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Highlights

Artificial intelligence for personalized management of vestibular
schwannoma: A clinical implementation study within a multidisci-
plinary decision making environment

Navodini Wijethilake, Steve Connor, Anna Oviedova, Rebecca Burger, Jeromel
De Leon De Sagun, Amanda Hitchings, Ahmed Abougamil, Theofanis Giannis,
Christoforos Syrris, Kazumi Chia, Omar Al-Salihi, Rupert Obholzer, Dan
Jiang, Eleni Maratos, Sinan Barazi, Nick Thomas, Tom Vercauteren, Jonathan
Shapey

• The first study to evaluate the impact of AI assisted reporting in a
clinical setting.

• AI generated segmentations can be used to provide a clinical guideline
driven report facilitating personalized patient management

• Volumetric tumour measurements provide a more comprehensive assess-
ment of tumour growth.
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Abstract

Background. The management of patients with Vestibular Schwannoma
(VS) relies heavily on precise measurements of tumour size and determining
growth trends.

Methods. In this study, we introduce a novel computer-assisted approach
designed to aid clinical decision-making during Multidisciplinary Meetings
(MDM) for patients with VS through the provision of automatically generated
tumour volume and standard linear measurements. We conducted two simu-
lated MDMs with the same 50 patients evaluated in both cases to compare
our proposed approach against the standard process, focusing on its impact
on preparation time and decision-making.

Findings. Automated reports provided acceptable information in 72% of
cases, as assessed by an expert neuroradiologist, while the remaining 28%
required some revision with manual feature extraction. The segmentation
models used in this report generation task achieved Dice scores of 0.9392
(± 0.0351) for contrast-enhanced T1 and 0.9331 (± 0.0354) for T2 MRI in
delineating whole tumor regions. The automated computer-assisted reports
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that included additional tumour information initially extended the neuro-
radiologist’s preparation time for the MDM (2m 54s (± 1m and 22s) per
case) compared to the standard preparation time (2m 36s (± 1m and 5s)
per case). However, the computer-assisted simulated MDM (CAS-MDM)
approach significantly improved MDM efficiency, with shorter discussion times
per patient (1m 15s (± 0m and 28s) per case) compared to standard simulated
MDM (SS-MDM) (1m 21s (± 0m and 44s) per case).

Interpretation. This pilot clinical implementation study highlights the
potential benefits of integrating automated measurements into clinical decision-
making for VS management. An initial learning curve in interpreting new
data measurements is quickly mastered and the enhanced communication of
growth patterns and more comprehensive assessments ultimately provides
clinicians with the tools to offer patients more personalized care.

Funding. N. Wijethilake was supported by the UK Medical Research Council
[MR/N013700/1] and the King’s College London MRC Doctoral Training
Partnership in Biomedical Sciences. This work was supported by core funding
from the Wellcome Trust (203148/Z/16/Z) and EPSRC (NS/A000049/1)
and an MRC project grant (MC/PC/180520). TV is also supported by a
Medtronic/Royal Academy of Engineering Research Chair (RCSRF1819/7/34).

Keywords: Vestibular schwannoma, deep learning, segmentation, feature
extraction, personalized management

1. Introduction

Vestibular schwannoma (VS) is a benign brain tumour originating from
myelinating Schwann cells within the vestibular division of the vestibulo-
cochlear nerve. The incidence rate of VS is rising [1]; in the UK the incidence
rate is approximately 2.2 per 100,000 people per year [2] with estimates
indicating that approximately 1 in 1000 people will be diagnosed with a
VS in their lifetime [3]. The increasing availability and improved quality of
Magnetic Resonance Imaging (MRI) has resulted in higher proportion of small
asymptomatic tumours now being diagnosed. For smaller tumours, expectant
management with lifelong imaging is often advised [4] with patients proceed-
ing to stereotactic radiosurgery (SRS) or conventional open surgery should
the tumour demonstrate growth on serial imaging. Even after treatment,
patients typically require an extended period of surveillance.
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1.1. Vestibular schwannoma growth rate criteria

The assessment of VS growth requires a standardized measurement ap-
proach [5]. The 2001 Consensus Meeting on Reporting Results in Acoustic
Neuroma recommends distinguishing intrameatal and extrameatal portions
and measuring the largest extrameatal diameter [6]. When a tumour is entirely
intrameatal, this measurement becomes the maximum whole tumour diameter.
For VS treatment decisions, both linear and volumetric measurements are
applicable. As per the European Academy of Otology & Neuro-Otology
(EAONO) position statement, the criteria for significant VS growth include a
>2 mm increase in diameter, a >1.2 cm3 volume change, or a >20% volume
change [7].

1.2. Patient pathway

The UK introduced cancer Multi-Disciplinary Meetings (MDMs) to en-
sure uniform high-quality care for all cancer patients, regardless of origin [8].
Through MDMs the skull base mutlidisciplinary team (MDT) manage com-
plex skull base tumours, such as schwannomas and meningiomas. Core team
members include skull base neurosurgeons and otolaryngologists, neuroradiol-
ogists, clinical oncologists, histopathologists, clinical nurse specialists, and
MDM coordinators. MDMs provide tailored treatment, considering surgery,
radiation, and imaging surveillance timing.

1.3. Current issues

The manual extraction of linear measurements is a time-consuming process
that is susceptible to variation [9]. This introduces interobserver errors that
can be significant- even exceeding 2 mm, despite such value being used
as a criteria for establishing VS growth. Consequently, these errors may
lead to more frequent scans or delayed/unnecessary treatments. Volumetric
measurements offer higher sensitivity and precision, but the existing methods,
including manual or semi-automated tumour segmentation, are also labour-
intensive, lack standardization and are prone to variability and subjectivity
[10, 11]. Additionally, the lack of readily available standardized software has
hindered their adoption in clinical practice.

1.4. Use of Artificial Intelligence in VS

Artificial Intelligence (AI) has emerged as a valuable tool in these studies,
contributing to various aspects of VS research. Deep learning and machine
learning techniques have been utilized for tumour segmentation [12, 13, 14],
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growth prediction [15, 16], surgical outcome prediction [17, 18], and Koos
grade prediction [19].

Our previous research has shown that AI tools possess the technical
capability to fully automate the detection and segmentation of VS [12, 20],
and can also delineate the tumour’s intra- and extra-meatal components [14].
These tools formed the basis for automating the extraction process of both
linear and volumetric measurements in this study. Nevertheless, while AI has
shown promise in VS management, the assessment of its clinical applicability
and its impact on decision-making remains an ongoing area of investigation.

1.5. Contribution

In this study, we developed an automated imaging biomarker report
generator that employs deep learning segmentation and computer algorithms
for feature extraction and visualization. Each report included longitudinal
measurements of the tumour, axial views of the tumour, and graphical
representations and plots illustrating changes in both linear and volume
measurements. The main contribution of this study is the assessment of
the AI-assisted report in a simulated controlled real-world context. To the
best of our knowledge, this is the first study to integrate AI-based outcomes
into clinical decision-making for tumour management. The overall process
of implementing AI-driven methods in the clinic is visualized in Figure 1
and in this study we evaluate its impact on enhancing the standard clinical
management.

2. Methods

To evaluate the impact on standard clinical practice, two separate sim-
ulated MDM sessions involving 50 referred patients were conducted in a
controlled setting. The first session adhered to the standard preparation
procedure with manual extraction, while the second session introduced the
automated imaging biomarker report.

2.1. KCH MC-RC dataset

The source cohort for this study consisted of patients referred to King’s
College Hospital, London, UK, between December 2009 and September 2012,
aged over 18, with unilateral VS, and excluding neurofibromatosis type 2
(NF2).
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Figure 1: Overview diagram of our clinical implementation study focusing on personalized
management of VS.

Fifty patients were randomly selected for our study, with consecutive
time points spanning 6 months to 11 years between the first and most recent
scan (January 2012 - March 2021). Among these, 8 had prior surgery, 7
received radiosurgery, 1 had both surgery and radiosurgery options, and 34
were under surveillance. The MR imaging included post-contrast T1 (T1C) or
T2-weighted imaging. We analyzed 187 sessions across 50 patients, with 145
T1C and 42 T2 scans, including 23 post-operative scans. Table 1 summarizes
the demographics of the selected cohort of 50 patients.

Ethics statement. This study was approved by the NHS Health Research
Authority and Research Ethics Committee (18/LO/0532). Because patients
were selected retrospectively and the MR images were completely anonymised
before analysis, no informed consent was required for the study.

2.2. Formation of automated imaging biomarker reports

Deep learning model development. Building on the methodology in [14], we
adopted a two-stage approach employing the default 3D full-resolution UNet
from the nnU-Net framework (referred to as 3D nnU-Net). Additional infor-
mation regarding the datasets and training procedures can be found in the
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Table 1: Demographics of the KCH MC-RC patient cohort consists of 50 patients used in
the simulated MDM.

Category N Mean SD
Age 50 64.62 12.84
Gender

Female 26 (48%)
Male 24 (52%)

Monitoring period 50 4.8 (yrs) 2.74 (yrs)
Standard Tumour size measurement in the index scan

Extrameatal Diameter 25 (50%) 18.52 (mm) 9.04 (mm)
Whole tumour Diameter* 25 (50%) 10.36 (mm) 5.84 (mm)

Interventional treatment History (prior to the most recent scan)
Surgery 9 (18%)
SRS 8 (16%)

Supplementary Appendix 1.1 & 1.2. No patient overlap exists between this
dataset and the one used for the simulated MDM.

Feature extraction and visualization. For the KCH MC-RC dataset, we ac-
quired segmentation masks using the best-performing deep learning models
and utilized them in the feature extraction process. The primary linear
measurement we extracted for each VS was the maximum tumour diameter.
This measurement could be derived from two regions: the entire tumour
region (DWT ) and/or the extrameatal region of the tumour (DEM). When
the extrameatal tumour portion was small or negligible, radiologists typically
measured the linear dimension for the entire tumour region (combining both
intra- and extrameatal regions). More details about the linear features and
selection of the appropriate measurement to present are provided in the Sup-
plementary Appendix 1.3. Further, In our previous study [21], we conducted
a preliminary evaluation comparing automated and an expert’s manual linear
measurements.

Additionally, volume measurements were extracted for the intra- and extra-
meatal regions. Visualization of the axial slice with the maximum D was
done using the 3D Slicer software extension with python [22]. Additionally,
3D volume mask of the tumour was visualized.
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Automated generation of the imaging biomarker report. Automated report
generation followed two key steps: 1) segmentation and 2) feature extraction.
For each patient a summary report and an extended version were generated. In
the summary report, an MRI axial slice representative of each time point was
included, along with the intra-/extra-meatal mask, corresponding extrameatal
and whole tumour volumes, and maximum D measurement. Volume measure-
ments were not presented if the tumour was present in more than one axial
slice. The report included a visual representation of volume and maximum
D change, using color coding to indicate growth (red), equivocal growth
(orange), and no growth (green). Intra-/extra-meatal volumes were displayed
in a bar plot, and diameters in a line plot with the x-axis representing time
in months. Icons on the graph represented the decisions made after each
session, with a guide provided at the bottom of the report. An example report
is provided in the Supplementary Appendix 2.2. Additionally, an extended
report is generated with all the measurements and 3D visualizations.

2.3. Simulated MDMs

Preparation for the standard MDM. The neuroradiologist prepared for the
SS-MDM under time-constrained conditions to replicate clinical MDM prepa-
ration following UK practice guidelines. Linear measurements were extracted
from the index, second most recent, and most recent scans for each patient
using the Picture Archiving & Communications System (PACS) workstation
(Sectra workstation, Sectra AB, Sweden) at King’s College Hospital. For
each patient, the neuroradiologist recorded the absolute linear measurements,
provided a qualitative description of the tumour, and made judgments re-
garding tumour growth (change/no change/equivocal) on a structured form.
Longitudinal changes were assessed between the index and recent time points
and between the second most recent and most recent time points. The starting
and finishing times for manual feature extraction for each patient case were
recorded. The neuroradiologist’s workload was also assessed using the The
NASA Task Load Index (NASA-TLX) scoring system after completing the
preparations [23].

Execution of the standard MDM. The SS-MDM was conducted with the
minimum required attendees, and it took place as a hybrid online-in-person
meeting. The simulated skull base MDM included two skull-base neuro-
surgeons (N.T., J.S.), two clinical oncologists (K.C., O.A.), clinical nurse
specialists (A.H., J.D.S.), and three neurosurgical fellows (T.G., A.A., C.S.).
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Each case was presented to the MDM by the MDM coordinator (A.O). The
neuroradiologist (S.C.) then presented the tumour measurements and observa-
tions, with the tumour displayed on the PACS system through screen sharing.
The starting and finishing times of the MDM were recorded.

Preparation for the computer-assisted simulated MDM. The neuroradiologist
prepared for the CAS-MDM, 35 days after the SS-MDM preperations, in a
time-constrained environment, utilizing the automated report. In this prepa-
ration phase, the neuroradiologist evaluated and decided on the acceptance
or rejection of automated biomarkers for each patient’s MRI session (time
point). This evaluation was based on the segmentation provided by the deep
learning model and the automatically extracted features. If a session was
rejected, the neuroradiologist manually extracted the linear measurements.
The assessments conducted during this process followed the same procedure
as in the SS-MDM, utilizing the index, second most-recent, and most recent
scans. To reduce the potential for bias, the order of the 50 patient cases was
randomized in between the standard and the computer-assisted approach.

Execution of the computer-assisted MDM. The CAS-MDM followed the same
format and impact assessment criteria as the SS-MDM and was held 35 days
after the SS-MDM. Automated reports were distributed to all participants
prior to the MDM and the neuroradiologist (S.C.) presented his observations,
referencing either linear or volume measurements as necessary. During the
CAS-MDM, members also referred to the automated report to assist their
decision making.

3. Results

3.1. Deep learning based segmentation

The performance of the segmentation models during the pre-MDM testing
phase are presented in the Supplementary Appendix 2.1.

3.2. Neuroradiological preparation for the computer-assisted simulated MDM

In 72% of cases (36 patients), the automatically generated segmentations
and linear/volume measurements were accepted and used for assessing tumor
growth by the neuroradiologist (Supplementary Appendix 2.2). Out of these
36 patients, 33.33% (12 cases) the neuroradiologist presented the MDM with
growth-related observations based on the automated volume measurements
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provided in the summary report. The remaining cases were assessed using
both linear and volume measurements, and in these instances, both linear
and volume measurements exhibited consistent changes.

For 16% of patients (8 cases), at most one session among the three sessions
had unacceptable segmentation, leading to the rejection of both linear and
volume measurements by the neuroradiologist (Supplementary Appendix
2.2). In these cases, the neuroradiologistq manually extracted the linear
measurements for the rejected session. The observations, which combined
manual and automated measurements, were used to draw conclusions related
to tumor growth and presented to the MDM.

In 12% of patients (6 patients), the automated outcomes required complete
revision by the neuroradiologist during the preparation of the CAS-MDM.
This occurred when at least two sessions, out of the three sessions (index,
second most recent, and most recent), had unacceptable segmentations or
mismatching linear measurements (Supplementary Appendix 2.2). In such
instances, only the neuroradiologist’s manual extractions were used in the
MDM.

3.3. Simulated MDMs

In the SS-MDM, 7/50 patients were referred for active treatment discus-
sions with patients, including 5 for SRS and 2 for surgery. 4 patients were
discharged, and the rest were referred to be placed under surveillance. The
patients under surveillance will be rescanned in 6 months (2 patients), 1 year
(9 patients), 2 years (16 patients), 2-3 years (1 patient), 3 years (7 patients),
4 years (1 patient), and 5 years (3 patients).

In the CAS-MDM, 6 patients were referred for active treatment discussions,
including 5 for SRS and 1 for surgery. 6 patients were discharged, while the
rest were recommended to remain under surveillance. The patients under
surveillance will be rescanned in 6 months (3 patients), 1 year (9 patients), 2
years (11 patients), 2-3 years (4 patients), 3 years (9 patients), 3-4 years (1
patient), and 5 years (1 patient).

The average times for preparation and MDM for both standard and
computer-assisted approaches are presented in Table 2 with the distribution
visualized in Figure 2 (B).
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Figure 2: (A) Comparison of the timings of radiology preparation and MDM for standard
and computer-assisted approaches. (B) Confusion matrix between the SS-MDM decisions
and the (actual) original MDM decision (C) Confusion matrix between the (actual) original
MDM decisions and the CAS-MDM decisions. (D) Confusion matrix between the SS-MDM
and the CAS-MDM decisions.

4. Discussion

In this study, we introduce a novel approach, CAS-MDM, that integrates
automated imaging biomarkers reports into VS clinical management. We
validate this concept in a controlled simulated clinical setting, involving
experts from multiple disciplines. Through deep learning based automated
segmentation, we provide highly sensitive volume measurements, crucial
for analyzing VS growth. This approach has the potential to streamline

10
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Table 2: Comparison of Preparation and MDM Process Durations in SS-MDM and CAS-
MDM Sessions

Average time per case Total time

Standard
Preparation 2m 36s (± 1m and 5s) 2h 7m 30s
MDM 1m 21s (± 0m and 44s) 1h 2m 36s

Computer-assisted
Preparation 2m 54s (± 1m and 22s) 2h 25m 24s
MDM 1m 15s (± 0m and 28s) 48m 24s

decision-making, enhancing clinical efficiency, and offers potential for more
personalized patient care. The use of automated reporting resulted in a
substantial improvement in clinical efficiency and the potential to enhance
patient management quality.

To the best of our knowledge, our research represents the first clinical
deployment of an AI supported report for tumour management, where we
examine its affect on clinical workflow and decision-making process. Hawkins
et al. [24] recently implemented a machine learning-based clinical workflow
to perform segmentation, volumetric calculations, and generate reports using
longitudinal MRI scans for low-grade glioma. However, their study did not
explore how this technology could be integrated into clinical decision-making.

(A) (B) (C) (D)

Figure 3: Examples of deep learning generated segmentations rejected by the neuroradiolo-
gist. (A) Over segmented slice. (B) Under segmented slice. (C) Missed tumour detection.
The manual annotation of the tumour region is shown in red. (D) Over segmented and the
incorrect intra-/extra-meatal boundary.

4.1. Neuroradiological preparation

During preparations for the CAS-MDM, the neuroradiologist manually
extracted linear measurements when the whole tumor segmentation was
unacceptable at any of the three time points (index, second most recent, and
most recent).

11
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We identified 4 scenarios contributing to faulty segmentations in Figure 3.
Figure 3 (A) visualizes a session with an over-segmentation of a small tumor,
while Figure 3 (B) and Figure 3 (C) depict instances of under-segmentation
and non-recognition by the segmentation model, respectively. As a result, the
neuroradiologist manually extracted the linear measurements for these cases.
Additionally, Figure 3 (D) is an example of a session that was over-segmented,
and it did not provide an acceptable intra-/extra-meatal boundary.

During the SS-MDM preparations, the neuroradiologist chose between
DWT and DEM , based on whether the maximum extrameatal dimension
appeared larger than the porus on axial images. If the neuroradiologist was
seeking serial comparable dimensions and the initial tumour is intrameatal,
then the later measurement should also consider the entire tumour, even if it
has developed a significant extrameatal component. This posed a significant
challenge in the context of the automated imaging biomarker report, as we
selected DEM according to our pseudo code Supplementary Appendix 1.3.
Consequently, the neuroradiologist identified this as an inconsistency in the
automated imaging biomarker report and relied on volume measurements.

Furthermore, for several cases, the whole tumour volume tended to provide
more reliable observations on growth, as shown in Figure 4. Figure 4 (A)
displays post-operative yearly scans between 2011 and 2013, along with
corresponding DWT and whole tumour volume measurements. The change
between the second and third time points indicates definitive growth (a
change in volume of over 20%), while the change in linear measurement
(DWT ) suggests equivocal growth.

Inconsistency in the boundary between the longitudinal scans was another
reason for choosing whole tumour volume for some patients. Figure 4 (B)
presents longitudinal scans of a post-SRS patient from 2012, 2016, and 2019
who had undergone SRS in 2005. Due to the irregular shape of the tumour,
the separation of the intra-/extra-meatal regions does not accurately depict
the tumour’s behavior over time. These observations were highlighted by
the neuroradiologist during the preparations and also when presenting to the
MDM.

Our results demonstrated that the average preparation time for the CAS-
MDM was longer than for the SS-MDM which was surprising. However, this
was partly due to the learning curve experienced by the neuroradiologist,
which might have been mitigated through training on a separate trial cohort.
Furthermore, in the CAS-MDM, the neuroradiologist had to assess both the
validity of segmentations and linear/volume measurements, which was different
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𝒟!" = 24.9 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 2374.1 𝑚𝑚#

𝒟!" = 24.6 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 2531.1 𝑚𝑚#

𝒟!" = 25.7 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 3485.2 𝑚𝑚#

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝒟!" = −0.21 𝑚𝑚
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 6.6%

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝒟!" = 1.01 𝑚𝑚
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 37.7%

𝒟$% = 20.9 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 3154.9 𝑚𝑚#

𝒟$% = 18.6 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 2099.8 𝑚𝑚#

𝒟$% = 17.1 𝑚𝑚
𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = 1561.2 𝑚𝑚#

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝒟#$ = −2.39 𝑚𝑚
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = −33.4%

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝒟!" = −1. 48 𝑚𝑚
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑢𝑚𝑜𝑢𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 = −18.1%

(A)

(B)

Figure 4: Two patient cases that depicts the importance of volume measurements. (A)
A patient case where the volume measurement change presents a definitive growth in
contrast to the linear measurement. (B) A patient case with an inconsistent and irregular
intra-/extra-meatal boundary, for which the tumour volume is more reliable.

to the SS-MDM preparations that exclusively utilized linear measurements.
Both the SS-MDM and CAS-MDM preparations placed a medium workload on
the neuroradiologist according the NASA-TLX scoring interpretation however
information overload on the summary report may have also contributed to
the extended preparation time.

The neuroradiologist’s preparation may be negatively affected by poor
performance of the segmentation model. This may be a result of various factors
including limited availability of the desired MRI sequences, non-standard MRI
acquisition, case complexity, tumour heterogeneity, the presence of very small
tumours or residual tumour following surgery. Better automated segmentation
results are likely to be achieved through the standardisation of MRI sequences
used to image VS. Nevertheless, minor adjustments will almost certainly be
required in some difficult cases so an integrated interactive segmentation
module, allowing the neuroradiologist to make real-time adjustments in the
segmentation masks, should be developed before such technology can be
fully integrated into the routine clinical workflow. Integrating such a module
into PACS would further reduce the cognitive load of processing/visualizing
various metrics, enabling the neuroradiologist to filter and focus on a specific
preferred metric.
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4.2. Observations from the simulated MDMs
The total number of discharges were higher in the CAS-MDM (6 patients)

compared to the SS-MDM (4 patients). The MDT agreed to discharge three
of the same patients in both MDMs. One patient discharged from the SS-
MDM was not discharged from the CAS-MDM; three additional patients were
discharged from the CAS-MDM. Discharged patients typically included those
in old age (¿80 years) with small stable tumours. Figure 2 (C) summarizes
the similarities and differences between the SS-MDM and the CAS-MDM.

In the SS-MDM, of 39 patients for whom surveillance imaging was rec-
ommended, the rescan interval increased for 11 patients (28.2%) decreased
for 8 patients(20.5%), and remained unchanged for 16 patients (41%) as
compared with the MDTs original clinical decision. Figure 2 (B) illustrates
how decisions taken in a SS-MDM can change over time based on the original
decisions made and the simulated SS-MDM decisions for the 50 patients.
Patient management may have changed since the patient’s original clinical
MDM due to evolving clinical management and variations in the composition
of MDM participants together with their individual biases toward different
treatments.

The use of computer-assisted reporting enabled the MDT to offer patients
a personalized management approach beyond standard surveillance protocols.
Decision-making in both SS-MDM and CAS-MDM was primarily based on
tumour size measurements. However, other factors such as the patient’s age
and treatment history significantly influenced the decisions.

The team’s oncologists particularly valued having whole tumour vol-
ume measurements available as this is the metrics used when delivering
radiotherapy- not just the extrameatal portion. Additionally, graphical rep-
resentations illustrating growth trends over the patients whole surveillance
programme were beneficial in determining whether to extend the interval
between surveillance scans.

From the neuroradiologist’s perspective, the automated imaging biomarker
report, with its multiple inputs (linear and volume measurements for each
imaging timepoint), was more challenging to interpret compared to the stan-
dard approach, where only index, second most recent, and most recent imaging
were used. Consequently, in the CAS-MDM, observations were limited to
the same three sessions to reduce complexity. However, the communication
of trends across multiple timepoints proved immensely beneficial, and the
inclusion of additional volume data played a vital role in enhancing the preci-
sion of interval change assessments. Most importantly, the neuroradiologist
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highlighted the importance of keeping an expert human in the loop for the
absence of thorough data verification may lead to clinicians misinterpreting
critical information.

4.3. Automated patient-centric report

We organized a Patient Involvement Group (PPI) focus group in partner-
ship with the British Acoustic Neuroma Association (BANA), to explore how
this technology could be used to provide patients with graphical information
concerning their treatment. We selected 12 individuals from a pool of over
200 interested patients across the UK, ensuring diversity in age, gender, and
treatment experiences. This session was conducted online for accessibility.

This PPI session provided valuable insights into patient preferences for
automated reports, emphasizing the necessity of visual and personalized
formats. Patients highlighted the significance of clarity and simplicity in
reporting. An artistic representation (Figure 5) visually depicted the event,
referencing the key components highlighted by the patients.

Figure 5: Visual illustration from the patient involvement session.
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Our focus group highlighted how this report could be extended for use
in combined MDM clinics, as discussed in [25], where patients can access
their personalized reports. This could improve efficiency, patient-reported
outcomes, decision transparency, and patient mental health.

5. Conclusion

This is first study to report the clinical deployment of an AI supported
reporting tool for tumour management. We introduced computer-assisted
automated reporting exploiting deep learning-based segmentation to aid
vestibular schwannoma management and evaluated its impact in a simulated
clinical environment. This work demonstrated significant improvements in
clinical efficiency and highlighted the potential computer-assisted reporting
could have in delivering more personalized patient care.
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