8, 2021, and July 27, 2022, 333 participants were screened and 289 329 

randomized to 4 arms: Arm A: Full-dose Ad26.COV2.S (5x1010 vp/mL, 74 participants); Arm B: 330 

half-dose Ad26.COV2.S (2.6x1010 vp/mL, 69 participants); Arm C: Full-dose BNT162b2 331 

(30mcg, 73 participants); and Arm D: half-dose BNT162b2 (15mcg, 73 participants) (Table 1 332 

and Figure 1). Participants were followed for 24 weeks, overall retention was 93.1% at 24 333 

weeks (Table 1). 334 

The majority of participants (53.6%, 155/289) were between 30 and 45 years old, with 36/189 335 

(12.5%) 55 years and older, and 238/289 (82.4%) female. In the cohort, 116/289 (40.1%) 336 

were PLWH, 16 (13.8%) were considered viremic (VL >200cps/ml) and had a median CD4 337 

count of 452 cells/mm3 (IQR: 132-538), whereas participants who were virologically 338 

suppressed (VL <200cps/ml) had a median CD4 count of 708 cells/mm3 (IQR: 558-922). At 339 

randomisation, subsequently referred to as baseline, 61/289 (21.1%) of participants had 340 

hypertension, 30/289 (10.4%) anaemia, and 174/289 (60.2%) were obese. Other 341 

comorbidities were less common (asthma and diabetes mellitus 4.2% each, arthritis 2.4% and 342 

tuberculosis 2.1% respectively).  343 

Evidence of previous SARS-CoV-2 infection (positive nucleocapsid antibody detected by 344 

ELISA) was present in 91.4% (213/223) of participants tested at baseline indicating a high 345 

degree of hybrid immunity in the trial cohort. This was similar amongst the four vaccination 346 

arms, namely 91.2% (52/57), 87.9% (51/58), 93.2% (55/59) and 93.2% (55/59) for half-dose 347 

Ad26.COV2.S, full-dose Ad26.COV2.S, half-dose BNT162b2 and full-dose BNT162b2, 348 

respectively. These high levels of nucleocapsid positivity were sustained 2, 12 and 24 weeks 349 

after the booster dose, with greater than 80% nucleocapsid positivity at any given time point. 350 

Participants received the booster vaccine at a median of 271 days (IQR: 255-296) after the 351 

Ad26.COV2.S prime. Nine breakthrough infections (BTI) were confirmed by SARS-CoV-2 352 

PCR during the trial and all were mild infections that resolved within 4-12 days, 7/9 in the 353 
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Ad26.COV2.S arms. Three BTI occurred between W2 and W12, and the remainder between 354 

W12 and W24 (median: 17.1 weeks post boost). 355 

 356 

Safety and reactogenicity of the booster vaccination regimens 357 

Reactogenicity was measured through participant-completed diary cards, recording solicited 358 

local and systemic adverse reactions, as well as unsolicited adverse reactions through day-7 359 

post booster, or longer if adverse events persisted. Overall, safety profiles were comparable 360 

between the four trial arms. Localised pain, headache, localised tenderness and weakness 361 

were reported with highest frequency, mostly of grade 1 and 2 severity. Grade 3 or 4 events 362 

included localised pain (2.0%), tenderness (1.7%), nausea (0.7%), diarrhoea (1.0%), 363 

headache (1.7%), weakness (2.8%), myalgia (1.0%), chills (0.7%), cough (0.3%), loss of smell 364 

(0.3%) and loss of taste (0.3%). Unsolicited AEs were uncommon, occurring in 8.7% of 365 

participants (Figure 2). 366 

No events of thrombosis with thrombocytopenia syndrome (TTS) were reported; 367 

thrombocytopenia was reported in three participants, two had thrombocytopaenia at baseline. 368 

There were 14 serious AEs (SAEs) on study, non-related to study product, and no AEs of 369 

special interest (AESIs).  370 

 371 

Antibody responses after booster vaccination 372 

We evaluated spike binding antibody titers at baseline (BL) and week 2 (W2), week 12 (W12) 373 

and week 24 (W24) post-boost in the four vaccination arms using a trimeric spike ELISA for 374 

ancestral D614G virus. Relatively high spike binding antibody titers were detected in all 375 

groups at BL (geometric mean titer (GMT), EC50: >1000; Figure 3A). This is consistent with 376 

our observation that the majority of participants showed evidence of prior infection (Table 1). 377 

Spike antibody titers in the half- and full-dose Ad26.COV2.S arms were not significantly 378 

boosted by W2 (1.15 and 1.29 fold change in GMT, respectively), and did not change 379 

significantly up to W24. In contrast, half- and full-dose BNT162b2 arms demonstrated a 380 

significant increase in binding antibody titers at W2 (3.9 and 4.54 fold change, respectively), to 381 
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a GMT >4500 (Figure 3A). Spike binding antibodies in the BNT162b2 arms reduced to half 382 

that of W2 titers by W12, and had returned to BL levels by W24. These kinetics were reflected 383 

in a significantly higher fold-change between W2 and BL in the BNT162b2 arms compared to 384 

the Ad26.COV2.S arms (Figure 3B). Although waning had occurred by W12, EC50 titers in the 385 

BNT162b2 arms were still significantly higher than the Ad26.COV2.S arms (Figure 3C). While 386 

some differences between the arms persisted at W24, relatively high antibody titers, similar to 387 

those observed at BL and prior to a boost, were noted in all four arms, with GMT of 1016, 388 

1140, 1563 and 1686 for half-dose Ad26.COV2.S, full-dose Ad26.COV2.S, half-dose 389 

BNT162b2 and full-dose BNT162b2, respectively. 390 

 391 

Using a live virus neutralization assay, we evaluated neutralizing antibody titers to the 392 

ancestral D614G virus and Omicron BA.5, which was the most recent dominant sub-lineage at 393 

the time of W24 collection. At BL, neutralization activity against the D614G virus was similar 394 

between the arms (GMT FRNT50 values of 546, 345, 393 and 334 for half-dose Ad26.COV2.S, 395 

full-dose Ad26.COV2.S, half-dose BNT162b2 and full-dose BNT162b2, respectively; Figure 396 

4A). When measured at W2, half-dose Ad26.COV2.S did not boost BL neutralizing titers, 397 

while full-dose Ad26.COV2.S led to a 2.14-fold increase (Figure 4B). Both doses of 398 

BNT162b2 demonstrated a superior ability to boost neutralizing antibodies at W2 (8.5 to 10.2-399 

fold compared to BL), with all but one participant increasing neutralizing titer (Figure 4B). As 400 

expected from its known immune evasion properties, FRNT50 values for BA.5 neutralization 401 

were considerably lower than for ancestral virus (GMT of 84, 75, 84 and 63 for the four arms, 402 

respectively; Figure 4C). The kinetics mirrored those for D614G neutralization, with both 403 

doses of BNT162b2 demonstrating enhanced boosting of neutralizing antibodies compared to 404 

Ad26.COV2.S (Figure 4D). By week 24, neutralizing titers had waned significantly for the 405 

D614G virus, to a GMT of 732 and 840 for the BNT162b2 half- and full-doses, which was 406 

significantly higher than full-dose Ad26.COV2.S, with a GMT of 292 (Figure 4E). 407 

Neutralization of BA.5 was poor at W24 (GMT of 73-192), with no differences between the 408 
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groups. Five participants with documented BTI between W2 and W24 (Figure 4A,C, red 409 

lines) showed boosted neutralization activity, as expected. 410 

 411 

In parallel, we assessed neutralizing antibody titers against an expanded panel of virus 412 

variants, namely D614G, Beta, Delta, Omicron BA.1 and BA.4/5 (which share identical spikes) 413 

using a lentiviral pseudovirus assay, limited to HIV-negative participants in the cohort. The 414 

data were consistent with our observations from the live virus assay, where significant 415 

boosting of neutralizing antibodies occurred at W2 against all variants for BNT162b2, but not 416 

for either the half- or full- dose Ad26.COV2.S (Figure 5). Titers against all variants declined 417 

from the W2 peak by W12, with a 2.4 to 5.7-fold drop, and levels remained constant to W24, 418 

with BNT162b2 arms trending to higher titers, regardless of the variant at W24.  419 

 420 

Finally, we investigated antibody-dependent cellular cytotoxicity (ADCC) responses against 421 

the D614G, Beta, Delta and BA.1 spikes (Figure 6A and 6B) at BL and 2 weeks post-boost. 422 

As observed for the binding and neutralizing antibody responses, there was no increase in 423 

titers at W2 for either the half- or full-dose Ad26.COV2.S arms (median fold change 0.97 and 424 

0.91, respectively), consistent with the fact that binding antibodies and ADCC potential are 425 

generally correlated. However, the half-dose BNT162b2 failed to trigger increased ADCC 426 

(median change 1.01), in contrast to the binding and neutralization results. For the full-dose 427 

BNT162b2 we observed marginally but nevertheless significantly higher ADCC titers against 428 

D614G, Beta and BA.1 spike at W2 compared to BL, but not to the same extent as binding or 429 

neutralizing responses. 430 

 431 

T-cell responses before and after booster vaccination 432 

We also measured SARS-CoV-2 spike-specific T-cell responses before and after homologous 433 

and heterologous vaccination with full or half-dose vaccines (n=214). Prior to boosting, spike-434 

specific CD4+ responses were detected in most participants (>94.4%), with a frequency 435 

comparable between the four arms (Figure 7A). Two weeks after booster immunization, the 436 
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frequency of spike-specific CD4+ T cells was significantly increased in participants who 437 

received BNT162b2 compared to BL (median: 0.23% vs 0.12% for half dose BNT162b2 and 438 

0.25% vs 0.11% for full dose BNT162b2, respectively), while in participants boosted with 439 

Ad26.COV2.S, the median frequency of SARS-CoV-2 spike-specific CD4+ T cells, while 440 

statistically higher than BL, demonstrated only a marginal increase (0.12% vs 0.10% for half 441 

dose and 0.15% vs 0.11% for full dose) (Figure 7B). The median fold change in CD4+ 442 

response between BL and W2 was significantly greater after a BNT162b2 booster (1.8 for half 443 

dose and 1.98 for full dose) compared to an Ad26.COV2.S booster (1.1 for both half and full 444 

dose; Figure 7C). Overall, ~80% of participants boosted with BNT162b2 (regardless of the 445 

dose) had an increased spike-specific CD4+ T-cell response, while only 35.3% of participants 446 

who received half dose Ad26.COV2.S and 43.4% in those receiving a full dose Ad26.COV2.S 447 

booster expanded their CD4+ T-cell responses (Figure 7D). Spike-specific CD8+ T-cell 448 

responses were less frequent than CD4+ responses, detected in only ~55% of the participants 449 

at BL, and for those with a CD8+ response, the frequency of spike-specific CD8+ T cells was 450 

comparable between the four groups at BL (Figure 7E). Two weeks after boosting, a 451 

significant increase in the median CD8+ T-cell response was observed after a full-dose of 452 

Ad26.COV2.S (p = 0.002) and both half- or full-dose of BNT162b2 (p = 0.003 and p <0.001, 453 

respectively; Figure 7F). Assessing only participants with a spike CD8+ response at both time 454 

points, the median fold change at W2 post-boost was significantly higher after a BNT162b2 455 

booster (1.91 for half-dose and 2.24 for full-dose) compared to an Ad26.COV2.S booster (1.22 456 

for half-dose and 1.24 for full-dose; Figure 7G). However, it is important to note that individual 457 

responses were highly variable within all groups, with spike-specific CD8+ responses 458 

contracting, remaining negative or expanding. Overall, approximately half of participants 459 

boosted with BNT162b2 displayed an increase in spike-specific CD8+ T-cell responses, 460 

whereas an expansion of the CD8+ response was observed in only 1/3 of participants who 461 

received a half-dose Ad26.COV2.S booster and ~40% in those receiving a full-dose 462 

Ad26.COV2.S booster (Figure 7H). 463 

 464 
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The durability of T-cell responses was then assessed by measuring spike-specific T cells 24 465 

weeks after the booster vaccination in a subset of participants (n=190). Pairwise comparison 466 

of spike-specific CD4+ T-cell frequencies at W24 relative to W2 demonstrated a significant 467 

contraction in the CD4+ response for all groups (p <0.001 for both BNT162b2 boosters and 468 

half-dose Ad26.COV2.S and p = 0.0047 for full-dose Ad26.COV2.S), subsiding to BL levels 469 

(Figure 8A). Consequently, 24 weeks post-boosting, the magnitude of spike-specific CD4+ T 470 

cells was comparable in all trial arms (Figure 8B). In contrast, the median frequency of spike-471 

specific CD8+ T cells appeared to increase between W2 and W24 in the Ad26.COV2.S group, 472 

although individual responses were highly variable, with some participants showing 473 

substantial waning or stable levels while others demonstrated gain of a CD8+ T-cell response 474 

that could be related to an undocumented BTI (Figure 8C). Overall, as for the CD4+ T-cell 475 

response, the frequency of spike-specific CD8+ T cells was similar across the four vaccine 476 

regimens when examined 24 weeks after booster vaccination (Figure 8D).  477 

 478 

PLWH develop comparable antibody and T-cell responses after boosting  479 

To determine whether HIV infection impacts vaccine booster responsiveness, participants 480 

were stratified by their HIV status. Prior to boosting, significantly lower titers of both binding 481 

and live virus neutralizing antibodies were found in PLWH who were viremic (viral load >200 482 

HIV-1 mRNA copies/mL, n = 10) compared to virally suppressed individuals, who had similar 483 

antibody profiles to HIV-negative individuals (Figure 9A-B). Examination of baseline T-cell 484 

responses also revealed deficiencies, where significantly fewer viremic PLWH displayed 485 

spike-specific T-cell responses compared to aviremic and HIV-negative participants at BL 486 

(50% vs 100% and 97.6% for CD4+ and 10% vs 58.2% and 57.6% for CD8+; Figure 9C-D). 487 

Two weeks after booster vaccination, there was no difference in the degree of boosting (as 488 

measured by median fold-change between W2 and BL) for binding or neutralizing antibody 489 

titers between PLWH and HIV-negative participants for all vaccination groups (Figure 9E-F). 490 

For T-cell responses, however, the median fold change in CD4+ response in the full dose 491 

BNT162b2 group was significantly lower in PLWH compared to the HIV-negative participants 492 
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(1.52 vs 2.21, respectively, p = 0.037), with a trend towards lower fold-change in CD8+ spike 493 

T-cell responses in PLWH (p = 0.065; Figure 9G-H). Of note, a high proportion of viremic 494 

participants did not mount any CD4+ (4/10) or CD8+ T-cell responses (4/10) after any of the 495 

vaccine boosts, indicative of the impact of immunosuppression (Supplementary Fig S1).  496 

 497 

At W24, comparable titers of binding and neutralizing antibodies were detected between 498 

PLWH and HIV-negative participants in all vaccination groups, and T-cell frequencies did not 499 

show any deficiencies in PLWH (Figure 9I-L). In fact, significantly higher frequencies of spike-500 

specific CD4+ T cells were observed in PLWH in some vaccination groups (Figure 9K), 501 

possibly reflecting persistence of the higher baseline CD4+ T-cell responses observed in 502 

PLWH. Overall, these data suggest that some differences in the degree of boosting in PLWH, 503 

but by 24 weeks after revaccination, the frequencies of binding and neutralizing antibodies as 504 

well as spike-specific CD4+ and CD8+ T cells were comparable between HIV-negative 505 

participants and PLWH. This suggests that SARS-CoV-2 specific responses persist to a 506 

similar extent in those with well-controlled HIV infection compared to HIV-negative individuals. 507 

A proportion of viremic individuals, however, may be at risk of impaired T-cell responses and 508 

less durable antibody responses over the long term. 509 

 510 

Anti-vector immunity is detectable but may not account for the limited ability of 511 

Ad26.COV2.S to boost spike-specific responses 512 

We hypothesized that the muted capacity of Ad26.COV2.S to boost spike responses, 513 

compared to BNT162b2, may be due to anti-vector immunity, given that prior studies 514 

demonstrated that pre-existing Ad5 vector-specific nAbs and T cells have the capacity to limit 515 

responses to the transgene immunogen [44-46]. To measure anti-Ad26 neutralizing antibody 516 

activity, we established an Ad26 neutralization assay in which dilutions of plasma from 517 

vaccinees were mixed with the Ad26.COV2.S vaccine, and vector infection was measured by 518 

spike expression in the Ad26 vector infected cells (Figure 10A-B). To quantify Ad26-specific 519 

neutralizing activity before and after boosting, we titrated participant plasma to obtain the 520 
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plasma concentration needed to inhibit 50% of cellular infections with the Ad26 vector 521 

represented as ID50, the reciprocal of this plasma dilution (Figure 10C). We tested 24 522 

participants who had received full dose Ad26.COV2.S, and compared them to 24 participants 523 

who were boosted with BNT162b2, where no expansion of the vector-specific response would 524 

be expected. At BL, the majority of participants in both groups had Ad26-specific neutralizing 525 

antibody responses above the level of quantification (Figure 10D). Two weeks later, there was 526 

a significant increase in vector-specific ID50 in the Ad26.COV2.S boosted group (p = 0.0006), 527 

but no boosting in the group receiving BNT162b2 (median fold-change in nAb ID50 between 528 

W2 and BL: 1.83 for Ad26.COV2.S and 0.87 for BNT162b2; Figure 10E). To determine the 529 

level of neutralizing immunity against Ad26.COV2.S before primary Ad26.COV2.S vaccination, 530 

we investigated an independent cohort where participants were vaccinated with Ad26.COV2.S 531 

for the first time, with a subset accessing a second Ad26.COV2.S vaccine (Supplementary 532 

Table 1). The levels of anti-Ad26 neutralizing immunity prior to Ad26.COV2.S prime 533 

vaccination were below the level of quantification in all but one participant. Titers were 534 

significantly higher after an Ad26.COV2.S prime (p <0.0001; Figure 10F) but did not further 535 

increase after a boost, and were of similar magnitude to those in the BaSiS trial (Figure 10F). 536 

Finally, we investigated the association between Ad26-specific nAb titer at BL and the fold-537 

change in spike neutralizing titer from W2 to BL, but found no correlation (Figure 10G). 538 

 539 

To measure Ad26-specific T-cell responses, we stimulated PBMC with a pool of peptides 540 

spanning the viral hexon and penton proteins of Ad26 and characterized T-cell cytokine 541 

responses by flow cytometry. Ad26-specific T cells were readily detectable at BL and 2 weeks 542 

post-boosting (Figure 11A). We tested 44 participants who had received full-dose 543 

Ad26.COV2.S, and compared them to 20 participants who were boosted with BNT162b2, as a 544 

control group. At baseline, all participants in both groups had a CD4+ T-cell response to Ad26 545 

(Figure 11B). Two weeks after Ad26.COV2.S booster vaccination, there was no overall 546 

increase in the Ad26-specific CD4+ response, which resembled the group who received the 547 

BNT162b2 booster. When comparing the fold-difference in the response from BL to W2, there 548 
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was a minor increase in the Ad26.COV2.S-boosted group (1.08 for Ad26.COV2.S and 0.91 for 549 

BNT162b2), reflecting a proportion of participants who had a marginal increase in the 550 

frequency of Ad26-specific CD4+ T cells (Figure 11C). We also investigated an independent 551 

unvaccinated healthcare worker cohort prior to Ad26.COV2.S vaccination (Supplementary 552 

Table 2); cross-sectional analysis indicated a significant, 3-fold higher magnitude of Ad26-553 

specific CD4+ T-cell responses 4 weeks after vaccination (p = 0.017; Figure 11D), similar to 554 

what we observed for Ad26 nAb responses. Interestingly, 85% of participants had an existing 555 

adenovirus CD4+ response even before the priming dose, which is the likely result of 556 

conserved T-cell cross-reactivity due to infection with other adenoviral types.  557 

Similarly, we characterized CD8+ T-cell responses specific for Ad26. These were detectable 558 

in 75% of participants at baseline, and unlike CD4+ responses, were boosted significantly (p = 559 

0.002) by a second dose of Ad26.COV2.S, demonstrating an increase in response of 1.2 560 

compared to 0.95 for the BNT162b2-boosted group (Figure 11E and F). CD8+ responses 561 

were more rare in the cohort not previously vaccinated with Ad26.COV2.S, detectable in only 562 

35% of unvaccinated participants. These were significantly higher (p = 0.005) and detectable 563 

in 81.8% of individuals 4 weeks after initial Ad26.COV2.S vaccination, at a magnitude and 564 

range similar to the baseline responses in our trial (Figure 11G). Importantly, and consistent 565 

with Ad26-specific nAb responses, there was no association between the magnitude of Ad26-566 

specific CD4+ or CD8+ T cells and spike-specific T-cell responses, either at BL or W2 (Figure 567 

11H). Overall, anti-vector humoral and cellular immunity was abundantly detectable in our trial 568 

participants, but neither appeared to have a clear effect on dampening spike-specific 569 

responses.   570 
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Discussion  571 

In this trial we evaluated the safety and immunogenicity of fractional and full doses of the 572 

Janssen adeno-vectored Ad26.COV2.S vaccine and the Pfizer BNT162b2 mRNA vaccine in 573 

an open label phase 2 trial of adults who had previously received a single dose of 574 

Ad26.COV2.S. The overwhelming majority of participants had detectable anti-nucleocapsid 575 

responses prior to receiving their boosts, indicating prior SARS-CoV-2 infection and boosting 576 

on the background of extensive hybrid immunity. We investigated safety and immunogenicity 577 

in both HIV-negative participants and PLWH, with the latter group generally well-controlled 578 

with VL suppression, and only 13.8% of PLWH being viremic (VL >200 cps/ml). Safety profiles 579 

in all four booster regimens were similar, with no regimen resulting in appreciable increased 580 

reactogenicity beyond localized responses at the injection site and mild, transient symptoms 581 

such as headache and weakness. Documented BTI, while few, mostly occurred in the 582 

Ad26.COV2.S boosted participants. 583 

Heterologous boosting with the BNT162b2 mRNA vaccine was superior to homologous 584 

vaccination at early time points (2-12 weeks) by multiple humoral and cellular immune 585 

measures, including binding and neutralizing antibodies, and CD4+ T-cell responses to SARS-586 

CoV-2 spike. This result is consistent with other studies showing better neutralizing antibody 587 

and T-cell responses after heterologous relative to homologous boosting of Ad26.COV2.S 588 

with an mRNA vaccine [23, 50]. Similar results were observed with mRNA vaccine 589 

heterologous boosting of the ChAdOx1 chimpanzee adeno-vectored vaccine [51, 52]. 590 

In contrast to the BNT162b2 vaccine, a homologous Ad26.COV2.S boost elicited limited, if 591 

any boosting of immune responses. Binding antibodies, neutralization, and T-cell responses 592 

increased 2-fold or less, and halving the dose resulted in no detectable booster activity. In 593 

contrast, boosting with BNT162b2 gave a 4- to 10-fold increase of antibody responses, with 594 

the exception of ADCC (discussed below), and 80% of trial participants had increased spike 595 

specific CD4+ T-cell responses. Unlike with Ad26.COV2.S, halving the dose of BNT162b2 did 596 

not strongly decrease the response to the booster in terms of either elicited binding 597 

antibodies, neutralizing antibodies, or CD4+ T-cell responses. Despite the strong boosting 598 
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effect of BNT162b2, waning of the binding and neutralizing antibody responses was 599 

pronounced by 12 weeks post-boost and by week 24, titers had declined close to the relatively 600 

high baseline titers. For ADCC, which generally correlates well with binding and neutralization, 601 

the absence of boosting by Ad26.COV2.S is expected, given the lack of boosting overall. 602 

However the marginal ADCC boosting observed only in the full-dose BNT162b2 arms (despite 603 

increased binding and neutralization) may be a consequence of class switching towards the 604 

IgG4 subclasses, which does not effectively mediate ADCC, as recently reported for repeated 605 

mRNA vaccination [53, 54]. 606 

The effects of HIV status on the neutralizing antibody and T-cell responses were moderate, 607 

and largely limited to reduced responses observed at baseline in PLWH with HIV viremia 608 

(despite the small size of this group). Both binding neutralizing antibody responses to 609 

ancestral SARS-CoV-2 were significantly lower in HIV viremic participants at baseline, while 610 

there was no difference between aviremic PLWH and HIV-negative participants. CD4+ T-cell 611 

responses showed a more marked difference with only 50% of viremic PLWH having 612 

detectable spike-specific CD4+ T cells, compared with 100% of aviremic PLWH and 97% of 613 

HIV-negative participants. For CD8+ T cells, the fraction of detectable spike-specific cells was 614 

58% for both aviremic PLWH and HIV negative participants. In contrast, only 1 out of 10 HIV 615 

viremic participants had a detectable spike-specific CD8+ T-cell response. Interestingly, the 616 

median fraction of spike specific CD4+ T cells was significantly higher in aviremic PLWH than 617 

the HIV-uninfected participants, perhaps indicative of a different SARS-CoV-2 course of 618 

infection in PLWH [27] or interactions of SARS-CoV-2 immunity with HIV-mediated partial 619 

immune activation in HIV suppressed PLWH [55].  620 

Post-boost, binding antibodies and neutralization were generally similar between PLWH and 621 

HIV negative participants. Even viremic PLWH showed increased binding and neutralizing 622 

antibody responses after BNT162b2 vaccination, and these were within the range seen in the 623 

other participants. These results are consistent with previous studies that PLWH have good 624 

antibody responses to vaccination [19, 38, 39, 56] with the exception of those with CD4+ T cell 625 

concentrations than 200 cells/mm3 [34, 36, 37, 57, 58]. T-cell responses were more strongly 626 
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affected by HIV status: they were significantly lower for spike-specific CD4+ T cells in PLWH 627 

boosted with a full-dose of BNT162b2. We did not detect an increase in spike-specific CD8+ 628 

T-cell responses with full-dose BNT162b2, although the results did not reach statistical 629 

significance. The interpretation of the CD4+ T cell results is complicated by the higher median 630 

absolute fraction of spike-specific CD4+ T cells in PLWH post- BNT162b2 boost. 631 

Although the Ad26.COV2.S is known to trigger lower responses than BNT162b2, the almost 632 

complete absence of boosting by this vaccine in our cohort was striking. We thus assessed 633 

whether this was caused by anti-vector immunity. Vaccination with adenovirus 5 vectored 634 

vaccines elicits both neutralizing antibody and T-cell immunity to the vector itself, decreasing 635 

the efficiency of cellular infection with the vaccine vector and attenuating the vaccine response 636 

[44-46]. Using the samples from this trial and supplementing with other cohorts where a pre-637 

Ad26.COV2.S prime vaccination sample was available, we observed negligible Ad26.COV2.S 638 

neutralizing activity in vaccine-naïve donors. However, a single dose of Ad26.COV2.S strongly 639 

increases both neutralizing titers against Ad26.COV2.S and the fraction of Ad26-specific 640 

CD4+ and CD8+ T cells. Nevertheless, as with other studies of anti-Ad26.COV2.S 641 

neutralization, we could not find a clear association between the levels of anti-vector immunity, 642 

either neutralizing or T cell, and the degree of immune response post-Ad26.COV2.S boost, as 643 

previously reported [47, 48]. 644 

To conclude, we show that in the context of high levels of hybrid immunity, heterologous 645 

boosting with the BNT162b2 mRNA vaccine following a Ad26.COV2.S prime demonstrated 646 

superior immunogenicity and was safe and effective in both PLWH and HIV-negative 647 

participants, although there was a rapid waning of binding and neutralizing antibody 648 

responses. The Ad26.COV2.S homologous boost was also safe but showed highly attenuated 649 

immunogenicity relative to BNT162b2, both in antibody and T-cell immunity. While the 650 

Ad26.COV2.S vaccine elicited strong anti-vector immunity, we did not find clear evidence that 651 

this was the cause of attenuation.  652 
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Figure legends  692 

 693 

Figure 1: Study design and CONSORT diagram. (A) Study design. (B) CONSORT flow 694 

diagram. BL: baseline, nAbs (Live): Live virus neutralization assay; nAbs (Pseudo): 695 

pseudovirus neutralization assay. Binding Abs: Spike-specific IgG ELISA. ADCC: Antibody-696 

dependent cellular cytotoxicity assay. T-cell response: Spike-specific T-cell intracellular 697 

cytokine staining assay. 698 

 699 

Figure 2: Recorded adverse events in each study arm. Distribution of participants 700 

experiencing adverse events (pain, headache, tenderness, weakness, nausea, diarrhea, 701 

cough, myalgia, swelling, chills, loss of taste, redness, loss of smell or fever) recorded 1 week 702 

post booster vaccination in each study arm.  703 

 704 

Figure 3: Spike-specific IgG responses over time in the immunogenicity sub-study 705 

population. (A) Longitudinal spike-specific IgG titer (EC50) at baseline (BL), W2, W12 and 706 

W24 after vaccine booster. The color-coded dots and bold lines represent the geometric mean 707 

titer (GMT) at each time point. Recorded BTI between W2 and W24 are depicted with a red 708 

line. Fold-change in the GMT is indicated at the bottom of each graph. Statistical comparisons 709 

were performed using a Friedman test with Dunn’s correction. (B) Fold change in spike-710 

specific IgG titer between W2 and BL in each study arm. Bars represent median fold change. 711 

Statistical comparisons were performed using a Kruskal-Wallis test with Dunn’s correction. (C) 712 

Comparison of spike-specific IgG titer between study arms at W12 (left panel) and W24 (right 713 

panel). Bars represent GMT. Statistical comparisons (in B and C) were performed using a 714 

Kruskal-Wallis test with Dunn’s correction.  715 

 716 

Figure 4: Live-virus neutralization activity against ancestral D614G and BA.5 SARS-717 

CoV-2 variant after booster vaccination. Neutralizing titer (FRNT50) against ancestral 718 

D614G (A&B) and Omicron BA.5 (C&D) at BL and post-vaccine booster. A&C show titer at 719 
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BL, W2 and W24 post-boost for D614G (A) and BA.5 (C). Fold-change of the GMT is 720 

indicated at the bottom of each graph. The color-coded dots and bold lines represent the GMT 721 

at each time point. Recorded BTI between W2 and W24 are depicted with red lines. Statistical 722 

comparisons were performed using a Friedman test with Dunn’s correction. B&D show fold-723 

change in neutralizing titer against D614G (B) and BA.5 (D) between BL and W2 in each 724 

study arm. Bars represent median fold-change. A Kruskal-Wallis test with Dunn’s correction 725 

was used to compare different arm groups. (E) Comparison of the neutralizing titer (FRNT50) 726 

against D614G (left panel) and BA.5 (right panel) between study arms at W24. Bars represent 727 

GMT. Statistical comparisons were performed using a Kruskal-Wallis test with Dunn’s 728 

correction.  729 

 730 

Figure 5: Pseudovirus neutralization activity against ancestral D614G, Beta, Delta, BA.1 731 

and BA.4/5 SARS-CoV-2 variants after booster vaccination. Longitudinal neutralizing titer 732 

(ID50) against ancestral D614G, Beta, Delta, Omicron BA.1 and BA.4/5 at BL, W2, W12 and 733 

W24 after vaccine booster. Bars represent medians. Bars represent GMT. Statistical 734 

comparisons were performed using a Kruskal-Wallis test with Dunn’s corrections. Only HIV-735 

negative participants were included in these analyses. 736 

 737 

Figure 6: Antibody-dependent cellular cytotoxicity (ADCC) against ancestral (D614G), 738 

Beta, Delta and Omicron BA.1 SARS-CoV-2 variants. (A) ADCC (CD16 signalling) at BL 739 

and W2 in each study arm. Bars represent medians. The grey shaded area indicates an 740 

undetectable ADCC response. Statistical comparisons were performed using a Wilcoxon 741 

matched-pairs signed rank test. (B) Fold change in ADCC activity between W2 and BL in each 742 

study arm. Bars represent median fold change. Statistical comparisons were performed using 743 

a Kruskal-Wallis test with Dunn’s corrections.  744 

 745 

Figure 7: SARS-CoV-2 spike-specific T-cell responses before and 2 weeks after vaccine 746 

boosting. (A) Comparison of the frequency of spike-specific CD4+ T cells pre-boost in the 747 
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four study arms. The grey shaded area indicates undetectable response. (B) Frequency of 748 

spike-specific CD4+ T cells before (BL) and after vaccine boost (W2). (C) Fold change in the 749 

frequency of spike-specific CD4+ T cells between W2 and BL. (D) Overall profile of the 750 

evolution of the spike-specific CD4+ T-cell response between BL and W2. (E) Comparison of 751 

the frequency of spike-specific CD8+ T cells pre-boost in the four trial arms. (F) Frequency of 752 

spike-specific CD8+ T cells before (BL) and after vaccine boost (W2). (G) Fold change in the 753 

frequency of spike-specific CD8+ T cells between W2 and BL. (H) Overall profile of the 754 

evolution of the spike-specific CD8+ T-cell response between BL and W2. Bars represent 755 

medians. A two-tailed Wilcoxon signed-rank test was used to assess statistical differences 756 

between paired samples and a Kruskal-Wallis with Dunn’s corrections was used to compare 757 

different groups.  758 

 759 

Figure 8: Kinetics of SARS-CoV-2 spike-specific T-cell response after vaccination. (A) 760 

Longitudinal frequencies of spike-specific CD4+ T-cell responses induced by the four different 761 

booster vaccine regimens. (B) Comparison of the frequency of spike-specific CD4+ T cells 762 

between the four arms at W24 post-boost. (C) Longitudinal spike-specific CD8+ T-cell 763 

responses induced by the four booster vaccine regimens. (D) Comparison of the frequency of 764 

spike-specific CD8+ T cells between the four arms at W24 post-boost. The proportion of spike 765 

CD8+ responders is indicated at the top of the graph. The grey shaded area indicates 766 

undetectable response. The color-coded dots and bold lines in (A) and (C) represent the 767 

median at each time point. Recorded BTI between W2 and W24 are depicted with a red line. A 768 

Friedman test with Dunn’s correction was used to assess statistical differences between 769 

paired samples and a Kruskal-Wallis with Dunn’s corrections was used to compare different 770 

groups. 771 

 772 

Figure 9: Humoral and cellular responses in study participants stratified by HIV status. 773 

(A to D) Spike-specific binding antibodies (A), live neutralization activity (B), spike-specific 774 

CD4+ response (C) and spike-specific CD8+ response (D) against ancestral (D614G) SARS-775 
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CoV-2 in HIV-negative (HIV-), PLWH with a viral load <200 HIV mRNA copies/ml (HIV+ Avir) 776 

and PLWH with a viral load >200 HIV mRNA copies/ml (HIV+ Vir) before vaccine booster (BL). 777 

Bars represent GMT for A, B, I, J and medians for all other graphs. Statistical comparisons 778 

were performed using a Kruskal-Wallis test with Dunn’s corrections. The proportion of T-cell 779 

responders is indicated on top of the graph. (E to H) Fold change in spike-specific binding 780 

antibodies (E), live neutralization activity (F), spike-specific CD4+ response (G) and spike-781 

specific CD8+ response (H) between W2 and BL in each study arm, stratified by HIV status. (I 782 

to L) Spike-specific binding antibodies (I), live neutralization activity (J), spike-specific CD4+ 783 

response (K) and spike-specific CD8+ response (L) against ancestral (D614G) SARS-CoV-2 784 

at W24 after vaccine booster. Viremic PLWH are identified with a cross. Bars represent 785 

medians. Statistical comparisons between PLWH and HIV-negative groups were performed 786 

using a Mann-Whitney test. 787 

 788 

Figure 10: Ad26-specific neutralizing activity. (A) Schematic representation of the Ad26-789 

specific neutralization assay. (B) Representative example of spike expression in 790 

Ad26.COV2.S-infected H1299 cells measured by flow cytometry. (C) Representative example 791 

of the inhibition of spike expression on Ad26.COV2.S-infected H1299 cells when 792 

Ad26.COV2.S was pre-incubated with plasma (serial dilution) from a participant vaccinated 793 

with one full dose of Ad26.COV2.S. (D) Ad26 neutralization activity (IC50) pre- and W2 post full 794 

dose-Ad26.COV2.S or a full-dose BNT162b2 booster. Statistical difference were assessed 795 

using a Wilcoxon matched paired signed rank test. (E) Fold change in Ad26 neutralization 796 

activity between W2 and BL in Ad26.COV2.S or BNT162b2 boosted participants. Bars 797 

represent GMT for D and F and medians for E. Statistical differences were assessed using a 798 

Wilcoxon matched paired signed rank test. (F) Comparison of Ad26 neutralization activity 799 

(IC50) in individuals who were vaccine naïve (n=14), received one full dose of Ad26.COV2.S 800 

(n=14) or received two full doses of Ad26.COV2.S (n=6) from an independent cohort. 801 

Statistical differences were assessed using a Kruskal-Wallis test with Dunn’s correction. (G) 802 

Relationship between the fold change in neutralizing titer against D614G SARS-CoV-2 803 
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between W2 and BL and Ad26 neutralization activity at BL. Correlation was tested by a two-804 

tailed non-parametric Spearman’s rank test. 805 

 806 

Figure 11: Ad26-specific T-cell responses. (A) Representative example of IFN-g production 807 

in response to Ad26-specific peptide pool (hexon and penton) in one participant before 808 

(baseline) and 2 weeks after a full dose-Ad26.COV2.S booster. (B & E) Frequency of Ad26-809 

specific CD4+ T cell (B) and CD8+ T cells (E) pre- and post a full dose-Ad26.COV2.S or a full-810 

dose BNT162b2 booster. Statistical difference were assessed using a Wilcoxon matched 811 

paired signed rank test. (C & F) Fold change in the frequency of Ad26-specific CD4+ T cells 812 

(C) and CD8+ T cells (F) between W2 and BL in full-dose Ad26.COV2.S or full-dose 813 

BNT162b2 boosted participants. (D & G) Comparison of the frequency of Ad26-specific CD4+ 814 

T cells (D) and CD8+ T cells (G) in individuals who are vaccine naïve (n=20) or received one 815 

full dose of Ad26.COV2.S (n=11) from an independent cohort. The proportion of Ad26 T- cell 816 

responders is indicated at the top of each graph. Statistical differences were assessed using a 817 

Kruskal-Wallis test with Dunn’s correction and a Chi-test to compare proportions. Bars 818 

represent medians. (H) Relationship between the frequency of spike-specific T-cell response 819 

at BL or W2 and the frequency of Ad26-specific T-cell responses at BL. Correlations were 820 

tested by a two-tailed non-parametric Spearman’s rank test.  821 
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Table 1  

 
Arm A 

Full-dose 
Ad26.COV2.S 

Arm B  
Half-dose 

Ad26.COV2.S 

Arm C 
Full-dose 

BNT162b2  

Arm D 
Half-dose 
BNT162b2 

Total 

Vaccinated (N) 74 69 73 73 289 

Age* 42 (35-48) 40 (35-45) 43 (35-50) 42 (35-49) 42 (35-49) 

   18-29 years 5 (6.8%) 5 (7.2%) 7 (9.6%) 6 (8.2%) 23 (8%) 

   30-44 years 41 (55.4%) 46 (66.7%) 34 (46.6%) 34 (46.6%) 155 (53.6%) 

   45-54 years 20 (27%) 10 (14.5%) 23 (31.5%) 22 (30.1%) 75 (26%) 

   ≥ 55 years 8 (10.8%) 8 (11.6%) 9 (12.3%) 11 (15.1%) 36 (12.5%) 

Sex      

   Male 10 (13.5%) 8 (11.6%) 18 (24.7%) 15 (20.5%) 51 (17.6%) 

   Female 64 (86.5%) 61 (88.4%) 55 (75.3%) 58 (79.5%) 238 (82.4%) 

Ethnicity      

   Black African 69 (93.2%) 67 (97.1%) 69 (94.5%) 70 (95.9%) 275 (95.2%) 

   Other 5 (6.8%) 2 (2.9%) 4 (5.5%) 3 (4.1%) 14 (4.8%) 

Days between prime and Booster* 265 (245-292) 271 (259-302) 273 (258-291) 272 (253-300) 271 (255-296) 

BMI      

   Underweight 0 (0%) 2 (2.9%) 0 (0%) 1 (1.4%) 3 (1%) 

   Normal 12 (16.2%) 8 (11.6%) 14 (19.2%) 6 (8.2%) 40 (13.8%) 

   Overweight 20 (27%) 41 (59.4%) 39 (53.4%) 47 (64.4%) 71 (24.6%) 

   Obese 41 (55.4%) 39 (56.5%) 47 (64.4%) 47 (64.4%) 174 (60.2%) 

   Not available 1 (1.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

HIV infection      

   HIV Positive 27 (36.5%) 28 (40.6%) 31 (42.5%) 30 (41.1%) 116 (40.1%) 

Viremic$ 
   CD4 count (cells/mm3)* 
   Viral load (copies/mL)*  

1 (3.7%) 
223 (na) 

818 
na 

5 (17.9%) 
452 (103-471) 

5838  
(3054-18252) 

4 (12.9%) 
1136  
29911  

(14863-47207) 

6 (20%) 
341 (132-538) 

19960 
(5324-37713) 

16 (13.8%) 
452 (132-538) 

15376 
(3054-27420) 

   Aviremic$  
   CD4 count (cells/mm3)*  

26 (96.3%) 
698 (580-923) 

23 (82.1%) 
677 (530-855) 

27 (87.1%) 
812 (623-931 

24 (80%) 
666 (538-737) 

100 (86.2%) 
708 (558-922) 

Prior SARS-CoV-2 infection& 51/58 (87.8%) 52/57 (91.2%) 55/59 (93.2%) 55/59 (93.2%) 213/223 (91.4%) 

Co-morbidities      

   Hypertension 19 (25.7%) 8 (11.6%) 17 (23.3%) 17 (23.3%) 61 (21.1%) 

   Anaemia 7 (9.5%) 8 (11.6%) 6 (8.2%) 9 (12.3%) 30 (10.4%) 

   Asthma 6 (8.1%) 3 (4.3%) 2 (2.7%) 1 (1.4%) 12 (4.2%) 

   Diabetes mellitus 3 (4.1%) 1 (1.4%) 4 (5.5%) 4 (5.5%) 12 (4.2%) 

   Arthritis 1 (1.4%) 0 (0%) 3 (4.1%) 3 (4.1%) 7 (2.4%) 

   Tuberculosis 0 (0%) 4 (5.8%) 2 (2.7%) 0 (0%) 6 (2.1%) 

Retention      

   W2 visits completed 74 (100%) 66 (95.7%) 72 (98.6%) 69 (94.5%) 281 (97.2%) 

   W12 visits completed 74 (100%) 67 (97.1%) 67 (91.8%) 70 (95.9%) 278 (96.2%) 

   W24 visits completed 69 (93.2%) 63 (91.3%) 69 (94.5%) 68 (93.2%) 269 (93.1%) 

 
Table 1: Clinical Characteristics of study participants  
Unless specified, all data are presented as n (%N); *median and interquartile range (IQR); $% 
is of all HIV-infected participants; Viremic individuals were defined as having a HIV-1 viral load 
(VL) >200 HIV mRNA copies/mm3; 3 participants in the viremic arm C had a missing CD4 
count; &Prior SARS-CoV-2 infection was defined by the presence of Nucleocapsid-specific 
IgG; na: non-applicable. 
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Supp Figure 1

Supplemental Figure 1: SARS-CoV-2 spike-specific T cell responses in 
participants stratified by HIV status in each study arm. Frequency of spike-
specific CD4+ T cells (A) and spike-specific CD8+ T cells (B) before (BL) and 2
weeks after vaccine boost (W2) in HIV-negative participants and in PLWH. Bars
represent medians. Viremic PLWH are identified with a cross. Bars represent 
medians. A two-tailed Wilcoxon signed-rank test was used to assess statistical
differences between paired samples and a Kruskal-Wallis with Dunn’s corrections
was used to compare different groups.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.20.23298785doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.20.23298785
http://creativecommons.org/licenses/by/4.0/


Vax-naive J&J primed J&J boosted
N 14 14 6
Age* 46 (37-57) 46 (37-57) 55 (49-57)
Gender (% female) 100% 100% 100%
Time since last vaccination (days)* na 44 (31-53) 110 (96-117)

Supp Table 1

Supp Tables

Supplementary Table 1: Clinical characteristics of samples used for Ad26-
specific antibody response assessment. (Related to Figure 10F). *: Median and 
Interquartile range (IQR), na: not applicable. 

Supp Table 2

Supplementary Table 2: Clinical characteristics of samples used for Ad26-
specific T cell response assessment. (Related to Figures 11D and 11G). All 
participants were HIV-uninfected. *: Median and Interquartile range (IQR). na: not 
applicable.

Vax-naive J&J primed
N 20 11
Age* 43 (33-53) 49 (32-53)
Gender (% female) 90% 81.8%
Time since vaccination (days)* na 25 (20-45)
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