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Abstract 

Purpose or Learning Objective 

Artificial intelligence (AI) with convolutional neural network allows fully automated detection and 

segmentation of bronchial changes on CT-scans of cystic fibrosis (CF). However, the superiority of two-

dimensional (2D) versus three-dimensional (3D) architectures remains to be explored. 

Method or Background 

CT-scans from fifty CF patients were retrospectively included at two CF reference centers. The nnUnet 

model was implemented in both 2D and 3D, and trained to segment five structural alterations: 

bronchiectasis, wall thickening, mucus plugs, bronchiolar impactions and consolidations. A semantic 

validation was done by using fifty CTs with a five-fold cross validation strategy, by comparing 

normalized Dice-Sorensen coefficient (DSC) between 2D and 3D architectures, with manual 

segmentations as Gold Standard.  

 

Results or Findings 

The 3D nnUnet was found able to segment the five CF main hallmarks such as bronchiectasis, wall 

thickening, mucus plugs, bronchiolar impactions and consolidations. Metrics obtained with the 3D 

architecture were superior for mucus plugs, bronchiolar impactions and consolidations (p<0.001) but 

not significantly different for bronchiectasis and wall thickening (p>0.05).  

Conclusion 

AI with the 3D-nnUnet model can perform fully automated segmentation of CF-related structural 

hallmarks on CT scans, and overcome 2D implementation. Non-invasive, holistic 3D quantifications are 

allowed for promising next clinical applications. 
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INTRODUCTION 

Artificial intelligence (AI) with deep learning (DL) is a recent breakthrough in medical imaging, which 

is changing the landscape of diagnostic tools available [1]. Beyond human capacities [2], DL algorithms 

with convolutional neural networks (CNN) can perform computer vision tasks such as detection and 

segmentation of disease-related abnormalities on CT scans in a reproducible and rapid manner, which 

could prove useful for quantitative imaging purpose [3]. In the field of airway imaging using CT, there 

is a growing need for non-invasive characterization and quantification of the lung structural 

abnormalities, to assess the disease severity and the longitudinal modifications over time [4]. For 

instance, cystic fibrosis (CF) remains one of the most frequent genetic disorders in Caucasians, affecting 

up to 1 every 2500 children [5] . The lung is the most affected organ, where dysfunction of the CFTR 

protein within airways is responsible for an increased production of thick and sticky mucus, leading to 

pulmonary exacerbations and death. However, effective CFTR modulator treatments have recently 

emerged and can dramatically modify the disease course with an improvement of both clinical symptoms 

and lung structural damages. Therefore, availability of non-invasive biomarkers for allowing objective 

and reproducible quantitative assessments of the lung disease process may be desirable to help the 

clinicians for their disease management [6]. 

CT of the lung in CF has been demonstrated useful to complete this task [7] . Indeed, CT can demonstrate 

the main structural hallmarks of CF such as bronchiectasis, airway wall thickening, mucus plugins and 

consolidations [8], in a non-invasive manner. Several visual scoring systems have been proposed to 

correlate with the lung disease severity. Nevertheless, these visual methods are subjective and may lack 

reproducibility between different readers [9]. Also, these systems are using categories to summarize the 

extent of structural damages, which may lack sensitivity, especially for longitudinal application. 

Recently, AI has been proven to allow rapid and reliable depiction of CF hallmarks in a fully automated 

manner [10] .This approach demonstrated the possibility to reach a holistic quantification of the 3D 

volumetric extent of lung lesions, over a full set of CT slices for a given patient. However, previous 

study was done by using 2D CNNs only, while the volume of lesions was obtained as the sum of 

individual 2D results. Conversely, the feasibility of a genuine 3D approach was not assessed. On the one 

hand, 3D segmentation methodologies capitalize on the comprehensive spatial context of volumetric 

data, ensuring consistent segmentations that accurately capture intricate three-dimensional structures. 

On the other hand, 2D techniques, guarantee rapid processing times and a direct application especially 

when considering the ubiquity of 2D medical imaging modalities. 

The aim of the study was to assess the performance of a 3D-CNN model to detect and quantify CF 

structural abnormalities on CT scans of CF patients, and to compare the evaluation to that of its 2D-

CNN counterpart. Secondary objective was also to correlate the volumetric quantifications with 

pulmonary function tests (PFT). 
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MATERIAL AND METHODS 

Study design 

The retrospective study was held between January 2020 and December 2022 at a single Institution, 

involving two CF reference centers dedicated to children and adults. All patients were provided written 

informed consent for reusing data from their medical records, after approval by the Ethic Committee of 

the University Hospital of Bordeaux, (Full name: “Direction de la qualité et de la gestion des risques”; 

Affiliation: University Hospital of Bordeaux; study registration number: CHUBX2020RE0267).) in 

compliance with French laws (https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000037187498). 

Inclusion criteria were: age greater than 8-year-old, CF diagnosis made on sweat chloride and/or genetic 

test, non-contrast-enhanced CT alongside PFT performed the same day. Disease management was 

performed according to a standard of care. There were no exclusion criteria. 

 

 

Figure 1 Study flow chart. CF=cystic fibrosis; CT=computed tomography; PFT = pulmonary function test. 

 

 

CT of the lung 

Supplemental Table E describes the CT characteristics. There were two different machine 

models from 2 major manufacturers, namely GE Revolution®, and Siemens Somatom Force®. 

The matrix was 512*512, the dose-length product ranged from 8 to 260 mGy.cm and the slice 

thickness from 1 to 1.25 mm. All patients were thoroughly coached in breathing techniques 

before each CT scan and CT at full inspiration and reconstructed with standard kernels.  
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Methodology used for labeling of CT slices 

The annotation of CT slices was done in consensus between three observers of 6, 12, and 25 

years of experience in thoracic imaging, who are part of a CF reference center which belongs 

to the European Cystic Fibrosis Society Clinical Trial Network,  and with published expertise 

in CF scoring of lung CT and MRI[12–16]. 

Manual segmentation of labels was performed by using the 3D Slicer software 4.11, an open-

source software. CT images were displayed with parenchymal window width and level (width, 

1500 Hounsfield Unit; level -450 Hounsfield Unit)[17]. Five labels were created to represent 

five main hallmarks of structural alterations of CF: bronchiectasis, peribronchial thickening, 

bronchial mucus plugs, bronchiolar mucus plugs with the “tree-in-bud” pattern, and 

collapse/consolidation[18]. In this study, bronchiectasis refers to the mucus-free airway lumen 

dilatation, and the bronchial mucus plug was scored when a secretion filled the bronchial lumen 

entirely. A sixth label was also created, which corresponds to the lung parenchyma, as the total 

lung minus the sum of other abnormal labels. A visual agreement between the three observers 

of more than 80% in the visible spatial extent of true-positive findings was necessary.  

 

 

AI framework: 

For the segmentation of CF lesions, a detailed semantic segmentation process was initiated. CT volumes 

from 50 patients were incorporated to structure the training and validation datasets. Slice-by-slice 

manual segmentations were carried out to delineate five labels: bronchiectasis, bronchial wall 

thickening, bronchial mucus, bronchiolitar impaction with the “tree-in-bud” pattern, and consolidation. 

For cross-validation purposes, the CTs were partitioned into five groups, with each group consisting of 

10 randomly assigned patients.  

The nnU-Net architecture, in both 2D and 3D implementations, was utilized for training, with more 

details provided in the supplemental materials (Supplemental Method). A dynamic loss function was 

implemented, initially emphasizing the Dice Coefficient. Over epochs, the focus shifted to the bottom 

50% of predictions (TopK). This approach guaranteed foundational segmentation accuracy in the initial 

stages and refined precision for challenging areas in subsequent training phases [11]. 

A dual-modality input was employed for nnU-Net. The primary modality showcased the hole CT scan, 

while the secondary displayed only the inner region of the lung parenchyma. This dual-input strategy 
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aimed to direct the network's attention to essential intra-lung regions, avoiding extraneous external 

components. The methodology is depicted in Figure 2. 

 

Figure 2 Study methodology. The convolution neural network is nnUnet ; two dimensional (2D) and three dimensional (3D) 

architectures were trained with databases consisting of CT slices and CT volume. The validation was conducted using a 5-fold 

cross-validation : The data set is divided into 5 equally folds, the model is trained on 4 of these folds (T) and tested on the 

remaining one (V). 

 

Software 

The 2D and 3D nnUnet were trained on a system operating on Ubuntu 18.04. The environment was set 

up with Python 3.9, using PyTorch 2.0 and CUDA 11. The system's hardware was anchored by an Intel 

Xeon Gold 5217 CPU, featuring 2 physical processors and a total of 32 threads, 30 of which were 

allocated exclusively to nnU-Net during training. The system was bolstered by 200GB of RAM and 

employed a Quadro RTX 8000 GPU with 48GB of VRAM. 

 

Performance metrics 

To evaluate the precision of the segmentation models related to CF lesions, reliance was primarily placed 

on the Dice Coefficient (DSC). This metric is effective in gauging the overlap between the predicted 

and actual regions. However, its efficacy diminishes when addressing small structures [12]. This 

limitation led to the consideration of the complementary attributes of the Normalized Surface Distance 
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(NSD). NSD excels at recognizing instances where predictions are in close proximity but not perfectly 

overlapping with the true lesions, underscoring its clinical relevance. 

Precision was employed to gauge the correctness of positive detections, while Recall was used to ensure 

comprehensive identification of notable structures. Additionally, the Area Under the Curve (AUC) was 

used as a significant metric, capturing the model's capability to distinguish between classes effectively. 

Confusion matrices were also incorporated into the evaluation metrics, providing a clear and concise 

visualization of prediction misclassifications. 

 

Interpretability 

To further understand the inner workings of nnUnet, the visualization technique known as Gradient-

weighted Class Activation Mapping (Grad-CAM [13]) was utilized. This tool produced a heatmap 

highlighting regions of the image considered crucial by the model. Additionally, exploration was made 

into a Bayesian neural network methodology [14]. The model was examined through five distinct 

iterations to ascertain its intrinsic consistency and gain insight into its predictive confidence. 

 

Statistical tests 

Comparisons of continuous data were done using the Mann Whitney test, and categorical data with the 

Chi-square test. A p-value inferior to 0.05 was considered significant. 

 

 

RESULTS 

 

Performance metrics  

Regarding internal validation, it was observed that both models demonstrated comparable performance 

for bronchiectasis, wall thickening, and consolidations, Indeed, nnUnet 2D achieved mean scores of 

0.77 (±0.056), 0.64 (±0.044), and 0.61 (±0.298), respectively, while its 3D version garnered evaluations 

of 0.81 (±0.043), 0.65 (±0.034), and 0.60 (±0.333), respectively.  

However, the 3D version excelled over its 2D counterpart in detecting bronchial and bronchioliar mucus, 

with an improvement of 8% for the bronchial mucus and nearly 12% for the bronchiolitis mucus (Figure 

3). The superior NSD performance, in comparison to Dice, suggests that models detect at the right 
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locations, albeit without exhaustively capturing the shapes of the structures, this was particularly 

noticeable for wall thickening.  

Specificity and sensitivity values indicated that the models were specific, with the 3D version exhibiting 

enhanced sensitivity. The increase in sensitivity is evident in the detection of bronchial mucus, which 

improved by 10% compared to the 2D segmentation, whereas the bronchiolitis mucus saw a gain of 

12% (Figure 4). Lastly, the AUC scores for the 2D segmentation ranged between 0.613 (±0.042) for 

bronchiolitis mucus and 0.87 (±0.034) for bronchiectasis, while the AUCs for nnUnet 3D spanned from 

0.683 (±0.042) for bronchiolitis mucus to 0.886 (±0.030) for bronchiectasis. The detailed results of these 

evaluations are provided in the Table 1. 

 

Table 1 Segmentation performances of the nnUnet 2D and 3D across the CF lesions: Bronchiectasis, Wall Thickening, 

Bronchial Mucus, Bronchiolitis Mucus and Consolidation 

 Bronchiectasis Thickening Bronchial Mucus Bronchiolitis Mucus Consolidation 

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 

DICE 

 

0.77(±0.

05) 

0.80 

(±0.043) 

0.63(±0.

04) 

0.65(±0.

03) 

0.55(±0.

08) 

0.64(±0.

03) 

0.28 

(±0.05) 

0.39(±0.

05) 

0.61(±0.

29) 

0.60(±0.

33) 

NSD 

 

0.79(±0.

05) 

0.80 

(±0.06) 

0.81(±0.

05) 

0.81 

(±0.05) 

0.60 

(±0.05) 

0.68 

(±0.11) 

0.44 

(±0.05) 

0.51 

(±0.08) 

0.53 

(±0.05) 

0.65 

(±0.08) 

AUC 0.87 

(±0.03) 

0.886 

(±0.030) 

0.81 

(±0.04) 

0.82 

(±0.03) 

0.73  

(±0.064) 

0.78 

(±0.035) 

0.61 

(±0.03) 

0.68 

(±0.04) 

0.82 

(±0.07) 

0.80 

(±0.07) 

 

 

 

Confusion matrices for both 2D nnUnet (Table 2) and 3D nnUnet (Table 3) indicate that for 

bronchiectasis and wall thickening, there is minimal confusion with other lesions regardless of whether 

the segmentation is 2D or 3D. However, the two types of mucus were more often confused with each 

other, whereas the consolidations are mistakenly identified as wall thickening or bronchiolitis mucus. 

The 3D version has mitigated these confusions, enhancing scores by 3%, 6%, and 2% for bronchial 

mucus, bronchiolitis mucus, and consolidation respectively (p<0.01). Additionally, the standard 

deviations of 3D nnUnet were also reduced for all lesions collectively. 

 

Table 2 Confusion matrix for 2D nnUnet. Each column represents the distribution of predictions by lesion type. 

2D Bronchiectasis Thickening Bronchial Mucus Bronchioliar 

Mucus 

Consolidation 
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Bronchiectasis 

0.98  (± 0.00) 0.01(±  0.00) 

0.00 

(±  0.00) 0.00(±  0.00) 0.00(±  0.00) 

Thickening 0.01 (±  0.00) 0.95 (±  0.01) 0.08 (±  0.03) 0.01 (±  0.00) 0.05(±  0.04) 

Bronchial  0.00 (±  0.00) 0.02 (±  0.00) 0.80 (±  0.11) 0.15 (±  0.11) 0.04 (±  0.03) 

Bronchiolitis  0.00 (±  0.00) 0.00 (±  0.00) 0.11 (±  0.09) 0.83 (±  0.11) 0.00 (±  0.00) 

Consolidation 

0.00 (±  0.00) 0.00 (±  0.01) 0.00 (±  0.00) 0.00      (± 0.00) 

0.90 

(±  0.07) 

 

Table 3 Confusion matrix for 3D nnUnet. Each column represents the distribution of predictions by lesion type. 

3D Bronchiectasis Thickening Bronchial M Bronchiolitis M Consolidation 

Bronchiectasis 0.98 

(± 0.00) 

0.00 

(± 0.00) 

0.00 

(± 0.00) 

0.00 

(± 0.00) 

0.00 

(± 0.00) 

Thickening  0.01 

(± 0.00) 0.95(± 0.01) 0.05 (± 0.02) 

0.00 

(± 0.00) 

0.04 

(±  0.04) 

Bronchial  0.00 

(± 0.00) 0.02 (±  0.00) 0.83 (±  0.05) 

0.10 

(± 0.05) 

0.02 

(± 0.03) 

Bronchiolitis  0.00 

(± 0.00) 0.00 (±  0.00) 0.09 (±  0.06) 

0.89 

(± 0.05) 

0.00 

(± 0.00) 

Consolidation 0.00 

(± 0.00) 0.00 (±   0.01) 0.00 (±   0.01) 

0.00 

(±  0.00) 

0.92 

(± 0.06) 

 

 

Figure 3 Comparison of CF lesion segmentations (Bronchiectasis, Thickening, Bronchial mucus, Bronchiolar mucus, 

Consolidation). The first row displays the segmentations from the Gold Standard (GS), the second row presents the 

segmentations predicted by nnUnet (3D-AI), and the third row depicts the segmentations produced by nnUnet (2D-AI). The 
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red squares highlight the errors made by the 2D version across the five CF lesions. On the same slice, structures corresponding 

to each of the five CF labels are observed to have been omitted by the 2D nnUnet version when compared to its 3D counterpart. 

 

 

 

Models’s interpretability 

The feature maps obtained through the GradCAM algorithm (Figure 5) clearly demonstrate that both 

the 2D and 3D models focus on the regions of interest before opting for a labeling. Notably, the 2D 

network appears to exhibit more hesitation compared to the 3D version, especially in the case of mucus 

identification. Moreover, the differences estimated between the five versions of nnUnet in both 2D and 

3D versions deviate by only  10−4 (Table 4), further corroborating the robustness of the network in its 

predictions. 

Table 4 Uncertainty evaluation of the 2D and 3D  nnUnet  across the 5 five CF lesions : Bronchiectasis, Wall bronchiectasis, 

Bronchial Mucus, Bronchiolitis Mucus, Consolidation 

Uncertainty 

 

Bronchiectasis Thickening Bronchial Mucus Bronchiolitis Mucus Consolidation 

2D 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 

3D 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 

 

Figure 4 Comparison of CF lesion segmentations (Bronchiectasis, Thickening, Bronchial mucus, Bronchiolar mucus, 

Consolidation). The first column presents the 3D segmentations from the Gold Standard (GS), the second column represents the 

3D segmentations predicted by nnUnet (3D-AI), and the third column displays the 3D segmentations produced by nnUnet (2D-

AI). The 3D segmentation of CT scans from CF patient resulted in a notable increase in sensitivity, especially evident for the 

bronchiolitis mucus (yellow), compared to its 2D counterpart. 
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Figure 5 Comparison of CF lesion (Bronchiectasis, Thickening, Bronchial mucus, Bronchiolar mucus, Consolidation) features 

map. The first row displays the segmentations from the Gold Standard (GS), the second row presents the features map obtained 

with gradCAM by nnUnet (3D-AI), and the third row depicts the presents the features map obtained produced by nnUnet (2D-

AI) gradCAM. The more intense the feature map, the closer the probabilities of the predictions approach 1. 

 

 

DISCUSSION 

The 2D and 3D network are posited to have similar aptitude in discerning structures with a significant 

number of adjacent pixels like bronchectasis, wall thickining and consolidation. However, for more 

refined structures like bronchial and bronchiolitis mucus, the interlayer spatial information of the 3D 

training becomes crucial for their detection. 

The overlap in identifying different mucus types is understandable due to their semantic closeness. 

Enhancing model results might have been possible by merging these labels. One potential improvement 

could have involved employing both parenchymal and mediastinal windows [15] to enrich the network's 

knowledge and enhance structure detection.  

To avoid perceiving the network as a black box, and in line with recent medical community 

recommendations [16], model validation via GradCAM was deemed enriching, revealing that the 

characteristic maps leading to predictions primarily focus on regions of interest and that predictions 

correlate appropriately with the image structures. Furthermore, the extremely low uncertainty of both 

models vouched for the consistency and reliability of their predictions.  
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To date, this research remains the sole endeavor addressing 3D segmentations across five different CF 

lesions. Existing work [18] focused on assessing dimensions of all visible bronchus-artery (BA) pairs 

on chest CT and then computing bronchus-vessel ratios to estimate CF progression, a distinct approach 

from what is proposed here. With the 3D nnUnet, there is potential for monitoring CF progression by 

comparing the volumes derived from 3D detections of the five CF lesions, offering promising avenues 

for the management of CF patients. 

 

CONCLUSION  

3D segmentation exhibits superior performance compared to 2D segmentation, particularly in detecting 

disparate and fine structures. Correlations have been observed between the volumes quantified from 3D 

segmentation and PFT measurements, underlining the clinical relevance of this method. The 

implications of these conclusions suggest that there's room for further exploration in the realm of 

medical imaging analysis for CF patients. 
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