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Abstract 18 

Background: Deep learning models showed great success and potential when applied to many 19 

biomedical problems. However, the accuracy of deep learning models for many disease 20 

prediction problems is affected by time-varying covariates, rare incidence, and covariate 21 

imbalance when using structured electronic health records data. The situation is further 22 

exasperated when predicting the risk of one disease on condition of another disease, such as the 23 

hepatocellular carcinoma risk among patients with nonalcoholic fatty liver disease due to slow, 24 

chronic progression, the scarce of data with both disease conditions and the sex bias of the 25 

diseases. 26 

Objective: The goal of this study is to investigate the extent to which time-varying covariates, 27 

rare incidence, and covariate imbalance influence deep learning performance, and then devised 28 

strategies to tackle these challenges. These strategies were applied to improve hepatocellular 29 

carcinoma risk prediction among patients with nonalcoholic fatty liver disease. 30 

Methods: We evaluated two representative deep learning models in the task of predicting the 31 

occurrence of hepatocellular carcinoma in a cohort of patients with nonalcoholic fatty liver 32 

disease (n = 220,838) from a national EHR database.  The disease prediction task was carefully 33 

formulated as a classification problem while taking censorship and the length of follow-up into 34 

consideration.  35 

Results: We developed a novel backward masking scheme to evaluate how the length of 36 

longitudinal information after the index date affects disease prediction. We observed that 37 

modeling time-varying covariates improved the performance of the algorithms and transfer 38 

learning mitigated reduced performance caused by the lack of data. In addition, covariate 39 

imbalance, such as sex bias in data impaired performance. Deep learning models trained on one 40 
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sex and evaluated in the other sex showed reduced performance, indicating the importance of 41 

assessing covariate imbalance while preparing data for model training. 42 

Conclusions: Devising proper strategies to address challenges from time-varying covariates, 43 

lack of data, and covariate imbalance can be key to counteracting data bias and accurately 44 

predicting disease occurrence using deep learning models. The novel strategies developed in this 45 

work can significantly improve the performance of hepatocellular carcinoma risk prediction 46 

among patients with nonalcoholic fatty liver disease. Furthermore, our novel strategies can be 47 

generalized to apply to other disease risk predictions using structured electronic health records, 48 

especially for disease risks on condition of another disease. 49 

 50 

Keywords: deep learning, electronic health records, sex bias, hepatocellular carcinoma, 51 

nonalcoholic fatty liver disease 52 
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Introduction 54 

Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer in 55 

adults and one of the leading causes of cancer-related deaths worldwide [1, 2]. Besides the well-56 

known risk factors associated with HCC, e.g., hepatitis C, hepatitis B and alcoholic cirrhosis, 57 

nonalcoholic fatty liver disease (NAFLD) has also been linked to HCC in the United States and 58 

worldwide [3]. The previous analysis identified non-alcoholic steatohepatitis accounting for the 59 

underlying etiology in a small-scale analysis [4] and recognized sex as an important factor. 60 

However, these previous studies were relatively small with very limited number of patients who 61 

developed HCC after diagnosis of the liver diseases.  62 

The extensive deployment of electronic health records (EHR) systems in the United States has 63 

accumulated vast amounts of patient medical history data [5]. Meanwhile, artificial intelligence, 64 

especially deep learning has shown great promise in clinical informatics research at large scale. 65 

Various deep learning approaches have been employed to predict HCC risk using clinical data. 66 

Ioannou et al. [6] applied Recurrent Neural Network to predict the HCC development among 67 

patients with hepatitis C virus–related cirrhosis in the national Veterans Health Administration 68 

database. Similarly, researchers also employed Convolutional Neural Network-based models to 69 

predict HCC development among viral hepatitis patients and patients with cirrhosis [7, 8]. These 70 

studies showed deep learning methods can achieve superior performance over the conventional 71 

regression models but none of them applied deep learning for predicting HCC development in 72 

patients with NAFLD [9-11]. Therefore, applying the latest deep learning approaches to analyze 73 

EHR data from large cohorts of patients for accurate assessment of the risk of developing HCC 74 

in patients with NAFLD is desirable. 75 
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Machine learning models [12, 13], and more recently, deep learning models [14-16], are used 76 

for disease prediction on structured data from EHR. Despite their great promise and 77 

improvement in performance, several inherent data challenges persist in applying deep learning-78 

based approaches for disease risk prediction. For example, censoring occurs when certain data 79 

points within a study are either incomplete or unknown due to factors such as being outside the 80 

study's time frame or scope, or other limitations. Censored data is very common in clinical, 81 

especially EHR-based research, because many patients will lose follow-up during the entire time 82 

frame of the clinical event of interest [17-19]. Current deep learning models often do not account 83 

for censoring in time-to-event data or have ad hoc design [19]. However, not properly accounting 84 

for censorship would lead to biased estimates of disease risk [20]. To utilize well-established 85 

machine learning algorithms for classification while handling censorship in time-to-event data, 86 

Craig et al. [21, 22] proposed to stack the features and outcomes of survival data at each 87 

timepoint into a single large table where the event time is cast as an additional covariate. 88 

However, this approach would lead to significant computing challenge for large datasets that are 89 

very common in EHR data. Additionally, the slow, chronic progression of diseases poses another 90 

challenge for disease risk prediction, as delayed diagnosis makes it difficult to predict future 91 

disease [23].  Time-varying covariates contain longitudinal information that could be important 92 

in disease risk prediction but have not been thoroughly evaluated while applying deep learning-93 

based approaches [24-26]. Furthermore, deep learning-based approaches rely on large amounts 94 

of data for good performance, but predicting the risk of a disease in the context of another pre-95 

existing disease typically results in small cohorts, as patients must satisfy the selection criteria 96 

for both diseases. To tackle this issue of data insufficiency, clinical concepts embeddings 97 

generated from a large EHR dataset were imported as initial embeddings based on other disease 98 
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prediction tasks [27]. A transformer-based model was pretrained by masked language modeling 99 

on a large EHR database and can be finetuned to downstream tasks with small sample sizes [28]. 100 

However, the improvement of using these pretrained embeddings or models depends largely on 101 

the relatedness of the learning task and data during the pretraining stage and could be limited if 102 

the training data is dissimilar to the target data [29]. Besides these methodologic considerations, 103 

accurate predictions from machine learning models also strongly depend on the quality of input 104 

features and the training set [30]. Machine learning models may generate inferior or unreliable 105 

predictions if the unlabeled samples have dissimilar characteristics compared with the training 106 

set.  107 

In this study, we investigate the impact of these challenges on performance of deep learning 108 

models in predicting disease risks from structured EHR data. We focus on hepatocellular 109 

carcinoma (HCC), one of the most common types of primary liver cancer in adults and one of the 110 

leading causes of cancer-related deaths worldwide [1, 2]. We predicted HCC risk among a large 111 

retrospective cohort of NAFLD patients (47% male and 53% female) from an EHR database 112 

containing records for over 68 million patients in the U.S. We formulated disease prediction as a 113 

classification problem while accounting for censoring and developed a novel approach to address 114 

delayed diagnosis by masking data before the diagnosis of disease. Our results demonstrate that 115 

time-varying covariate is a key factor influencing predictive performance. In addition, we 116 

established a new transfer learning paradigm for deep learning-based disease prediction on EHR 117 

data. Finally, we evaluated the impact of sex bias on deep learning performance and identified 118 

sex-specific features for HCC progression. Our study offers several key contributions. Firstly, we 119 

propose new approaches to preprocess event-to-event data from electronic health records 120 

(EHRs), which can improve the accuracy of downstream machine learning models. Secondly, we 121 
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identify biases in EHR data that were previously overlooked or neglected, highlighting the 122 

importance of careful data preprocessing in medical research. Finally, we propose a novel 123 

strategy, backward masking, to deal with the issue of delayed diagnosis which is very common in 124 

EHR data analysis. Given the abundance of existing machine learning models and the vast 125 

amounts of EHR data available, we believe that addressing the challenges associated with 126 

applying machine learning to EHRs has broader implications for related fields as well. 127 

 128 

Methods 129 

Study Cohorts 130 

The data in this study were extracted from the Cerner Health FactsÒ database, which contains 131 

deidentified EHR data for more than 68 million patients for the years 2000 to 2017. We extracted 132 

all encounter records for patients who satisfied the inclusion and exclusion criteria for each 133 

patient set described below. These encounter records contain data about demographics, 134 

diagnoses, medications, lab tests, and clinical events. Since Cerner Health FactsÒ used both 135 

International Classification of Diseases version 9 and version 10 for patient diagnoses, we 136 

standardized the medical codes by converting all version 9 codes to version 10 codes. We used 137 

the generic name for medications, and we used LOINC codes for lab tests and clinical events. 138 
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Using the Cerner Health FactsÒ database, we created a set of patients with NAFLD and a case-139 

control set. Figure 1 shows the study flowchart. 140 

 141 

NAFLD cohort. Patients in this cohort had at least two abnormal alanine aminotransferase 142 

values over a > 6-month period [31]. Abnormal alanine aminotransferase values exceed 40 143 

IU/mL for men and 31 IU/mL for women. We defined the date of the first abnormal alanine 144 

aminotransferase test as the index date. Patients who were younger than 18 years old on the 145 

index date were excluded. To preserve sufficient follow-up and quality of the included data, we 146 

followed the inclusion and exclusion criteria used by Kanwal et al [31], and we thus excluded 147 

those patients with less than 5 years of data in the Cerner Health FactsÒ database after the index 148 

 

Figure 1. Study flowchart. We only show the backward masking of 0.5 year here for the purpose of 

illustration. Propensity score matching was conducted for all periods of backward masking. 
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(over 68 Million Patients)
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date of NAFLD. Since the data is used to evaluate both baseline and deep learning methods, any 149 

bias introduced by this exclusion criteria will have minimal impact on our method evaluation and 150 

is outweighed by the benefit of resulting high quality data as demonstrated by many studies [31-151 

34]. We excluded patients with hepatitis B or hepatitis C virus to eliminate the impact of these 152 

well-known risk factors for HCC. Finally, we excluded patients with a history of alcoholism or 153 

chronic hepatitis before the index date (Figure 1).  154 

 155 

Case-control patient set. To increase the size of the NAFLD cohort for training a deep learning 156 

model to perform HCC prediction, we extracted all patients with HCC from the Cerner Health 157 

FactsÒ dataset and added a set of healthy patients as matched controls who were at least 18 years 158 

old at the first encounter and had not been diagnosed with NAFLD. A matching control patient 159 

was randomly sampled for each HCC patient at a ratio of 10:1 based on gender, age at the first 160 

encounter, and duration from the first to the last encounter (Figure 1). 161 

The characteristics of the NAFLD cohort and the case-control set are summarized in Table 1. 162 

Table 1. Summary characteristics of patient sets. 163 

Patient set # of 
patients 

# of HCC 
patients 

# of male 
patients 

# of female 
patients 

Avg. # of 
encounters per 

patient 

Avg. # of codes in 
an encounter 

Case-control set 57,691 8,702 28,881 28,810 24.14 8.77 

NAFLD cohort 220,838 272 88,637 132,201 56.58 10.46 

 164 

Study design 165 

Deep learning models are usually designed for classification, and often do not account for 166 

censoring. We are interested in applying state-of-the-art deep learning models designed for 167 

classification to identify risk factors, rather than to estimate absolute risk precisely. However, not 168 
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properly accounting for censorship can lead to biased estimates of disease risk [20].  Therefore, 169 

we carefully formulated disease prediction as a classification problem while considering 170 

censorship and the length of follow-up [22, 35].  171 

We defined the event as the occurrence of HCC within 10 years after the index date using four 172 

individual patients as examples (Figure 2). Patients lost to follow-up for any reason, including 173 

death, were considered right-censored. We selected and labeled patients as shown in Figure 2. 174 

Patients who developed HCC after 10 years after index date were labeled as negative (Patient 1); 175 

those who did not develop HCC after the index date and were still in the Cerner Health FactsÒ 176 

database more than 10 years after the index date were also labeled as negative (Patient 2); the 177 

remaining patients were labeled as positive if they developed HCC within 10 years after index 178 

date (Patient 3); and all other patients were excluded (Patient 4). This last group of patients 179 

includes those who did not develop HCC but had less than 10 years of follow-up after the index 180 

date. Since there is insufficient information about whether these patients had developed HCC 181 

within 10 years of the index date, they do not have clear labels about their disease status at this 182 

time point, and they are thus not informative [17]. Under our criteria, patients who developed 183 

HCC before NAFLD were excluded, because we are interested in progression from NAFLD to 184 

HCC. Moreover, patients who developed HCC within 2 years after the index date were also 185 

excluded, since we focused on progression from NAFLD to HCC. If HCC is developed too 186 

quickly after NAFLD diagnosis, that means the patient might have HCC at the time NAFLD was 187 

diagnosed. This exclusion criterion might help the deep learning model pick up more meaningful 188 

predictive features for HCC prediction. Hence, the classification task for deep learning models is 189 

to estimate whether a patient with NAFLD will develop HCC within 10 years.  190 
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After the labeling process and backward masking (described below), we conducted propensity 191 

score matching to balance the ratio of positive and negative samples using the “MatchIt” R 192 

package. Features for conducting propensity score matching contain the mean and standard 193 

deviation of the time intervals among two successive encounters and the number of encounters 194 

for a patient. For each positive sample, we selected one control by performing greedy nearest-195 

neighbor matching (Figure 1). The Figure S1 shows the distribution of negative samples is 196 

closer to the positive samples after propensity score matching. 197 

 198 

Deep learning models and features 199 

We used the two most representative deep learning models for our study: RETAIN is a 200 

classification-based model [24] and DeepHit is a deep survival model [25, 26]. RETAIN is a 201 

recurrent neural network-based model that uses an attention mechanism [24]. The gated recurrent 202 

 

Figure 2. Study design. Formulation of disease prediction as a classification problem while 

accounting for censoring. Patients were included only if they had at least one year of medical 

history (dashed line at left) in the database. Samples were filtered and labeled as shown.  
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unit inside RETAIN can efficiently use longitudinal medical information to predict disease 203 

progression. Meanwhile, a two-level attention module on top of the gated recurrent unit layers 204 

can generate the contribution weights of each feature (medical code) to the final prediction. 205 

Specifically, RETAIN first represents each medical code that is recorded in an encounter with a 206 

fixed-size, randomly initialized vector. All medical codes in an encounter are summed together 207 

to represent this encounter. Next, two gated recurrent unit layers with attention are used to 208 

generate the encounter-level and variable-level attention weights by the softmax function and 209 

hyperbolic tangent function, respectively. Finally, RETAIN represents each patient as a context 210 

vector that is a summation of all encounters, weighted by encounter-level and variable-level 211 

attention. Additionally, to mimic clinical practice, RETAIN takes the input of the EHR data in a 212 

reverse chronological order so that the model pays more attention to more recent encounters. A 213 

fully connected layer with the softmax activation function is used to calculate the final 214 

probability of the class labels, in this study HCC or no HCC. Figure S2 shows the overview of 215 

RETAIN model. The input of RETAIN model contains the following features in all the included 216 

encounters: demographic (age, gender, race, and marital status), diagnosis codes (ICD 9 and ICD 217 

10 code), medications in the format of the generic medication name, lab test and clinical event 218 

(LOINC code).  219 

Besides RETAIN, we also used a deep learning survival model, DeepHit [25, 26], to predict 220 

survival times while taking into account the competing risk of death. DeepHit uses the baseline 221 

information of the index date and employed a deep neural network to learn the relationship 222 

between the input variables and the distribution of the survival times. Furthermore, DeepHit can 223 

handle the competing risk by incorporating cause-specific sub-networks for each event and a 224 

shared sub-network to learn the feature representations. The loss function in DeepHit includes 225 



the log-likelihood of the joint distribution of the first hitting time and corresponding event. 226 

Contrary to our application of RETAIN, we did not pre-process input data for censoring here 227 

because DeepHit handles censorship explicitly. However, while RETAIN uses the full 228 

longitudinal information of each patient for disease prediction, DeepHit only uses baseline 229 

information at the time of diagnosis of NAFLD. The complete list of baseline features is shown 230 

in Table S1 in Supplementary Materials. Since DeepHit predicted the risk of HCC at each time 231 

point after the index date, to compare DeepHit to RETAIN, we transformed DeepHit outputs into 232 

the risk probability for HCC at 10 years after the index date. The Area Under the Receiver 233 

Operating Characteristic Curve (AUC) was the evaluation metric to benchmark these two 234 

methods [24, 36]. DeepHit and RETAIN are representative of two main categories of deep 235 

learning-based methods for disease prediction on EHR data: classification-based models that can 236 

use time-varying covariates to achieve more accurate predictions but do not properly account for 237 

censorship, which would lead to biased estimates of disease risk; deep survival models handle 238 

censorship properly but lack the capability to utilize time-varying covariates. In this analysis, we 239 

are not directly comparing DeepHit and RETAIN, but rather exploring whether modeling time-240 

varying covariates with an unknown time-dependent function can lead to more accurate 241 

predictions.  242 

 243 

Backward masking 244 

Due to the slow progression of HCC, some telltale signs and symptoms may be recorded in the 245 

medical record before a formal diagnosis code is recorded. However, we are interested in 246 

identifying risk factors, not well-known signs and symptoms of HCC. To mitigate the impact of 247 

delayed diagnosis, we trained multiple models by masking various lengths of medical history 248 



backward from the date of HCC diagnosis (Figure 3). This masking led to four subgroups, in 249 

which patient encounters within 0.5, 1, 2, or 4 years before HCC diagnosis or censoring are 250 

masked. We varied the masking length to evaluate how the duration of longitudinal information 251 

after the index date affects disease prediction. By masking different lengths of medical history of 252 

each patient in the NAFLD-to-HCC dataset, we obtained the training and testing data for each 253 

masking group to finetune and evaluate the model using five-fold cross validation. 254 

 255 

Transfer learning 256 

As shown in Table 1, there are only 272 HCC patients in the NAFLD cohort. Since a typical 257 

deep learning model like RETAIN contains many learnable parameters, this sample would be 258 

 

Figure 3. An example of masking various lengths of medical history backward from the date of 

HCC diagnosis or censoring. For HCC patients (Patient #1 and #3 in Figure 2), the end point is 

the date of HCC diagnosis. For censored patient without HCC (Patient #2 in Figure 2), the end 

point is the date of censoring, i.e. the last patient encounter in EHR. Patient #4 in Figure 2 was 

excluded. 
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inadequate for finding an acceptable solution in such a large parameter space. A common 259 

approach for circumventing small sample sizes in EHR data is to use a general-purpose 260 

pretrained model, and fine-tune the embedding layers of the network on the target dataset [13, 261 

36]. In this study, we pretrained the whole model on a related prediction task for which a large 262 

dataset is available for training [27, 37, 38]. Specifically, we trained the deep learning on the 263 

larger case-control set, so that the model learns to recognize general patterns such as early 264 

symptoms and complications of HCC development. We then used this pretrained model and fine-265 

tuned it on the NAFLD cohort, and we used cross-validation to evaluate the model’s 266 

performance in predicting HCC among NAFLD patients. We used the same dictionary of 267 

medical codes and model architecture during pretraining and finetuning. 268 

 269 

Aggregated attention scores 270 

The attention scores outputted by the RETAIN model were employed to identify which factors 271 

contribute more to the prediction of HCC. Specifically, since RETAIN model output the 272 

attention scores for each code in all encounters and patients, we first calculated the mean of the 273 

attention score of each medical code across encounters for each patient to obtain the code-level 274 

importance score for this specific patient. Then we averaged the mean values of each code across 275 

different patients to obtain the importance value of each medical code within the cohort. Finally, 276 

we ranked the risk factors and protective factors by their cohort-level importance value and 277 

excluded medical codes observed in fewer than 10 patients. We applied this procedure to both 278 

male and female patients and identified sex-specific features for HCC progression. 279 

 280 

Results 281 



Formulating disease prediction as a classification problem 282 

We compared the performance of two state-of-the-art deep learning algorithms for disease 283 

prediction: DeepHit and RETAIN. DeepHit incorporates a statistically rigorous competing risk 284 

model for fitting time-to-event data, while RETAIN is designed only for classification without 285 

consideration for censoring. However, DeepHit only considers covariate values at baseline, 286 

whereas RETAIN tracks changes in covariates across time. Since we are particularly interested 287 

in identifying risk factors and protective factors, rather than estimating absolute disease risk, we 288 

formulated disease prediction as a classification problem at a specified time point while 289 

accounting for censoring (Methods, Figure 2). We showed with Monte Carlo simulations that 290 

analyzing time-to-event data as a classification problem in this way allows us to identify risk 291 

factors reliably with strong control of type I error (Supplementary Figure S3-5). 292 

 293 

Modeling time-varying covariate improves disease prediction 294 

We evaluated the predictive performance of RETAIN and DeepHit by five-fold cross-validation. 295 

Overall, RETAIN achieved a consistently high AUC score of ~0.95 on all patients, male patients, 296 

and female patients, outperforming DeepHit (Figure 4). The error bars show the standard 297 

deviations of the AUC scores across 5 folds. When considering all patients or men only, 298 

RETAIN outperformed DeepHit by about 0.1 in AUC score. Among female patients, RETAIN 299 

outperformed DeepHit by ~0.21 in AUC score. We hypothesized that RETAIN outperformed 300 

DeepHit because the RETAIN model used more longitudinal information. Henceforth, we 301 

focused on evaluating the performance characteristics of the much superior deep learning model, 302 

RETAIN. 303 



 304 

 305 

To test our hypothesis that time-varying covariates are critical to the superior predictive 306 

performance of RETAIN, we performed backward masking on the covariate data. That is, we 307 

masked data derived from encounters that occurred within 0.5, 1.0, 2.0, or 4.0 years before the 308 

date of disease diagnosis (or the final encounter for patients who never developed HCC). Hence, 309 

 

Figure 4. Predict HCC occurrence in NAFLD patients using RETAIN and DeepHit. All 

patients, male patients alone, or female patients alone were used respectively from the NAFLD 

cohort. Bars is the mean and error bars is the standard deviation of AUC from 5-fold cross-

validation. The RETAIN model used covariate values from encounters up to 0.5 year before 

HCC diagnosis or censoring; DeepHit used only covariate values at baseline. 
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as we increased the masking length, more longitudinal information is withheld from the RETAIN 310 

model. With longer backward masking, the average length of an available patient's medical 311 

history decreased. Concomitant with less longitudinal information (i.e. shorter medical history 312 

and fewer available encounters), the AUC score of RETAIN decreased from 0.966 to 0.906 for 313 

models evaluated with cross-validation on all patients (Table 2). Even larger performance 314 

reductions were observed for models trained and evaluated on only male or only female patients. 315 

The AUC decreased to 0.838 and 0.828 for men and women, respectively. With 4 years of 316 

backward masking, < 3 years of longitudinal data were available to RETAIN, which caused the 317 

AUC performance of RETAIN to decline to comparable levels as those achieved by DeepHit 318 

using only baseline covariates (Table 2, Figure 4). Taken together, these results indicate that 319 

RETAIN relies on the use of time-varying covariate values beyond baseline to achieve superior 320 

performance. 321 

 322 

Table 2. The performance characteristics of RETAIN for different lengths of backward masking. 323 

Masking length (yrs)  0.5 1.0 2.0 4.0 

Medical history (yrs) 
Mean 7.16 6.37 5.14 2.93 

Median 7.27 6.43 5.05 2.84 

Mean AUC (SD) 

All 0.966(0.019) 0.955(0.008) 0.945(0.023) 0.906(0.026) 

Male 0.942(0.036) 0.908(0.035) 0.914(0.046) 0.838(0.057) 

Female 0.952(0.027) 0.920(0.036) 0.927(0.023) 0.828(0.101) 

 324 

Transfer learning improves model performance. 325 

We evaluated the extent to which transfer learning improved RETAIN performance. In our 326 

NAFLD cohort, only 2 of 1000 NAFLD patients developed HCC after 10 years beyond the index 327 

date. Due to the rare incidence of HCC among NAFLD patients, we pretrained RETAIN models 328 

on the larger set of patients who developed HCC (excluding NAFLD patients) and control 329 



patients who never developed HCC. We then fine-tuned these pretrained models on the NAFLD 330 

cohort. With transfer learning, AUC performances substantially increased, with improvements in 331 

AUC ranging from 0.019 to 0.095 across different lengths of backward masking (Table 3). The 332 

paired T-test was conducted to measure the statistical significance of using TL under different 333 

conditions in the AUC scores from 5 folds. The AUC after TL was subtracted from the AUC 334 

before TL, so the alternative hypothesis assumes that the mean difference of AUC after using TL 335 

is less than zero, which means the AUC after TL is larger than the AUC without TL. The 336 

improvement was statistically significant with Transfer Learning under many conditions. 337 

Transfer learning also reduced the validation loss (Supplementary Figure S6). These results 338 

indicate that RETAIN learned generalizable patterns from the larger case-control HCC dataset 339 

and that this information helped RETAIN achieved better performance on the smaller cohort of 340 

interest. Furthermore, greater improvements were observed with longer backward masking 341 

(Table 3). For example, the AUC improved 0.065 and 0.08 with less than 2 years masking for 342 

male and female patients, respectively. However, the improvements were just 0.019 and 0.038 343 

with 0.5 year of backward masking. Moreover, models applied only in women achieved 344 

consistently higher improvement than models applied only in men, irrespective of masking 345 

length (Table 3). 346 

 347 



Table 3. AUC performances of RETAIN models with and without transfer learning (TL). 348 

Masking 
length (yrs) 

All Male Female 

without TL with TL without TL with TL without TL with TL 

0.5 0.932(0.020) 0.966(0.019)*** 0.923(0.027) 0.942(0.036) 0.914(0.045) 0.952(0.027)* 

1.0 0.900(0.042) 0.955(0.008)* 0.867(0.046) 0.908(0.035)* 0.873(0.031) 0.920(0.036)* 

2.0 0.918(0.028) 0.945(0.023)* 0.849(0.047) 0.914(0.046) 0.847(0.063) 0.927(0.023)* 

4.0 0.877(0.024) 0.906(0.026)* 0.801(0.028) 0.838(0.057) 0.733(0.139) 0.828(0.101) 

Cell values contain mean (SD) of cross-validation AUC. * The p-value of paired T-test with TL is less than 0.05, *** 349 
The p-value is less than 0.001. The alternative hypothesis assumes that the mean difference of AUC after using TL 350 
is less than zero. 351 
 352 

Sex bias impacts model performance 353 

Gender disparity in HCC morbidity and survival outcome has been extensively studied and 354 

documented [10, 39-43]. However, Prior studies on HCC risk were either small [3, 4] or sex-355 

biased where 94.4% of patients in the study were male [31], which may have led to biased 356 

results. Therefore, investigating sex bias in HCC can improve our understanding of how sex-357 

based differences affect outcomes and help ensure data fairness in AI applications [40, 44]. To 358 

assess how sex bias in data affects the performance of deep learning, we trained RETAIN models 359 

on one sex and evaluated them in the other sex. As shown in Table 4, the model trained using 360 

male patients achieved inferior performance in female patients, as the AUC decreased from 361 

0.927 to 0.834 with 2 years of backward masking. When applying the model trained on female 362 

patients with 4 years of backward masking, the performance for male prediction decreased from 363 

0.838 to 0.773. These results are consistent with the concept that sex influences HCC risk, and 364 

there could be male- and female-specific features learned by the model that can only perform 365 

well in predicting HCC risks in that sex. As expected, the model trained on the data with both 366 

sexes achieved better performance than that trained on the data for either sex alone. 367 

 368 



Table 4. The performance of RETAIN trained and evaluated on different subgroups. The scores are the 369 
average AUC (SD) from cross-validation.  370 

Predicted group Trained with 
Masking length (years) 

0.5 1 2 4 

Male 

All* 0.965(0.030) 0.948(0.019) 0.931(0.041) 0.900(0.050) 

Male 0.942(0.036) 0.908(0.035) 0.914(0.046) 0.838(0.057) 

Female 0.890(0.059) 0.848(0.051) 0.873(0.046) 0.773(0.065) 

Female 

All 0.964(0.018) 0.964(0.014) 0.960(0.026) 0.916(0.009) 

Male 0.905(0.038) 0.878(0.040) 0.834(0.028) 0.806(0.086) 

Female 0.952(0.027) 0.920(0.036) 0.927(0.023) 0.828(0.101) 

* Trained on both male and female patients.  371 
 372 

Sex-specific features 373 

To understand why RETAIN achieves different predictive performances in male vs. female 374 

patients, we analyzed aggregated attention scores obtained from the model. As shown in Table 375 

S2-S5 in Supplementary Materials, we identified medical codes with positive attention scores 376 

and negative attention scores for male and female patients. Some common and well-known risk 377 

factors or complications of HCC are ranked high in all patients, e.g., high body mass index, 378 

abnormal aspartate transferase values, and the presence of type 2 diabetes mellitus. Specifically 379 

for women, rheumatoid arthritis is associated with positive attention scores, and kidney stones 380 

are associated with negative attention scores.  381 

To illustrate how RETAIN makes a specific prediction, in Figure 5 we depict the attention 382 

scores of codes for a specific patient who developed HCC, which was correctly predicted. We 383 

filtered out the codes whose attention scores are between the 25th percentile and the 75th 384 

percentile in all encounters to make the figure readable. In the RETAIN prediction for this 385 

patient, normal lab results for tests such as platelet count and aspartate transferase were possible 386 

protective factors, whereas type 2 diabetes, hypertension, and elevated aspartate transferase were 387 

possible risk factors. Being a non-smoker was associated with a positive attention score. 388 



 389 

Discussion 390 

We highlight key areas of innovation in our work for the application of deep learning in medical 391 

informatics. To compare deep learning algorithms using the same evaluation measure, we 392 

formulated disease prediction as a classification problem while taking censoring into account. To 393 

account for delayed disease diagnosis, we propose a backward masking approach, which 394 

prevents deep learning models that incorporate time-varying covariates from identifying telltale 395 

signs and symptoms of the disease rather than risk factors. Additionally, we showed that 396 

incorporating time-varying covariates with a deep learning model, such as RETAIN, can 397 

improve the AUC performance of the classification-based disease prediction. We then 398 

 

Figure 5. Visualization of RETAIN attention scores for a patient. Codes with attention scores 

higher than 75th percentile or lower than 25th percentile in at least one encounter are plotted. The 

color range represents the associated attention scores from the model. “BMI error” means the 

BMI value in the EHR database is invalid (negative or empty). AHD: Atherosclerotic Heart 

Disease. OMI: Old Myocardial Infarction. 
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demonstrate that transfer learning improves predictive performance when the data set is limited 399 

by having insufficient number of cases. Further, we demonstrated that sex bias adversely impacts 400 

deep learning performance, and we identified sex-specific features for HCC progression. 401 

Delayed diagnosis is common in clinical practice, and failure to take this issue into account 402 

may cause deep learning algorithms to identify trivial features that are not of interest to the 403 

clinical community. Patients have prescribed medications or diagnosed with symptoms for some 404 

diseases, but the actual entry of the diagnosis code for this disease can be delayed for quite some 405 

time due to factors including laboratory test confirmation and clerical errors. This delayed entry 406 

of the diagnosis code thus allows deep learning algorithms to predict disease status effortlessly 407 

using telltale symptoms or prescribed medications for the disease. To mitigate this issue, we 408 

designed a new masking strategy to investigate how delayed diagnosis impacts deep learning 409 

models that use longitudinal information. When we mask for a sufficient length of time before 410 

the formal diagnosis of the disease, we can prevent deep learning algorithms from using trivial 411 

features of the disease and allow the algorithms to identify more subtle patterns of features that 412 

help us gain critical clinical insights into the etiology and progression of the disease. Although 413 

some survival analyses can use the time-varying variates to make predictions at different time 414 

points (horizons) prior to death by manual feature selection, this is different from our design 415 

which aims to solve the issue of delayed diagnosis and telltale symptoms [45]. 416 

Using backward masking, we demonstrated that modeling time-varying covariate of features 417 

contributes strongly to disease prediction. When we masked patient encounters that occurred 418 

within four years of HCC diagnosis, the predictive performance of RETAIN (which models 419 

time-varying features) decreased to similar levels as that of DeepHit (which only models 420 

baseline features). This finding indicates that the improved disease prediction performance of 421 



RETAIN over DeepHit is due to the modeling of time-varying covariate of the features. 422 

Accordingly, incorporating time-varying covariates can be key to achieving optimal performance 423 

for disease prediction. 424 

Furthermore, we showed that transfer learning can be used to remedy the rarity of positive 425 

examples. We recognized that despite beginning with a large cohort of millions of patients, the 426 

subset of patients who experienced the outcome event is relatively small. Different from the prior 427 

studies which typically adopt the embedding vectors of medical codes learned from a general 428 

task [27] or finetune a large pretrained model which was trained on diverse but unrelated medical 429 

conditions [28], we first trained a randomly initialized model on a related problem with large 430 

sample size, and finetuned the trained model on the target problem. We demonstrated that the 431 

application of this transfer learning strategy yielded a remarkable improvement in predictive 432 

performance. This improvement also indicates that although the larger, related dataset contains 433 

cases that are not of primary interest, they may share general patterns that help deep learning 434 

algorithms discern the disease of interest. Pretraining on the larger, related dataset thus improved 435 

prediction on the smaller target dataset.  436 
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