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Abstract 92 words 32 

Seroprevalence studies are the gold standard for disease surveillance, and serology was used to 33 

determine eligibility for the first licensed dengue vaccine. However, expanding flavivirus 34 

endemicity, co-circulation, and vaccination complicate serology results. Among 713 healthy 35 

Cambodian children, a commonly used indirect dengue virus IgG ELISA (PanBio) had a lower 36 

specificity than previously reported (94% vs. 100%). Of those with false positive PanBio results, 37 

46% had detectable neutralizing antibodies against other flaviviruses, with the highest frequency 38 

against West Nile virus (WNV). Immunity to non-dengue flaviviruses can impact dengue 39 

surveillance and potentially pre-vaccine screening efforts. 40 

 41 

Manuscript: 1,696 words  42 

Background 43 

The genus Orthoflavivirus includes multiple pathogenic mosquito-borne viruses including 44 

dengue viruses 1-4 (DENV1-4), Japanese encephalitis virus (JEV), West Nile virus (WNV), Zika 45 

virus (ZIKV) and yellow fever virus (YFV) [1]. With expanding vector habitats, known 46 

flaviviruses are rising in global incidence, and novel flaviviruses are emerging [2, 3]. These 47 

flaviviruses commonly co-circulate, and the antibodies induced by one exposure may cross-react 48 

with others in the genus [4]. Additionally, affected areas use vaccines to protect against JEV and 49 

YFV, further complicating serology. As flaviviruses expand their range and vaccination 50 

increases, differentiating true exposure from cross-reactivity is not only difficult, but also 51 

increasingly important to guide diagnostic, preventative, and therapeutic measures.  52 

 53 
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Accurately characterizing population level immunity to DENV is important for current dengue 54 

vaccination efforts. Dengvaxia (Sanofi Pasteur), the first widely approved dengue vaccine, was 55 

originally recommended in 2016 by the World Health Organization (WHO) Strategic Advisory 56 

Group of Experts (SAGE) panel for use in areas with ≥70% DENV seroprevalence in children 57 

age 9 and older, with seroprevalence most often measured using common IgG ELISAs [5]. When 58 

it was later shown that Dengvaxia increases the risk of severe disease in DENV-naïve 59 

individuals, the WHO recommended use of highly specific individual-level testing of DENV 60 

immunity to confirm vaccine eligibility, as well as use in high-risk populations in endemic areas 61 

[6][7]. The World Health Organization has since recommended that the second licensed dengue 62 

vaccine QDENGA (Takeda) be introduced to children aged 6 to 16 years, also in highly endemic 63 

areas [8]. Given the lack of observed vaccine-induced protection against DENV3 in seronegative 64 

individuals and the unknown protection against DENV4 [9], a strategy based on population-level 65 

estimates of endemicity has the potential to increase disease risk for seronegative individuals. 66 

 67 

Population-level serosurveys for DENV conducted for surveillance purposes generally use 68 

commercial IgG ELISAs. The plaque reduction neutralization test (PRNT), which measures 69 

neutralizing antibodies (nAbs) to DENV, is considered the gold standard for evaluating 70 

specificity but requires intensive and specialized labor. The PanBio indirect DENV IgG ELISA 71 

(Abbott, Brisbane, QLD, Australia) is one of the most commonly used assays for measuring 72 

DENV immunity, and the manufacturer reports 100% specificity based on 108 DENV-naïve 73 

individuals from endemic areas [10]. Separate work demonstrated 99% specificity of this ELISA 74 

using DENV1-4 PRNT50≥10 as the standard for DENV immunity in a cohort of 534 individuals 75 

from both the USA and dengue-endemic regions before 2016 [11]. However, the PanBio indirect 76 
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DENV IgG ELISA yields higher false positivity rates when evaluated with individuals positive 77 

to other flaviviruses, including those who had received an inactivated JEV vaccine (3%), or had 78 

immunity against ZIKV (34%) or WNV (51%) [11]. The degree to which immunity to other 79 

flaviviruses affects DENV serosurveys is dependent on the site, and a major challenge is that the 80 

extent of circulation of other flaviviruses is often unknown.  For instance, an observational study 81 

of children aged 9-14 years in the Philippines in 2017 used a PRNT70≥40 as the indicator of 82 

DENV immunity and reported a relatively low ELISA specificity, of 93.4%. Of the false positive 83 

samples, 64% had nAb against ZIKV or JEV, in a region where ZIKV was not thought to be 84 

widespread. Thus, although the PanBio ELISA has a reportedly high specificity, this number 85 

may vary with flavivirus cross-reactivity and expanding co-circulation or vaccination.  86 

 87 

Here, we examine the performance of the PanBio ELISA in young children in Cambodia, a 88 

highly dengue-endemic area.  ZIKV was recently found to co-circulate in the area, and JEV is 89 

endemic. JEV vaccination campaigns with a live-attenuated JEV vaccine SA14-14-2 started 90 

around 2014, and WNV nAb have been identified in birds but not humans [12-15]. 91 

 92 

 93 

Methods 94 

The study protocol was approved by the institutional review boards at the US National Institutes 95 

of Health and the National Ethics Committee on Human Research in Cambodia. The guardians 96 

of all pediatric participants provided signed informed consent to participate in the study. 97 

Between July and August of 2018, 771 children aged 2-9 years living in Kampong Speu, 98 

Cambodia were enrolled in a prospective longitudinal cohort (NCT03534245) [16]. At entry, the 99 
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PanBio indirect DENV IgG ELISA was performed on sera from 770 individuals. For the 273 100 

participants with ELISA values >1.1 (defined as DENV positive by the manufacturer), PRNTs 101 

were performed using clinical isolates of DENV1-4 [17]. All PRNTs were performed on Vero 102 

cells, as described previously, starting at a serum dilution of 1:5 followed by the addition of an 103 

equal volume of virus. Thus, the lower limit of detection was a dilution of 1:10 [18]. The nAb 104 

titer was defined as the reciprocal of the calculated dilution wherein virus infectivity was reduced 105 

by 50% (PRNT50). PRNT50≥1:10 (reported as PRNT50≥10) against any DENV serotype was 106 

considered immune to that serotype. To assess for non-dengue flavivirus nAbs, PRNTs were 107 

performed using the following strains: ZIKV-PARAIBA/2015, a chimeric vaccine candidate, 108 

WNV/DEN4∆30 [19], and JEV vaccine strain SA14-14-2 (Figure 1A-B). Consistent with prior 109 

classifications, seropositivity to any non-dengue flavivirus was defined as PRNT50≥10 [20-22]. 110 

Statistical comparisons were done in RStudio for macOS (2022.07.1, Build 554) using tidyverse 111 

and gtsummary packages. Heatmaps were generated in PRISM (v.9 for macOS).  112 

 113 

Results 114 

Of the 770 individuals, n=440 had ELISA<0.2 and were considered DENV naïve per work 115 

confirming a strong correlation between ELISA<0.2 and negative PRNT [23]. Fifty-seven 116 

individuals were excluded: 44 had ELISA values between 0.2-0.9 without a confirmatory PRNT 117 

and 13 had ELISA values between 0.9-1.1, which the manufacturer considers equivocal 118 

immunity. Of the 273 individuals with ELISA>1.1, n=28 were DENV negative by PRNT (‘false 119 

positive’), n=245 were DENV positive (‘immune’), and there were no false negatives, resulting 120 

in a 100% sensitivity and 94% specificity of the ELISA assay. Comparison of the naïve, false 121 

positive, and immune groups revealed that both the mean age and ELISA value of the false 122 
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positive group fell between those of the naïve and immune groups (p<0.001, Table 1A). Over the 123 

two years of surveillance, there were few PCR-confirmed cases of symptomatic dengue (n=46) 124 

with no differences in frequency among groups (p=0.7).   125 

 126 

We hypothesized that the discordance between the DENV ELISA IgG and PRNT results could 127 

be due to cross-reactivitiy against non-dengue flaviviruses. To test this, we compared the 128 

frequencies of nAbs against JEV, ZIKV, and WNV in the false positive individuals versus n=50 129 

randomly chosen naïve individuals (Figure 1A-B). Consistent with prior classifications, 130 

seropositivity was defined as PRNT50≥10 [20-22]. Overall, 46% of the false positive group had 131 

PRNT50≥10 against ≥1 other flavivirus versus 20% of the naive group (p=0.020, Table 1B). 132 

Although the false positive group had higher percentages of individuals with positive JEV and 133 

ZIKV nAbs, only WNV nAbs were significantly more common than in the naïve group (0% vs. 134 

25%, p<0.001). To further assess these trends, we tested n=21 individuals with DENV 135 

ELISA>1.1 and DENV PRNT between 10-20 (Figure 1). This group has low DENV nAbs and 136 

has been considered DENV negative in other work [16, 23]. When compared to the false positive 137 

group, the low DENV nAb group had similar frequencies of JEV, ZIKV, and WNV nAb (p≥0.4 138 

for all three nAbs, Table 1B). Thus, immunity to other flaviviruses may contribute to high 139 

ELISA values in individuals with undetectable and low DENV nAbs.  140 

 141 

To help identify the primary exposure in the 13 individuals with PRNT50≥10 against ≥2 142 

flaviviruses, PRNT90 titers were calculated [4]. Of these, n=4 had PRNT90<10 against all 4 143 

flaviviruses, and n=3 had PRNT90≥10 to multiple flaviviruses: n=2 to JEV and WNV, n=1 to 144 

JEV, WNV, and ZIKV (Figure 1C-D). Six individuals had PRNT90≥10 against only 1 flavivirus: 145 
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n=1 to ZIKV, n=3 to JEV, and n=2 to WNV. Of the two individuals with PRNT90≥10 against 146 

WNV only, one had received a JEV vaccine and had a PRNT50≥10 against JEV and one had 147 

PRNT50≥10 against ZIKV. While the PRNT90≥10 against WNV only suggests a primary WNV 148 

infection, it is possible that JEV vaccination and ZIKV primary exposure induced highly cross-149 

reactive WNV nAb [24]. There were also two individuals with low DENV nAb and PRNT50≥10 150 

against WNV only. Although these individuals did not have PRNT90≥10 against DENV or 151 

WNV, one had WNV titer that was 2-fold higher than DENV titer. Again, this finding is 152 

suggestive of primary WNV infection, but cross-reactivity after DENV exposure cannot be ruled 153 

out.  Regardless of the WNV nAb source, this immunity was common and likely central to the 154 

decreased ELISA specificity observed.   155 

 156 

Discussion 157 

We found that the PanBio DENV indirect IgG ELISA has a lower specificity than reported in 158 

prior studies. This discrepancy may be partially explained by the assay’s detection of WNV nAb 159 

with potential contributions by ZIKV and JEV nAb. Notably, JEV vaccination can induce WNV 160 

cross-reactivity [25], and it is possible that the WNV nAb were induced by JEV vaccination or 161 

infection. Alternatively, the WNV nAbs may represent true WNV exposure, underlining the need 162 

for ongoing vigilance for WNV circulation in humans in Cambodia. Additionally, half of the 163 

false positive results remained unexplained, potentially due to waning immunity or infection by 164 

unidentified flaviviruses.   165 

 166 

Clinicians, investigators, and public health authorities should be aware that expanding flavivirus 167 

co-circulation and vaccination could increasingly impact serology results. Serosurveys conducted 168 
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for vaccination campaigns to identify populations where dengue is endemic may overestimate 169 

dengue burden as a result of false positivity due to infection or vaccination with other 170 

flaviviruses.  Such population-based strategies are of particular concern when identifying target 171 

populations for dengue vaccines where safety in DENV seronegative individuals has not yet 172 

been confirmed. Adverse events in these individuals could greatly impact vaccine trust and 173 

uptake, as occurred with Dengvaxia [26]. For vaccines that are known to be unsafe in 174 

seronegative individuals like Dengvaxia, pre-vaccination screening is required to determine 175 

vaccine eligibility, which allows individuals to make informed decisions about their own vaccine 176 

risk and benefit.  It is recommended that past infection be confirmed either by virological assay 177 

or by two specific serological assays, such as the anti-DENV1-4 NS1 ELISA IgG and a IgG 178 

rapid test [7].  Evaluation of false positivity due to infection with other emerging flaviviruses is 179 

critical to ensuring the safety of this screening approach.  180 

 181 

Overall, our study demonstrates that the PanBio IgG ELISA and even PRNT results should be 182 

interpreted with caution in areas with flavivirus co-circulation and vaccines, and multiple tests 183 

may be required to confirm DENV seroprevalence.  184 

 185 

 186 

 187 

  188 
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189 

Figure 1. Neutralizing antibody titers against DENV, JEV, WNV, ZIKV in individuals who 190 

were false positive (ELISA>1.1, DENV PRNT50<10), naïve (ELISA<0.2), or had low DENV 191 

nAb (ELISA>1.1, DENV PRNT50 of 10-20) as measured by PRNT50 (A-B) and PRNT90 titers 192 

(C-D). PRNT90 titers were only measured in those with nAb against ≥2 non-dengue flaviviruses.  193 

 194 
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Table 1. Characteristics and immune profiles of individuals who were naïve (ELISA<0.2), false 201 

positive (ELISA>1.1, PRNT50<10), or DENV immune (ELISA>1.1, PRNT50≥10). The presence 202 

of neutralizing antibodies against non-dengue flaviviruses were compared in the naïve and false 203 

positive groups and between the false positive and the low DENV immune group (ELISA>1.1, 204 

PRNT50 10-20). 205 

A. Cohort characteristics 206 

Characteristics Naïve 

(n=440)* 

False positive 

(n=28) 

Immune (n=245) p-value† 

Age 4.9 (2.0) 6.0 (2.2) 6.8 (2.2) <0.001 

Sex    0.2 

   Female 230 (52) 10 (36) 126 (51)  

   Male 210 (48) 18 (64) 119 (49)  

ELISA IgG value 0.03 (0.04) 2.00 (0.72) 2.92 (0.84) <0.001 

Dengue case    0.7 

   No dengue 321 (91) 22 (92) 156 (93)  

   Symptomatic 

dengue 

32 (9) 2 (8) 12 (7)  

   Unknown‡ 87 4 77  

 207 

B. Immunity subset analysis 208 

Immunity 

profile  

Naïve 

(n=50) 

p-value§ False positive 

(n=28) 

p-value¶ Low DENV nAb 

(n=21) 

JEV nAb  0.058  0.4  
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    Negative 41 (82)  17 (61)  16 (76) 

    Positive 9 (18)  11 (39)  5 (24) 

ZIKV nAb  0.3  0.4  

    Negative 48 (96)  25 (89)  17 (81) 

    Positive 2 (4)  3 (11)  4 (19) 

WNV nAb  <0.001  0.5  

    Negative 50 (100)  21 (75)  14 (67) 

    Positive 0 (0)  7 (25)  7 (33) 

≥1 Flavivirus 

positive 

10 (20) 0.020 13 (46) >0.9 10 (48) 

≥2 Flavivirus 

positive 

1 (2) 0.003 7 (25) >0.9 5 (24) 

 209 

*Mean (SD) or no. (%) 210 

†One-way ANOVA, Pearson’s Chi-squared test; Fisher’s exact test  211 

‡Unknown indicates that participant was lost to follow-up prior to final study visit at 24 months  212 

§Fisher’s exact test comparing naïve vs. false positive group.  213 

¶Fisher’s exact test comparing false positive group vs. low DENV nAb group.  214 

Dengue virus, DENV; Japanese encephalitis virus, JEV; neutralizing antibodies, nAb; West Nile 215 

virus, WNV; Zika virus, ZIKV 216 

 217 

  218 
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