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Abstract

Background: Precision medicine has led to the development of targeted treatment
strategies tailored to individual patients based on their characteristics and dis-
ease manifestations. Although precision medicine often focuses on a single health
outcome for individualized treatment decision rules (ITRs), relying only on a sin-
gle outcome rather than all available outcomes information leads to suboptimal
data usage when developing optimal ITRs.
Methods: To address this limitation, we propose a Bayesian multivariate hierar-
chical model that leverages the wealth of correlated health outcomes collected in
clinical trials. The approach jointly models mixed types of correlated outcomes,
facilitating the “borrowing of information” across the multivariate outcomes, and
results in a more accurate estimation of heterogeneous treatment effects com-
pared to using single regression models for each outcome. We develop a treatment
benefit index, which quantifies the relative treatment benefit of the experimen-
tal treatment over the control treatment, based on the proposed multivariate
outcome model.
Results: We demonstrate the strengths of the proposed approach through exten-
sive simulations and an application to an international Coronavirus Disease
2019 (COVID-19) treatment trial. Simulation results indicate that the proposed
method reduces the occurrence of erroneous treatment decisions compared to a
single regression model for a single health outcome. Additionally, the sensitivity
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analysis demonstrates the robustness of the model across various study scenar-
ios. Application of the method to the COVID-19 trial exhibits improvements in
estimating the individual-level treatment efficacy (indicated by narrower credible
intervals for odds ratios) and optimal ITRs.
Conclusion: The study jointly models mixed types of outcomes in the con-
text of developing ITRs. By considering multiple health outcomes, the proposed
approach can advance the development of more effective and reliable personalized
treatment

Keywords: Individualized treatment decision rule, Precision medicine, Treatment
benefit index model, Bayesian multivariate hierarchical model, COVID-19

1 Introduction

In recent years, the growing emphasis on tailoring treatment strategies for patients
according to their unique characteristics and disease manifestations has fueled a surge
of interest among researchers and clinicians in the development of individualized treat-
ment decision rules (ITRs) [1–12]. A significant challenge in developing robust and
accurate ITRs is in handling noisy outcome data. Typical methods for developing
ITRs rely solely on a single health outcome, thus limiting the full exploitation of the
available outcomes data. This limitation can lead to suboptimal data usage for indi-
vidualized treatment decision-making, subsequently yielding a considerable degree of
uncertainty, particularly when the outcome data are noisy.

To address this issue, we capitalize on the wealth of correlated and clustered health
outcomes collected in trials by utilizing multivariate models, which have demonstrated
significant improvements in estimation and prediction accuracy compared to their
univariate counterparts [13–19]. Although correlated and clustered observations are
often modeled (in the frequentist paradigm) by a marginal model via generalized
estimating equations or a generalized linear mixed model [20], Bayesian methods can
handle highly complex hierarchical structures and efficiently estimate parameters via
Markov Chain Monte Carlo sampling, making it an appealing and efficient strategy
[21–23].

We propose a Bayesian multivariate hierarchical model that explicitly accounts for
patient heterogeneity and enables the “borrowing of information” among multiple cor-
related mixed types of outcomes, resulting in a more accurate estimation of treatment
effects. Based on the proposed model, we employ a treatment benefit index [24, 25] to
optimize ITRs.

Existing methods for ITRs in the presence of multiple outcomes have been proposed
[26–36], including estimation of composite outcomes [34, 35], estimating patients’
outcome preferences [31, 33, 37], “set-valued” approaches [27, 28] and constrained
estimation [26, 30] that focuses on balancing competing outcomes. Our approach dis-
tinguishes itself by focusing on improving the modeling efficiency and building the
connection between correlated mixed types of outcomes through a Bayesian hierar-
chical model, which allows the treatment effects for each outcome to share a common
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prior distribution. This strategy is particularly effective when there is reason to believe
that the treatment exerts similar influences on the outcomes. By effectively accom-
modating dependency in multiple highly correlated health outcomes, our approach
improves the estimation of treatment effects at both the patient and outcome-specific
levels. Simulation results demonstrate the substantial gains in performance offered by
the proposed Bayesian multivariate hierarchical model. Our method is applied to a
clinical trial of Coronavirus disease 2019 (COVID-19) convalescent plasma treatment.
In the Continuous Monitoring of Pooled International Trials of Convalescent Plasma
for COVID-19 Hospitalized Patients (COMPILE) trial [38, 39], multiple correlated
health outcomes were collected, including the primary ordinal outcome measure [40]
and several secondary outcomes. However, the model’s applicability extends beyond
this specific case, serving as a versatile tool for analyzing mixed types of outcome data
and developing ITRs in clinical trials. By providing enhanced estimations of hetero-
geneous treatment effects and more accurately quantified uncertainty measurements
reflecting all the available information from multiple health outcomes, this innovation
holds the potential to guide clinical practice and contribute to the optimization of
individualized treatment strategies.

We organize the paper as follows. In the Methods section, we present the Bayesian
multivariate model for evaluating heterogeneous treatment effects and developing
ITRs. We elucidate the reasoning behind our selection of prior distributions. In the
Results section, we present extensive simulation results, which enabled us to compare
the performance of the proposed multivariate model for mixed types of outcomes with
a Bayesian single regression model for a single outcome. Our methodology yields more
precise estimations of heterogeneous treatment effects and reduces the occurrence of
erroneous optimal treatment decisions. Then, we validate the robustness of our pro-
posed model through sensitivity analysis. We have applied this model to data from an
international COVID-19 study, COMPILE, demonstrating its ability to provide more
accurate estimations of heterogeneous treatment effects, as represented by odds ratios
(ORs) with narrower credible intervals (CrIs) reflecting all available outcomes infor-
mation. In the Discussion and conclusion section, we provide a discussion and offer
insights into potential future applications of our work.

2 Methods

In this section, we present a Bayesian approach for modeling mixed types of out-
comes within the exponential family. Let Y i represent the vector of outcomes of

length d for the ith subject (i = 1, . . . , n), where the kth element Y
(k)
i (k = 1, . . . , d)

follows an exponential family distribution. We denote η = (η1, . . . ,ηn), with ηi =

(η
(1)
i , . . . , η

(d)
i )⊤ ∈ Rd, and η

(k)
i as the canonical parameter associated with the

assumed distribution of Y
(k)
i . Additionally, we define ϕ = (ϕ(1), . . . , ϕ(d))⊤ ∈ Rd,

where ϕ(k) > 0 is an unknown dispersion parameter.
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Conditional on ηi and ϕ, the d components of Y i = (Y
(1)
i , . . . , Y

(d)
i )⊤ are assumed

to be independent. The likelihood of Y = (y1, . . . ,yn) can be expressed as:

f(Y |η,ϕ) =
n∏

i=1

d∏
k=1

f(y
(k)
i |η(k)i , ϕ(k))

=

n∏
i=1

d∏
k=1

exp{[y(k)i η
(k)
i − bk(η

(k)
i )]/ak(ϕ

(k)) + ck(y
(k)
i , ϕ(k))}.

(1)

Here, the functions ak(·), bk(·), and ck(·) are exponential family distribution-specific

known functions for the kth outcome, whereas η
(k)
i and ϕ(k) are unknown quantities.

In the model, we relate the outcome-specific expected value with the linear com-

bination of covariates and treatment assignment via a canonical parameter η
(k)
i and

an outcome-specific canonical link g(k)(.) depending on the type of outcomes (e.g.,
identity function for continuous outcomes, logit function for binary outcomes, and log
function for count outcomes):

g(k)(E[Y (k)
i |Xi, Ai]) = η

(k)
i = τ (k) +X⊤

i m
(k) +Ai(β

(k)
0 +X⊤

i β
(k)). (2)

Here, τ (k) is the outcome-specific intercept, m(k) is the length-p main effect of the

pre-treatment characteristics Xi on the kth outcome, β
(k)
0 is the main effect of the

experimental treatment (A = 1) on the kth outcome, and β(k) is the length-p X-by-A
interaction effect on the kth outcome.

For patients with pre-treatment characteristics x, the treatment-control effect
contrast based on (2) is defined as:

g(k)(E(Y
(k)
i |Xi = x, Ai = 1))− g(k)(E(Y

(k)
i |Xi = x, Ai = 0)) = β

(k)
0 + x⊤β(k). (3)

This treatment-control effect contrast is the primary focus in clinical trials. For

example, if the outcome is binary and g(k)(.) is a logit link function, β
(k)
0 + x⊤β(k)

corresponds to the effect of the experimental treatment vs. control on the kth outcome,
as measured by the log odds ratio (logOR). Assuming that the first outcome (k =
1) is the primary outcome and a lower value of this outcome is preferable. Then,
a logOR below 0 signifies that the experimental treatment yields a more favorable
primary outcome compared to the control treatment. Equation (3) demonstrates that
the treatment-control effect contrast, e.g. logOR, depends solely on the main effect
of treatment A and the X-by-A interaction effects and not on the X main effects.
Our Bayesian model’s objective is to efficiently estimate the effect of treatment A

(represented by β
(1)
0 in Equation (3)) and the X-by-A interaction effects (represented

by β(1) in Equation (3)) on the primary outcome Y (1) by “borrowing information”
from other correlated outcomes Y (k′), k′ > 1.
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2.1 Individualized treatment decision rule

Our goal is to predict optimal treatment options for future patients, taking into
account their pre-treatment characteristics. Bayesian analysis can provide the full pos-
terior distribution of the parameter of interest. We define the treatment benefit index
(TBI) for a patient with pre-treatment characteristics x as the posterior probability
that the treatment-control contrast in Equation (3) is less than 0:

TBI = Pr(β
(1)
0 + x⊤β(1) < 0), (4)

representing the (posterior) probability that the experimental treatment is more ben-
eficial than the control treatment. The estimated optimal ITR, denoted as âopt : x 7→
{0, 1}, is defined based on the TBI in (4):

âopt(x) = I(TBI > δ), (5)

where I(.) is the indicator function, and 0 < δ < 1 is a threshold probability to make
treatment decisions. We set the threshold δ to 0.5 in this paper. If the TBI exceeds
0.5, then the patient is recommended to receive the experimental treatment (i.e.,
âopt(x) = 1), as there is a more than 0.5 probability that the experimental treatment
is more beneficial than the control treatment.

2.2 Model and prior specification

In this section, we describe a versatile framework for modeling mixed types of
outcomes. The framework was motivated by the COMPILE study, in which we encoun-
tered the need to jointly model a primary ordinal outcome and binary outcomes.
Although we demonstrate the applicability and utility of our proposed framework
using ordinal and binary outcomes as an example, the framework is designed to be
adaptable to other mixed outcome types.

To model the primary ordinal outcome, a cumulative proportional odds (co) model
was determined to be the most appropriate method [41]. Let Y (1) represent the L

levels ordinal outcome, with probabilities P (Y
(1)
i = y) = piy for y = 1, . . . , L. The

cumulative probabilities are modeled as logit(Y
(1)
i ≥ y) = τ

(1)
y + θ

(1)
i , where τ

(1)
y ’s

represent the intercepts for y = 2, . . . , L and satisfy the monotonicity requirement for

the intercepts of the co model, and θ
(1)
i is a linear predictor defined below. Logistic

models are used to analyze the binary outcomes. Let Y (2), . . . , Y (d) denote the d − 1

binary outcomes. Bernoulli distributions with probabilities p
(k)
i are assumed, such that

P (Y
(k)
i = 1) = p

(k)
i for k = 2, . . . , d. The probabilities are modeled as logit(p

(k)
i ) =

τ (k)+θ
(k)
i , where τ (k) are the intercepts and θ

(k)
i are the linear predictors defined below.

For each unit of analysis i ∈ {1, ..., n}, a binary treatment assignment Ai ∈ {0, 1} is
considered, with Ai = 1 representing the experimental treatment and Ai = 0 denoting

the control treatment. A multivariate outcome Y i = (Y
(1)
i , Y

(2)
i , ..., Y

(d)
i )⊤ ∈ Rd and

a vector of pre-treatment characteristics Xi ∈ Rp are taken into account.
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Y
(1)
i ∼ Ordinal multinomial(pi), pi = {piy}L1

logit(Y
(1)
i ≥ y) = τ (1)y + θ

(1)
i

Y
(k)
i ∼ Bernoulli(p

(k)
i ), k = 2, . . . , d

logit(P (Y
(k)
i = 1)) = τ (k) + θ

(k)
i , k = 2, . . . , d

θ
(k)
i = X⊤

i m
(k) +Aiβ

(k)
0 +AiX

⊤
i β

(k), k = 1, . . . , d

m(k) ∼ MVN(µ = 0,Σ = 2.52Ip×p)

(β
(1)
j , . . . , β

(d)
j )⊤ ∼ MVN(µ = β∗

j 1d,Σ = σ2
βj
Id×d), j = 0, . . . , p

σβj ∼ exponential(µ = 1)

β∗
j ∼ Normal(µ = 0, σ = 2.5)

τ (1)y ∼ tstudent(df = 3, µ = 0, σ = 8)

τ (k) ∼ tstudent(df = 3, µ = 0, σ = 8), k = 2, . . . , d.

(6)

It is crucial to identify prior distribution assumptions in Bayesian statistics. We
followed the criteria described in [42] for selecting prior distributions.

Outcome-specific treatment main effect β
(k)
0 and interaction effect β(k):

To facilitate flexible information sharing about the coefficients across outcomes, we
employ hierarchical shrinkage. The prior distribution assumes that each outcome-

specific treatment main effect β
(k)
0 is closely centered around a pooled “treatment main

effect” β∗
0 , postulating that these treatment effects are comparable across all outcomes.

The variation of each outcome-specific treatment main effect around the group’s mean
β∗
0 is represented by its standard deviation σβ0

. The outcome-specific interaction effect

β
(k)
j (j = 1, . . . , p) is distributed as Normal(µ = β∗

j , σ = σβj
), where β∗

j denotes the
pooled “interaction effect” across all outcomes. σβj

controls the strength of information
borrowing. A large mean of the prior distribution of σβj

allows for greater variability,
whereas a small value constrains the coefficients to remain closer to the pooled effect.
In the Simulation illustration section, we assigned a prior mean of 1 to σβj

.

For the outcome-specific intercepts τ (k), we use a tstudent distribution with 3 degrees
of freedom (σ = 8). This choice offers heavier tails compared to the Normal distri-
bution (σ = 8), ensuring that the Hamiltonian Monte Carlo (HMC) sampling [43]
has adequate flexibility for exploring the sample space. In the case of covariates’ main
effectsm(k), we use a diffuse prior, with the expectation that the observed data will pri-
marily drive the shape of the posterior distribution. Similarly, for the pooled treatment
main effect and interaction effects across outcomes, β∗

j , we adopt a diffuse prior.
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3 Results

In this section, we present a comparative analysis of two Bayesian models for esti-
mating heterogeneous treatment effects and ITRs. Specifically, the performance of the
proposed multivariate model will be compared to that of a univariate model, which
only relies on a single primary outcome. We also conducted sensitivity analyses to
assess the robustness of the proposed model across different study scenarios. We then
applied our method to an international COVID-19 clinical trial and examined the
proposed model for goodness-of-fit.

3.1 Simulation illustration

We conducted a series of simulation experiments. The Bayesian models were imple-
mented using Stan [43], which enables Bayesian inference based on HMC, with the
No-U-Turn sampler[43].

3.1.1 Simulation setup and performance evaluation

We used the R package simstudy [44] to generate simulated data sets. For a given sam-
ple size in the training dataset, denoted as n, we independently generated treatment
indicators, denoted Ai ∈ {0, 1}, from the Bernoulli distribution with a probability
of P (Ai = 1) = 0.5. The covariates Xi ∈ Rp comprised 3 independent binary vari-
ables generated from the Bernoulli distribution with probability P (Xi = 1) = 0.5,
and p − 3 independent continuous variables, drawn from the multivariate normal
distribution with mean zero and unit variance. We generated a set of four out-

comes (Y
(1)
i , Y

(2)
i , Y

(3)
i , Y

(4)
i ), mimicking the outcomes collected from the COMPILE

study. The variable Y
(1)
i follows an 11-level ordinal multinomial distribution, while

Y
(2)
i , Y

(3)
i , and Y

(4)
i , representing the 3 supplementary binary outcomes, are gen-

erated using Bernoulli distributions. The true parameter values used for the data
generation are as follows. These notations adhere to model (6). We consider p = 5
covariates, and the covariates’ main effect coefficients for each of the 4 outcomes
are m(1) = [0.35,−0.40, 0.15, 0.20,−0.21]⊤, m(2) = [0.40,−0.38, 0.13, 0.19,−0.22]⊤,
m(3) = [0.38,−0.39, 0.14, 0.18,−0.20]⊤, m(4) = [0.42,−0.41, 0.16, 0.21,−0.19]⊤.

• Treatment’s main effect coefficient for each outcome:

– β
(1)
0 = −0.05

– β
(2)
0 = −0.06

– β
(3)
0 = −0.03

– β
(4)
0 = −0.04

• X-by-A interaction effect coefficients for each outcome:

– β(1) =
[
0.20 −0.10 0.10 0.05 −0.06

]⊤
– β(2) =

[
0.19 −0.11 0.09 0.04 −0.07

]⊤
– β(3) =

[
0.18 −0.12 0.11 0.06 −0.05

]⊤
– β(4) =

[
0.21 −0.09 0.12 0.07 −0.04

]⊤
7
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As a comparison model for model (6), we employed a Bayesian univariate model
(7) that only uses the single primary ordinal outcome, specified as follows:

Y
(1)
i ∼ Ordinal multinomial(pi), pi = {piy}L1

logit(Y
(1)
i ≥ y) = τ (1)y + θ

(1)
i

θ
(1)
i = X⊤

i m
(1) +Aiβ

(1)
0 +AiX

⊤
i β

(1)

m(1) ∼ MVN(µ = 0,Σ = 2.52Ip×p)

β0 ∼ Normal(µ = 0, σ = 2.5)

β(1) ∼ MVN(µ = 0,Σ = 2.52Ip×p)

τ (1)y ∼ tstudent(df = 3, µ = 0, σ = 8).

(7)

As evaluation metrics for the performance of the models, we consider two criteria:
the proportion of correct decisions (PCD) and the Area Under the Receiver Operating
Characteristic (ROC) curve. The PCD corresponds to the proportion of cases (i =
1, . . . , ñ, and ñ = 2000 is the testing set sample size) with âopt(xi) = aopt(xi), where
âopt(xi) is defined in Equation (5) with threshold δ = 0.5, and the true optimal

ITR aopt(xi) = I(OR < 1), where OR = exp(β
(1)
0 + x⊤

i β
(1)), with β

(1)
0 and β(1)

corresponding to the true values used in the data generation process. Since without
loss of generality, we assume a lower value of the outcome indicates a better health
condition, an OR less than 1 indicates the experimental treatment is better than the
control treatment.

PCD is computed using a decision threshold δ = 0.5 as per Equation (5). Another
evaluation metric is the Area Under the ROC Curve (AUC), which does not rely on the
selection of a specific decision threshold, and accounts for the trade-off between true
positive rate (sensitivity) and false positive rate (1 - specificity) for various decision
thresholds. AUC values range from 0 to 1, with a higher value indicating a better
classification performance [45]. To calculate the AUC, we first evaluate the estimated
TBI as defined in Equation (4) on the test data, and then generate the ROC curve,
considering every unique TBI value as a potential threshold; for each threshold, we
compute âopt(x) according to Equation (5), and compare it with aopt(x) to calculate
the true positive and false positive rates. Then the auc function from the pROC
package [46] is used to compute the AUC.

We present simulation results for various training sample sizes, n ∈
{250, 500, 1000, 2000}, and a fixed test dataset size of 2000. For each n, we conducted
1000 simulations, with each simulation using 2000 HMC iterations for warm-up and
retaining 10000 iterations for inference.The Stan code for the Bayesian multivariate
hierarchical model is provided in Additional file 1.

The plot in Figure 1 presents a comparison of the performance of the multivariate
model (6) and the univariate model (7) based on their PCD and AUC values. The
performance is evaluated across varying training set sizes, represented by the number
of subjects in the training set on the x-axis. The y-axis displays the PCD or AUC
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values, with higher values indicating better model performance. The figure illustrates
that the multivariate model (in orange) generally exhibits higher PCD and AUC values
compared to the univariate model (in blue) across all training set sizes, suggesting that
the proposed multivariate model outperforms its univariate counterpart with respect
to making correct treatment decisions for subjects in the testing set.

Some experts believe that the true optimal ITR should be based on potential out-
comes. In light of this perspective, we also provide a comparison of the performance of
the Bayesian multivariate and univariate models utilizing the new potential outcomes-
based ITR in Additional file 2. Despite the less remarkable improvement in PCD and
AUC, our proposed model (6) still outperforms the univariate model (7).

3.1.2 Sensitivity analysis

Each patient’s individual-level treatment efficacy for a specific outcome can vary, mak-
ing it logical to incorporate random effects into the data generation process. In this
section, we conducted a sensitivity analysis to assess the robustness of the models. To
simulate various study scenarios, we introduce a modified data generation model that
incorporates additional parameters, γi0 and Γi:

θ
(k)
i = X⊤

i m
(k) +Ai(β

(k)
0 + γi0) +AiX

⊤
i (β

(k) + Γi) (8)

The γi0 indicates the random effect associated with treatment, and Γi indicates the
random effect associated with X-by-A interaction. The standard deviation for both
parameters is determined by σ. The true values of the other parameters follow the data
generation process described in Section Simulation setup and performance evaluation.
We considered a range of values for σ ∈ {0.1, 0.2, 0.3}, as well as different training
sample sizes n ∈ {250, 500, 1000, 2000}, with a fixed test dataset size of 2000. For each
set of σ and n, we conducted 1000 simulations. The PCD and AUC are presented in
Figure 2. In the plot, the y-axis represents PCD or AUC, while the x-axis displays
the number of subjects in the training set. The multivariate model (6) consistently
outperforms the univariate model (7). However, when σ = 0.2 and 0.3, the superiority
of the multivariate model becomes less pronounced. This is because the true values of
the main effect of treatment and fixed effect of the interaction term are all ≤ 0.21, and
σ = 0.2 and 0.3 already constitute relatively large values of random individual effects.
Even with such a relatively large σ value, the proposed model (6) still outperforms the
univariate model (7), demonstrating the robustness of our approach. Using the same
setting of sensitivity analysis, we also provide a comparison of the performance of
multivariate model (6) and univariate model (7) utilizing the potential outcomes-based
ITR in Additional file 3.

3.2 Application to data from a COVID-19 randomized clinical
trial

In this section, we apply the proposed Bayesian multivariate model to data from 2341
patients in the COMPILE COVID-19 clinical trial, focusing on the CCP treatment for
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hospitalized COVID-19 patients not on mechanical ventilation at the time of random-
ization [38, 39, 42]. This study collected several mixed types of outcomes, including a
primary outcome and supplementary/secondary outcomes. Park et al. [24] developed
an ITR solely based on the primary outcome using a frequentist method. The current
paper also focuses on the primary outcome. However, the proposed approach reduces
the uncertainty associated with the estimation of heterogeneous treatment effects and
ITRs by jointly modeling the mixed types of outcomes using Bayesian techniques and
“borrowing information” across correlated outcomes.

The primary outcome is the World Health Organization (WHO) 11-point clini-
cal scale, measured at 14 ± 1 day after randomization (hereafter, day 14), assessing
COVID-19 severity with values ranging from 0 (no infection) to 10 (death) [47]. To
“borrow information” we employ binary outcomes collected in the COMPILE study,
such as hospitalization, ventilation or worse, and death at 28 ± 2 days after random-
ization (hereafter, day 28). We used the same set of pre-treatment characteristics as in
the ITR from Park et al. [24], which was selected via extensive cross-validation. The
pre-treatment characteristics are listed below.

• Pre-treatment characteristics in the treatment-by-X interaction effects term: WHO
score at baseline (an ordinal variable represents hospitalized but no oxygen therapy
required, hospitalized with oxygen required via mask or nasal prongs, and hospital-
ized with high-flow oxygen required); WHO score at baseline & Age≥ 67 interaction;
Indicator for blood type A or AB; Indicator for the presence of Cardiovascular
Disease; Indicator for comorbid Diabetes Mellitus & Pulmonary Disease.

• Pre-treatment characteristics in the main effects term: Age (mean (SD) of 60.3
(15.2) years); Sex (35.7% were women); WHO score at baseline; WHO score at
baseline & Age interaction; Indicator for blood type A or AB; Indicator for comor-
bid Diabetes Mellitus & Cardiovascular Disease interaction; Indicator for comorbid
Diabetes Mellitus & Pulmonary Disease interaction; Duration of symptoms before
randomization (a binary variable defined as 0-6 days and ≥ 7 days); Quarter during
which patient was enrolled (a categorical variable that represents Jan-March 2020,
Apr-June 2020, July-Sept 2020, Oct-Dec 2020, and Jan-March 2021); Indicator of
treatment (a binary variable with 1 for CCP treatment, and 0 for control treatment).

Our analysis used complete cases, yielding a final sample of 2287 patients (the
number of patients at different clinical stages of COVID-19 measured on the WHO
11-point scale at day 14 by treatment group is provided in Additional file 4). We
evaluated the performance of the two models: the multivariate outcome model (6) and
the univariate outcome model (7). As it is expected that the main effect of treatment

(β
(k)
0 ) should not vary significantly across different outcomes and interaction effects

(β
(k)
j ) exhibit relatively small variation across outcomes, we employed an informative

prior σβj
∼ exponential(µ = 0.3) on the hierarchical standard deviation parameter

σβj
. In Figure 3, we presented the posterior distributions (medians and 95% CrIs)

of coefficients for treatment and pre-treatment patient characteristics (in terms of
logOR) associated with the TBI for the primary ordinal outcome from both models, (6)
and (7). Table 1 presents the posterior distributions of coefficients for treatment and
pre-treatment characteristics (in terms of logOR) for all ordinal and binary outcomes.
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Figure 3 indicates that the multivariate model offers better precision when esti-
mating coefficients for pre-treatment characteristics and treatment in comparison to
the univariate model, as indicated by narrower 95% CrIs. In the multivariate model,
most of the coefficients’ 95% CrIs do not encompass zero. In contrast, for the uni-
variate model, the 95% CrIs for almost all coefficients include zero. These coefficients
correspond to the logOR associated with the pre-treatment characteristics for the pri-
mary ordinal outcome, and by convention, if a 95% CrI of logOR covers zero, we do
not draw a definitive conclusion regarding whether patients with these pre-treatment
characteristics would benefit more from CCP than from control treatment.

As indicated in Table 1, the findings from the multivariate model are consistent
with the results reported by Park et al. [24]: patients with pre-existing conditions,
such as cardiovascular (posterior median of OR = exp(−0.32) = 0.73), diabetes, and
pulmonary (posterior median of OR = exp(−0.51) = 0.60) diseases, blood type A or
AB (posterior median of OR = exp(−0.37) = 0.69), and those at an early stage of
COVID-19 (indicated by hospitalized but no oxygen therapy required), are expected
to benefit the most from CCP treatment. On the other hand, patients without pre-
existing conditions and those at more advanced stages of COVID-19 might potentially
experience harm (posterior medians of OR = exp(0.54) = 1.72 and OR = exp(0.67) =
1.95). In addition, the proposed Bayesian model provides lower levels of uncertainty
in the estimation of the ORs.

For each patient, the effect of CCP treatment versus control on each outcome, as
measured by OR, is calculated based on the patient’s pre-treatment characteristics
and the posterior distributions of coefficients derived from either the multivariate or
the univariate model. The TBI is subsequently computed in accordance with Equation
(4). Figure 4 presents a side-by-side comparison of the fitted models, illustrating the
relationship between the TBI and the posterior mean of the OR for different outcome
types in COMPILE. The left plot is based on the proposed multivariate model (6), in
which the x-axis represents the TBI. The right plot is based on the univariate model
(7). An odds ratio for CCP efficacy below 1 (dashed grey horizontal lines) indicates a
more favorable outcome with CCP treatment compared to the control treatment, and
the degree of treatment benefit from CCP is monotonically parameterized by the TBI.

A notable observation from Figure 4 is the narrower 95% credible interval of the OR
for the primary ordinal outcome when employing the multivariate model (6), compared
to the univariate model (7). This suggests that the multivariate model incorporates
and reflects richer available information from the multiple outcomes collected in the
trial. Consequently, this improved accuracy may contribute to more informed clinical
decision-making based on a more reliable representation of the relationship between
CCP efficacy and TBI.

We assessed the goodness-of-fit for both the Bayesian multivariate and univariate
models, Models (6) and (7), using posterior predictive checking, a method that evalu-
ates the model’s ability to generate replicated data that closely resembles the observed
data [42, 48–50]. The Bayesian p-value was employed to measure the model’s fit, with
values near 0.5 suggesting a satisfactory fit. A detailed explanation of the procedure
and the results of posterior predictive checking for both the Bayesian multivariate and
univariate models is provided in Additional file 5. The results show that both models
fit the data well.
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Treatment and pre-treatment characteristics Index coefficients (Median [95%CrI])
Univariate model Multivariate model
Primary ordinal outcome Primary ordinal outcome Binary outcome 1 Binary outcome 2 Binary outcome 3

Diabetes & Pulmonary -0.37 [-1.11, 0.37] -0.51 [-1.05, 0.06] -0.51 [-1.10, 0.18] -0.61 [-1.37, 0.00] -0.65 [-1.56, -0.06]
Cardiovascular Disease -0.26 [-0.51, -0.01] -0.32 [-0.51, -0.11] -0.35 [-0.59, -0.11] -0.37 [-0.67, -0.15] -0.37 [-0.68, -0.14]
Blood Type A or AB -0.28 [-0.58, 0.03] -0.37 [-0.62, -0.09] -0.47 [-0.82, -0.19] -0.49 [-0.89, -0.20] -0.43 [-0.78, -0.12]
Oxygen by high flow∗ & Age≥67 0.31 [-0.28, 0.91] 0.41 [-0.01, 0.81] 0.46 [0.03, 0.93] 0.46 [0.03, 0.92] 0.43 [-0.05, 0.87]
Oxygen by mask or nasal prongs∗ & Age≥67 0.12 [-0.22, 0.45] 0.05 [-0.22, 0.31] 0.06 [-0.24, 0.40] -0.02 [-0.42, 0.28] -0.01 [-0.42, 0.29]
Oxygen by high flow∗ 0.24 [-0.31, 0.80] 0.54 [0.12, 0.94] 0.56 [0.12, 1.00] 0.59 [0.15, 1.04] 0.56 [0.11, 1.01]
Oxygen by mask or nasal prongs∗ 0.32 [-0.09, 0.72] 0.67 [0.34, 0.99] 0.75 [0.40, 1.16] 0.75 [0.37, 1.16] 0.71 [0.32, 1.11]
CCP Treatment -0.18 [-0.55, 0.19] -0.39 [-0.68, -0.11] -0.41 [-0.73, -0.10] -0.41 [-0.74, -0.10] -0.44 [-0.8, -0.13]
Note: ∗ The reference level: hospitalized but no oxygen therapy required.
The primary ordinal outcome is the WHO 11-point clinical on day 14.
The supplementary binary outcomes are as follows: (1) hospitalization at day 28, (2) the need for ventilation or worse at day 28, (3) mortality at day 28.

Table 1 The estimated TBI index coefficients (Median [95%CrI]) for treatment and pre-treatment
characteristics (logOR) under univariate and multivariate models

4 Discussion and conclusions

The current study presents a robust framework for jointly modeling correlated mixed
types of health outcomes, which leads to improved precision in estimating heteroge-
neous treatment effects and optimal ITRs. Our proposed Bayesian multivariate model
leverages hierarchical modeling and carefully selected prior distributions to effectively
“borrow information” across outcomes, enhancing the estimation accuracy. Through
extensive simulations, we compared the proposed model to a Bayesian univariate
model, demonstrating that the proposed approach reduces the likelihood of making
erroneous optimal ITRs. In the application to an international COVID-19 treatment
trial, the proposed model exhibited superior precision in estimating coefficients of
treatment and pre-treatment characteristics, as well as in estimating the OR for the
primary ordinal outcome. This enables more informed clinical decision-making and
highlights the practical applicability of our model in real-world settings.

Our study should be interpreted considering two potential limitations. First, the
framework is constrained to situations where the treatment effects and interaction
effects across outcomes are positively correlated and maintain a similar scale. When
these effects are negatively correlated and possess substantially different scales, our
method would need to be adapted to account for such negative associations and dis-
parate scales of effects among outcomes. One potential solution is to use the ideas of
group factor analysis [51, 52] to model both positive and negative relationships among
outcomes by modeling the residuals as linear transformations of latent factors. Second,
the pre-treatment characteristics used for model fitting come from [24], representing
the optimal variable set determined through cross-validation. Although no other vari-
able selection method is used in our study, we assessed the model’s goodness-of-fit
using posterior predictive checking. The results show that our model fits the data well,
suggesting that the direct adoption of pre-treatment characteristics from [24] does
not pose a serious limitation. When there is a definite expectation that specific pre-
treatment characteristics will impact the outcome, those pre-treatment characteristics
should be included in the model. When it’s unclear whether certain pre-treatment
characteristics should be included, data-dependent variable selection methods [53–57]
can be more generally incorporated to potentially improve the current multivariate
model.

To the best of our knowledge, no previous studies have jointly modeled mixed
types of outcomes to develop ITRs. Our translatable framework has the potential to
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efficiently leverage information from multiple health outcomes, making it a valuable
tool for not only developing ITRs for COVID-19 but also for various other diseases.

5 Figures
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Fig. 1 Boxplots of the proportion of correct decisions (PCD) and area under the curve (AUC)
in the test sets, comparing the multivariate (orange) and univariate (blue) models across different
training set sizes (as indicated in the x-axis). Each box shows the interquartile range (IQR), with the
horizontal line inside the box representing the median PCD and AUC value. The whiskers extend to
the minimum and maximum PCD and AUC values within 1.5 times the IQR. Outliers are represented
by small cross symbols.

13

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2024. ; https://doi.org/10.1101/2023.11.17.23298711doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.17.23298711
http://creativecommons.org/licenses/by-nc/4.0/


0.4

0.6

0.8

0.4

0.6

0.8

P
C

D
A

U
C

SD=0.1 SD=0.2 SD=0.3

SD=0.1 SD=0.2 SD=0.3

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Number of Patients

250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

Model Univariate ModelMultivariate Model

Number of Patients

Fig. 2 Boxplots of PCD (upper panel) and AUC (lower panel) in the test sets, comparing the
multivariate (orange) and univariate (blue) models across different training set sizes (as indicated in
the x-axis) and different standard deviations (FSDs) of random effects. Three different levels of SD
for random effects are considered in the data generation process: SD=0.1, SD=0.2, and SD=0.3.
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Fig. 3 Comparison of univariate and multivariate models with respect to posterior distributions of
index coefficients, summarized by the posterior medians and 95% credible intervals, for treatment
and pre-treatment characteristics (logOR) corresponding to the primary ordinal outcome.
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Fig. 4 Posterior distributions of odds ratios (ORs) associated with the treatment benefit index
(TBI) using the multivariate model (left plot) and univariate model (right plot). In each plot, the
solid line represents the posterior mean of OR for the primary ordinal outcome, and the colored band
represents the 95% credible interval (CrI) of this OR. The dashed curves in (a) correspond to the
posterior means of the ORs for three binary outcomes. The supplementary outcomes are as follows:
(1) the binary outcome of hospitalization at day 28, (2) the binary outcome of ventilation or worse
at day 28, and (3) the binary outcome of mortality at day 28. The loess smoothing method is applied
to illustrate the overall trends. Rug plots at the bottom of each plot represent the data density along
the x-axis. An odds ratio for COVID-19 convalescent plasma (CCP) efficacy below 1 (dashed grey
horizontal line) indicates a more favorable outcome with CCP treatment compared to the control
treatment.
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