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Abstract 

Next generation sequencing (NGS) of tumours is increasingly utilised in oncological practice, 

however only a minority of patients harbour oncogenic driver mutations benefiting from targeted 

therapy. Development of a drug response prediction (DRP) model based on available genomic 

data is important for the ‘untargetable’ majority of cases. Prior DRP models typically rely on whole 

transcriptome and whole exome sequencing (WES), which is often unavailable in clinical practice. 

We therefore aim to develop a DRP model towards repurposing of standard chemotherapy, 

requiring only information available in clinical grade NGS (cNGS) panels of recurrently mutated 

genes in cancer. Such an approach is challenging due to the sparsity of data in a restricted gene 

set and limited availability of patient samples with documented drug response. We first show that 

an existing DRP performs equally well with whole exome data and a cNGS subset comprising 

~300 genes. We then develop Drug IDentifier (DruID), a DRP model specific for restricted gene 

sets, using a novel transfer learning-based approach combining variant annotations, domain-

invariant representation learning and multi-task learning. Evaluation of DruID on pan-cancer data 

(TCGA) showed significant improvements over state-of-the-art response prediction methods. 

Validation on two real world - colorectal and ovarian cancer - clinical datasets showed robust 

response classification performance, suggesting DruID to be a significant step towards a clinically 

applicable DRP tool.  

Introduction 

Precision oncology has shifted treatment paradigms in solid organ tumours over recent years, 

underpinned by widespread adoption of somatic next generation sequencing (NGS) and 

increasing knowledge of molecular aberrations present within tumours. However, only a minority 

of patients undergoing NGS go on to receive biomarker directed, or ‘matched’, treatment, which 

currently follows a single gene, single target approach with oncogenic drivers such as EGFR, 

NTRK, RET and BRAF (Tsimberidou 2019).  There remains an unmet need to better tailor or 

repurpose treatment for the majority of patients who lack such genomic targets based on clinical 

grade NGS (cNGS).  Drug Response Prediction (DRP) models utilising machine learning (ML) to 

predict therapeutic responses represent an appealing solution.    

 

Numerous deep learning strategies have been published in recent years using available multi-

omics data from cell line, patient-derived xenograft (PDX) and patient datasets (He 2022, Jia 

2021, Partin 2023).  Cancer cell lines provide the majority of ground truth drug response data for 

such endeavours (Adam 2020, Chen 2021, Firoozbakht 2021) however, DRP models trained on 

cell lines alone often translate poorly to patients (Mourragui 2019, Mourragui 2021, Sharifi -

Noghabi 2020).  This is partly due to inherent biological differences, meaning cell lines do not 

accurately represent patient tumours. Cell lines are essentially a subpopulation of the primary 

tumour and do not exhibit heterogeneity seen in vivo. The absence of the tumour 

microenvironment and interactions with the host of stromal cells present in patients is also key 

(Mourragui 2019, Huo 2020). In addition, technical differences in response measurement in cell 
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lines versus in patients, and differences in drug dosing between cell lines and patients will affect 

interpretation of results by a DRP model.  

 

While omics data is increasingly available for many cancer patients (TCGA 2013, Cerami 2012), 

drug response data for these patients remains scarce and limited to standard of care therapies 

only. To address such challenges, transfer learning approaches including domain adaptation have 

been developed to train DRP models from both cell lines and patients (He 2022, Sharifi 2021, Ma 

2021). 

 

Prior studies have used omics data from 4 categories - genomics (mutation, copy number 

variation (CNV)), transcriptomics (gene expression microarrays, RNA-seq), epigenomics 

(methylation) and proteomics (Reverse Phase Protein Arrays (RPPA)) (Partin 2023). While 

studies on cell lines have shown gene expression data to outperform mutations (Costello 2014, 

Levatic 2022), recent studies on patients have also identified the relevance of mutations in 

determining survival outcomes (Liu 2022). State-of-the-art transfer learning methods, which 

evaluated their models on patient data, have largely restricted their analysis to gene expression 

data (Sharifi 2021, Peres 2021). The genes selected in these methods are not captured based on 

their presence in cNGS panels; nor are the number of chosen genes comparable across cNGS 

and these methods. For example, CODE-AE(He 2022) used a set of 1426 genes, which showed 

the most variation in gene expression values, and Velodrome(Sharifi 2021) used a set of 2128 

genes, which were chosen based on known molecular interactions amongst proteins. Even when 

these transfer learning methods (He 2022) used mutations or combinations of mutations and gene 

expression, they reported better performance with gene expression. Requiring transcriptomic 

input data represents a challenge in bringing these methods to mainstream patient care and it 

remains unknown if such tools can accurately predict response from the limited number of 

recurrently altered cancer genes that are included in cNGS panels such as FoundationOne CDx 

(324 genes), Tempus (523 genes), and TruSight Oncology 500 (523 genes). To the best of our 

knowledge, no prior transfer learning methods have been evaluated on such a restricted subset 

of genes. Moreover, methods which have used mutations as inputs, have not considered the 

variant level information captured in cNGS reports; instead they treat all alterations as equal, 

resulting in loss of granularity and potential reduction in predictive accuracy (Table 2).   

 

In this paper, we make two contributions - (1) we evaluate the efficacy of extant DRP methods on 

the limited subset of genes available in cNGS panels and (2) we develop a new model, called 

Drug IDentifier (DruID), specifically designed for use with cNGS panels and address the modelling 

challenges posed by such data. We first compare the performance of DRP models CODE-AE(He 

2022) and Velodrome (Sharifi 2021) on subsets of genes from cNGS panels against an extended 

gene list from whole exome sequencing data (WES with 19,536 genes). Although cNGS panels 

show no significant difference in performance compared to WES, the DRP performance itself is 

low for all panels. We attribute the inferior performance of existing methods to their inadequate 

modelling of sparse mutation data and neglecting the fine-grained variant level information 

available in cNGS reports. We addressed these limitations by designing DruID. DruID leverages 

advanced deep learning and transfer learning techniques and a novel multi-stage approach 

comprising variant annotation-based feature engineering, unsupervised generative modelling and 
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supervised multi-task learning. DruID utilised both (a) fine-grained variant information in relatively 

abundant unlabelled (without drug response information) cell line and patient data, and (b) limited 

labelled (with drug responses) patient data. The training procedure of DruID is carefully designed 

to account for both differences in mutation distribution and drug response across the domains of 

cell lines and patients.  

 

DruID is shown to outperform existing state of the art DRP models in predicting response in a 

cohort of patients from The Cancer Genome Atlas (TCGA). Using clinical datasets from a tertiary 

oncology centre in Singapore, DruID’s performance is validated in patients with advanced 

colorectal and ovarian cancer, with robust response prediction seen on these clinical cohorts. 

Results 

Datasets used in this study 

Four datasets were used in this study: DepMap (v2021Q3), TCGA, and two cancer-specific 

datasets, IMAC-OV and IMAC-CRC, containing patients with advanced ovarian and colorectal 

cancer respectively (Table 1). The cancer-specific datasets (IMAC-OV and IMAC-CRC) were 

collected as part of the ongoing Integrated molecular analysis of cancer (IMAC) and IMAC-

Gynaecologic Oncology (IMAC-GO) studies from the National University Cancer Institute, 

Singapore (NCIS). The detailed inclusion and exclusion criteria, data pre-processing and 

experimental procedures are documented in Methods. The mutational information present in 

IMAC-OV and IMAC-CRC cohorts was obtained using the FoundationOne CDx panel (324 

genes); we conducted the majority of our experiments using only the genes available in this panel. 

We evaluated all DRP models on a subset of drugs with a sufficiently large number of recorded 

responses in patients.  

 

Table 1: Overview of datasets used. 

 

  DepMap TCGA IMAC-OV IMAC-CRC 

N 689 470 105 82 

Age, median (min-max) NA 59 (24-85) 59.7 (25-81) 59 (37-83) 

Gender Female (Male) NA 54.9% 

(45.1%) 

100% 41.5% 

(47.3%) 

[missing info 

- 1 patient] 

Primary Site         
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Ovary/fallopian 

tube/peritoneum 

34 (4.9%) 0 105 (100%) 0 

Colon & Rectal 43 (6.2%) 34(7.2%) 0 82 (100%) 

Others (lung, stomach, 

head & neck, bladder, 

skin, uterus, breast, 

cervical, brain, pancreas, 

oesophageal, liver, 

prostate etc) 

612 (88.8%) 436 (92.8%) 0 0 

Treatment         

Cisplatin/Carboplatin 537 (77.9%) 206 (43.8%) 105 (100%) 0 

Paclitaxel 676 (98.1%) 113 (24%) 102 (97.1%)  0 

5-Fluorouracil  589 (85.5%)  125 (26.6%)  0 82 (100%)  

Irinotecan  668 (97%)  0  0 30 (36.6%) 

Oxaliplatin  555 (80.6%)  0  0 51 (62.2%)  

Omics availability         

Mutation Yes Yes Yes Yes 

Copy Number Yes Yes Yes Yes 

Gene Expression Yes Yes No No 

Details of the datasets used in this paper, including source from where each dataset was obtained, the type of cancer 

in each dataset, the number of available patients(samples for cell lines) and set of drugs administered to these patients, 

obtained after data preprocessing. Abbrev. TCGA, The Cancer Genome Atlas; CCLE, cancer cell line encyclopaedia; 

IMAC, Integrated molecular analysis of cancer; OV, ovarian cancer; CRC, colorectal cancer 

DRP models based on clinical NGS data perform sufficiently 

accurate 

We first wished to evaluate if drug response prediction models could be generated from 

mutational information on a subset of genes that are recurrently mutated in cancer, and captured 

by clinical grade NGS panels. To do this, we compared the performance of CODE-AE (He 2022), 

a state-of-the-art transfer learning approach, on mutation data from three subsets of genes. 

Subset1 comprises 324 genes included in FoundationOne CDx analyses (Foundation Medicine, 

Cambridge MA), while Subset2 consists of 285 genes common across FoundationOne CDx, 
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TruSight Oncology 500(Illumina, San Diego, CA) and Tempus xF+ (Tempus XF+) cNGS panels. 

Subset3 includes 19,536 genes, nearly all those available from WES.  

 

Pan-cancer data from TCGA (Table 1) was used to evaluate CODE-AE performance on 3 drugs 

(5-Fluorouracil, Cisplatin and Paclitaxel) where sufficient samples (patient, drug pairs) were 

available. Three train-test splits were created by random sampling. In each split, CODE-AE was 

trained on cell line data from the cancer cell line encyclopaedia (CCLE) and TCGA training set, 

and evaluated on the corresponding TCGA test set. We evaluated performance in classifying 

responders (categories complete [CR] or partial response [PR] by Response Evaluation Criteria 

In Solid Tumours (RECIST) v1.1 criteria) from non-responders (stable [SD] or progressive disease 

[PD]). In total the test set had 203 samples (patient-drug pairs), with 90, 82 and 90 pairs across 

the three splits. 

a. 
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b. 

 
 

Figure 1.(a): Comparison of AUROC (area under receiver operating characteristics; top left panel) and AUPRC (area 

under precision recall curve; top-right panel) scores of response prediction using CODE-AE with different input subsets 

of genes. Baseline AUPRC is the fraction of positive labelled test (patient, drug) pairs with respect to all test (patient, 

drug) pairs. Performance(bottom panels) is measured over 3 randomly chosen test splits (mean ± S.E.M). Significance 

is assessed by Anova. (b). Confusion matrices for different input subsets of genes on 203 samples (patient-drug pairs) 

from TCGA, predictions obtained using the method CODE-AE. Colour indicates the input subset, shade indicates 

magnitude of the values. 

 

The classification performance of CODE-AE for the three gene subsets is shown in Fig. 1. Area 

under receiver operating characteristics curve (AUROC) and area under precision recall curve 

(AUPRC) are comparable (Fig. 1.a), with no significant difference between gene subsets (p  > 

0.05, ANOVA).  Figure 1.b shows the confusion matrices at a specific, arbitrarily chosen threshold 

(false positive rate = 0.3, true positive rate = 0.3). Subset3 (WES gene panel) enabled 

identification of more responders than the Subset1 and Subset2 (47 vs 41 and 47 vs 44, 

respectively). Specificity, precision and sensitivity metrics are equivalent across gene subsets 

(Supplementary Table 1). Subset3 has the highest accuracy (specificity = 0.692, sensitivity = 

0.311,  precision = 0.746), followed by Subset2 (specificity = 0.692, sensitivity = 0.291, precision 

= 0.733) and Subset1 (specificity = 0.673, sensitivity = 0.272, precision = 0.707). A similar 

comparison, using another DRP, Velodrome, also showed no significant difference in AUROC 

and AUPRC between input gene subsets (supplementary Fig 2), suggesting that information from 

limited gene panels is sufficient to build a DRP model of similar accuracy to that from WES gene 

panels.  

DruID: an improved model for predicting chemotherapy drug 

response with cNGS data 

As seen in Fig. 1, cNGS panels with limited subsets of genes have a predictive power similar to 

that of a WES panel. However, it can also be observed that when using CODE-AE and Velodrome 

(Supplementary Fig. 2), the overall performance is quite poor (AUROC < 0.5 and AUPRC < 
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baseline). This alludes to the need for building better predictive DRP models. We attributed this 

performance to (1) inadequate modelling of sparse mutation data and (2) loss of granularity by 

not utilising variant information available in cNGS panels. In this section, we introduce DruID - a 

novel transfer learning-based drug identifier model which addresses both these issues. 

DruID: Model Overview 

 

There are two challenges, in building DRP models using data from cNGS panels, that we address. 

The first challenge arises due to sparsity in the input data. Most patients have just a few mutations 

among the panel of genes considered, which leads to highly sparse input features. For example, 

consider the FoundationOne CDx panel with 324 genes and a simple one-hot vector feature 

representation indicating presence/absence of mutations. In such a case, each patient would be 

represented by a 324-dimensional binary vector which would typically have very few non-zero 

values. Moreover, if additional features are used per gene, the number of coordinates per gene 

increases and sparsity may increase further.  

 

The second challenge arises due to limited labelled patient data for training. Previous works have 

utilised preclinical data (drug responses on cell lines) through domain adaptation techniques to 

address this challenge(He 2022, Sharifi 2021, Peres 2021). Cell lines and patients are considered 

as two distinct domains as both the distributions of mutations and response to drugs differ across 

these two domains. The measurements of responses also differ – real-valued Area Under Dose 

Response Curve (AUDRC) or Half Maximal Inhibitory Concentration (IC50) values for cell lines 

and categorical Response Evaluation Criteria In Solid Tumours (RECIST) scores for patients. 

While labelled patient data is limited, the number of unlabelled patient data samples (i.e., without 

drug responses) is much higher, and can be utilised during training, for a suitably designed model. 

 

Our model, DruID, addresses these challenges through a novel synthesis of machine learning 

techniques. Figure 2(a) shows the three stages of DruID: 

I. Variant annotations 

II. Unsupervised domain-invariant representation learning 

III. Multi-task Drug Response Prediction  

In stage I, we design features (or numeric representations of the inputs) based on various 

functional annotations that provide fine-grained variant-specific information (Landrum 2017, Li 

2020, Wang 2010). This enables us to fully utilise the information available in cNGS panels. To 

the best of our knowledge, no previous approach has used variant-level information for drug 

response prediction.  

 

In stage II, numeric representations of cell lines and patients are used together to obtain another 

low-dimensional domain-invariant representation. This stage has multiple goals. Since mutation-

based representations are extremely sparse, we use Zero-inflated distributions to model them. 

Further, we use Variational Autoencoders (VAEs) which are specialised neural models, based on 

generative artificial intelligence (AI), to obtain dense lower-dimensional representations. Separate 
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VAEs for cell lines and patients are used to model distinct distributions. They are trained together 

to align their lower-dimensional representations such that their distributional characteristics are 

similar across the domains – these domain-invariant representations are then used to train a 

multi-task drug response prediction model in stage III.  

 

In stage III, a neural model is trained to predict both AUDRC for cell lines (a regression task) and 

response categories (responders [PR or CR] or non-responders [SD or PD]) in patients (a binary 

classification task) for a given input drug. The Morgan fingerprint of the drug is used as an 

additional input.  The model is designed to simultaneously train on these two tasks which enables 

both sharing of information across the two tasks and task-specific modelling in cell lines and 

patients, accounting for differences in their drug responses.  

 

To validate the importance of each of the components in DruID, we conducted an ablation study 

by removing the variant annotation stage first, followed by the modification of the VAEs to exclude 

the Zero-inflated distribution (Supplementary Fig. 3). We observe that there is a reduction in both 

AUROC and AUPRC with the removal of each component, indicating their importance in the 

overall performance. 

 

a. 
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b. 

 
c. 

 

 
Figure. 2(a): Overview of DruID. During training, DruID takes as input the set of mutations available from cell lines as 

well as from the clinical NGS(cNGS) sequencing reports of patients (pathogenic variants and variants of uncertain 

significance). The mutations from both cell lines and patients are passed through Stage (I) Variant Annotation. ClinVar, 

Gene-to-Protein-to-Disease (GPD) and Annovar are used to obtain annotations for each mutation. GPD returns one of 

3 categories - protein information unit(PIU), linker unit(LU) or non-coding unit(NCU) for each mutation. ClinVar returns 

one of 3 categories - benign, pathogenic or variant of unknown significance(VUS). Annovar returns predictions 

indicating deleteriousness of a variant, from 17 algorithms, which are averaged to obtain a score. Next, all mutations in 

the same gene are aggregated over all 3 GPD categories and 3 ClinVar categories, using mean, max, sum and count 
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operations. These are further concatenated to obtain a 7776-dimensional annotated mutation vector. In Stage (II) 

Unsupervised Domain-Invariant Representation Learning, the annotated mutation vectors of cell lines and patients are 

passed through two separate VAEs to obtain lower dimensional representations. An additional alignment is done to 

ensure domain-invariant representations are learnt. The VAEs also use Zero-inflated distributions to model sparse data. 

The learnt representations along with drug Morgan fingerprints are passed to Stage (III) Multi-task drug response 

prediction which predicts AUDRC score for cell lines and RECIST category for patients. (b): Performance of DruID and 

comparator methods on response prediction from TCGA patient cohort. Left: AUROC of 5 drug response prediction 

(DRP) methods. Right: AUPRC of 5 DRPs.  Baseline AUPRC - 0.744. (c): Comparison of response prediction for each 

drug. Mean AUROC (above), and mean AUPRC (below) across 3 test splits with standard error corresponding to each 

drug. 

 

Our modelling approach has several advantages. Since stage II is unsupervised we can utilise 

large amounts of available unlabelled patient data to obtain accurate representations of patient 

data. Stages II and III can be first trained on pan-cancer data and then fine tuned on input specific 

to a cancer type and/or drug to obtain cancer and/or drug specific models. By using drug 

fingerprints as inputs in stage III, the model can predict on drugs not seen during training - 

important for potential applications in drug repurposing or discovery. Finally, the VAE in stage II 

can be extended to model multimodal data (Mariappan 2022) including additional genomic or 

transcriptomic inputs. Refer to Methods for further details comparing DruID against other DRP 

methods. 

 

DruID improves response prediction results 

 

We evaluate the performance of DruID and four other transfer learning-based approaches – 

CODE-AE (He 2022), Velodrome (Sharifi 2021), TCRP (Ma 2021) and TUGDA (Peres 2021) – 

on TCGA.  

 

Figure 2(b) shows the ROC and PRC curves along with the AUROC and AUPRC values of all the 

methods. DruID achieves the highest AUROC and AUPRC values of 0.606 and 0.782 

respectively, while  Velodrome is the only other DRP to achieve AUROC and AUPRC values 

above the respective baselines of 0.5 and 0.744. The performance of DruID is significantly better 

than that of Velodrome, in terms of both AUROC (p=0.004) and AUPRC (p=0.037).  

 

Performance for each of three drugs, cisplatin, paclitaxel and 5-fluorouracil (5-FU) is shown in 

Fig. 2(c).  DruID performs consistently across the compounds and is the only model to achieve 

AUROC above the 0.5 baseline for each drug, while other methods show more variations in 

performance. For Cisplatin, DruID has the highest average AUROC (p=0.111 compared to 

TCRP). For Paclitaxel, AUROC of DruID and Velodrome are comparable(p=0.496) but the 

variance of Velodrome is much higher. For 5-FU, performance of DruID and CODE-AE are 

comparable(p=0.371). With respect to precision-recall, for Cisplatin, DruID has the best mean 

AUPRC followed by that of TCRP(p=0.212). For Paclitaxel, DruID has the highest mean 

AUPRC(p=0.408 compared to Velodrome). For 5-FU, CODE-AE has the highest mean AUPRC, 

followed by DruID. The difference in p-value was not significant in these cases. 
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Inclusion of copy number variation (CNV) or gene expression data 

does not improve DruID performance  

We next evaluated the effect of including copy number variations (CNV) on model performance, 

which is available in many cNGS panels. The data was used directly, unlike mutation data where 

features based on variant annotations were used. For CNV of each gene, we had a count value 

indicating amplification, loss or no change. DruID allows us to model such data using Zero-inflated 

Negative Binomial distributions within the VAE training (detailed in Methods). 

 

TCGA was used for evaluation. We compared the performance of DruID on 3 different input types: 

annotated mutations, combined CNV and annotated mutations, and CNV alone. In all 3 cases, 

only 324 genes represented in FoundationOne CDx were used and performance was measured 

over 3 test splits.  Results are seen in Fig. 3(a) with DruID’s predictive performance with annotated 

mutations alone shown to be significantly better than annotated mutations with CNV information, 

both in terms of mean AUROC (p = 0.003) and AUPRC (p = 0.013) over the 3 test splits.  

a. 
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b. 
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c. 
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d. 

 
 

Figure. 3 (a): Comparison of AUROC and AUPRC scores of response prediction for annotated mutations, copy number 

variations(CNV) and combination of the two. Performance was measured over 3 randomly chosen test splits (containing 

90, 82 and 90 samples respectively). Top: Figure shows AUROC(left) and AUPRC(right) curves obtained after 

combining predictions on all 3 test splits. Bottom: Figure shows mean AUROC(left) and AUPRC(right) measured over 

3 test splits with standard error. (b): Comparison of performance (mean AUROC, left and mean AUPRC, right) among 

annotated mutations, copy number variations(CNV) and combination of the two. Results shown separately for each 

drug in the data. (c): Comparison of AUROC and AUPRC scores of response prediction for annotated mutations, gene 

expression and combination of the two. Performance was measured over 3 randomly chosen test splits. Top: Figure 

shows AUROC(left) and AUPRC(right) curves obtained after combining predictions on all 3 test splits (containing 83, 

80 and 84 samples respectively). Bottom: Figure shows mean AUROC(left) and AUPRC(right) measured over 3 test 

splits with standard error. Performance with annotated mutations was found to be significantly better than the other two 

input types. (d): Comparison of performance (AUROC, left and AUPRC, right) among annotated mutations, gene 

expression and combination of the two. Results shown separately for each drug in the data. * indicates statistical 

significance using a t-test between best and second-best performing inputs (p < 0.05).  

 

Figure 3(b) shows the performance, across the three input data types, separately for cisplatin, 

paclitaxel and 5-Fluorouracil. The mean AUROC and AUPRC of DruID across the three agents 

are consistently higher when using annotated mutations alone as input, compared to CNV alone 

or CNV and annotated mutations combined. This reached statistical significance with AUPRC 

(p=0.019) and AUROC (p=0.004) for 5-Fluorouracil, and for AUROC for Paclitaxel (p=0.009). 

 

Previous works have reported that gene expression has higher predictive value compared to 

mutation data (Partin 2023); however, transcriptomic data is not available in cNGS panel reports.  

We analysed a subset of patients from TCGA with both transcriptomic and genomic data available 

to compare the performance of DruID on 3 different input types: annotated mutations only, gene 

expression only and combined annotated mutations and gene expression. In all 3 cases, 324 

genes represented in the FoundationOne CDx panel were used and performance measured over 

3 test splits. 
  

Figure 3 (c) shows the performance in terms of mean AUROC and AUPRC across the 3 input 

types over 3 test splits. Mutation data yields the best performance, in terms of mean AUROC 

(p=0.007) and AUPRC (p=0.040). Figure 3 (d) shows the AUROC and AUPRC values, across 

input data types by drug. The performance of DruID with mutational information alone was 

consistent across the three compounds and significantly better than gene expression containing 
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inputs for cisplatin on both AUROC (p=0.028) and AUPRC (p=0.021). Differences between inputs 

for paclitaxel and 5-FU were non-significant.   

 

We note that the performance of DruID, using annotated mutations, is comparable across all three 

drugs. However, when CNV, gene expression or their combinations with mutations were used, 

the performance varied across the drugs. In our experiments we consistently found that mutations 

with variant annotations yielded higher predictive signals. 

Validation of DruID on real world clinical datasets 

 

We undertook cancer-specific clinical validation of DruID in two tumour types; colorectal (CRC), 

and ovarian cancer (OV). Data was collected from a single tertiary hospital (National University 

Hospital, Singapore) as part of an ongoing clinical study (Clinicaltrials.gov ID: NCT02078544). 

Patients enrolled underwent somatic NGS of tumour tissue or blood and treatment outcomes were 

recorded. We included those patients sequenced via FoundationOne CDx, utilising mutational 

information from the cNGS report (pathogenic and VUS). In light of our results above, showing 

worse performance with addition of CNV data, we did not incorporate CNV for the model training 

and evaluation. 

 

For each analysis, we divided the respective datasets (CRC, OV) into train and test splits. DruID 

was trained on the patient train splits (CRC or OV) and cell line datasets, and was evaluated on 

the patient test split (CRC or OV). We evaluated the model ability to distinguish responders from 

non-responders ([PR or CR] versus [SD or PD] by RECISTv1.1 criteria). These analyses were 

done separately and are presented below.  

Cancer-specific validation  

The CRC dataset includes response to 3 drugs (5-FU, irinotecan, and oxaliplatin), in the first line 

metastatic settings.  For the OV dataset, we included patients with advanced ovarian cancer with 

evaluable first line chemotherapy response (carboplatin/cisplatin, and paclitaxel).  

 

 

 

 

 

 

 

 

 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.17.23298665doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.17.23298665
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

a. 

 
b. 
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c. 

 
d. 
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e. 

 
f. 

 
Figure. 4 (a) Comparison of AUROC across 5-Fluorouracil, irinotecan and oxaliplatin in first line treatment of a cohort 

of stage IV colorectal cancer patients (left) and AUROC across Cisplatin/Carboplatin and Paclitaxel in first line non-

surgical cohort of ovarian cancer patients (right). (b): Comparison of drug specific AUPRC across 5-Fluorouracil, 

irinotecan and oxaliplatin in first line treatment of a cohort of stage IV colorectal cancer patients. Overall AUPRC is 

obtained across all 3 drugs. AUPRC for each drug is better than the corresponding baseline. (c): Comparison of drug 

specific AUPRC across Cisplatin/Carboplatin and Paclitaxel in first line treatment of a cohort of ovarian cancer patients. 

Overall AUPRC is obtained across both drugs. AUPRC for each drug is better than the corresponding baseline. (d): 

Comparison of mean predicted probability of response, on true responders and non-responders in a cohort of first line 

stage IV colorectal cancer patients(top) and first line ovarian cancer patients (bottom). The plots indicate the 

mean±SEM DruID predicted probability of response (complete or partial response), for true responders and non-

responders. (e): Oncoplots showing frequent alterations in advanced(stage IV) colorectal cancer patients (IMAC 

dataset) based on DruID predicted response to 5-fluorouracil. i. Oncoplot(left) shows 15 most frequently altered genes 

in patients with predicted response in the bottom 20th percentile. Oncoplot(right) shows frequency of alterations in the 

same 15 genes listed in 4e(i) in patients with predicted response in the top 20th percentile. (f): Oncoplots showing 
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frequent alterations in ovarian cancer patients (IMAC-GO dataset) based on DruID predicted response to 

Cis/Carboplatin. i. Oncoplot(left) shows 15 most frequently altered genes in patients with predicted response in the top 

20th percentile. Oncoplot(right) shows frequency of alterations in the same 15 genes listed in 4f(i) in patients with 

predicted response in the bottom 20th percentile. 

 

Results of the performance analysis are shown in Fig. 4(a) with AUROC for each individual drug 

remaining above baseline of 0.5, with irinotecan most promising with AUROC=0.759 in CRC 

dataset and paclitaxel with AUROC=0.638 in OV dataset. Analysis of AUPRC(Figure 4(b) and 

4(c)) highlights that DruID performs above baseline for the drugs considered.  
 

In comparing DruID’s predicted probability of response (CR or PR) for true responders versus 

non-responders, we see mean output values trend higher for true responders (Figure 4(d)), for 

CRC and OV cancer patient cohorts.  

 

To assess for obvious discriminating features between DruID predictions we generated oncoplots 

(Fig. 4[e-f]) for cases with DruID predictions ranked in the bottom 20th percentile versus top 20th 

percentile for specific drugs in the validation datasets. Figure 4(e) shows oncoplots for 5-FU 

predictions in patients from the IMAC dataset. Mutations in KRAS (59% vs 29%) and NOTCH1 

(29% vs 6%) are more frequent patients with a low predicted probability of response. 

 

Oncoplots comparing gene alteration frequency in cases with top versus bottom 20th percentile 

of DruID response predictions to cis/carbo-platin across train and test splits of the IMAC-GO (OV) 

dataset are presented in Fig. 4(f). Low frequency of alterations limit interpretation. Alterations in 

KDM5A were seen in 4/17 (24%) cases with high predicted probability of response to cis/carbo-

platin but no cases with low predicted probability. 

Discussion  

Prior DRP methods that perform transfer learning have largely relied on gene expression data 

and WES panels. However, this data is unavailable in a clinical setting, where often, only a subset 

of recurrently altered genes are sequenced using cNGS, to identify mutations and copy number 

variations. Through our empirical evaluation (Fig. 1), we have shown that state-of -the-art DRPs 

can perform comparably with mutational information from a cNGS panel and whole exome 

sequencing. This is of significance, potentially increasing the number of patients for which a DRP 

such as DruID could be utilised, as cNGS is increasingly being undertaken as a standard of care 

in oncology practice. 

 

However, due to the relatively poor performance of existing methods on cNGS inputs, we propose 

a novel drug response prediction model(DruID) that handles two key challenges arising in the 

clinical context namely (1) sparse nature of mutation data and (2) limited availability of patient 

drug response data. While most methods handle the distributional differences between cell lines 

and patient genomic profiles, most methods do not handle the differences in drug response 

measurements across the two domains (Table 2). Further, most of these methods were trained 

and evaluated on gene expression data rather than mutation data. To the best of our knowledge, 

DruID is the first model that uses variant annotations for mutation data processing. Similar to prior 
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methods(Velodrome and AITL), DruID simultaneously handles distribution differences in the 

mutation profiles and differences in the way drug response is measured across cell lines and 

patients. Unlike most of the prior methods, DruID has the capability to utilise unlabelled patient 

data. For further details, see Supplementary Section “Background on other ML approaches”.   

 

Our results show that DruID outperforms other state-of-the-art DRP methods (Fig. 2) on publicly 

available TCGA data. DruID shows robust performance on two clinical cohorts of colorectal and 

ovarian cancer patients (Fig. 4). These tumour types have widely different biology and molecular 

profiles (Dienstmann 2014, Haunschild 2021) highlighting DruID’s performance is not dependent 

upon the presence of certain gene/mutation signatures that may be specific to one tumour. 

Validation on other patient cohorts can further establish this generalisability. A limitation of our 

current validation in the TCGA and IMAC/IMAC-GO datasets is the modest number of patients 

and drugs included, due to restricted availability of labelled response data. This is a problem 

encountered in the validation of many DRPs, with the acquisition of reliable patient response data 

key to model training and performance.  

 

The use of CNV and gene expression data did not improve results when compared to those 

obtained from annotated mutations alone (Fig. 3). This is contradictory to prior work on cell lines, 

where gene expression data showed the best performance(Partin 2023). The findings in our 

experiment suggest that DruID is superior in its ability to handle sparse mutation data; however 

our test set sizes are quite small, these results may not generalise to all patient cohorts and would 

need to be validated on larger patient datasets. In our experiments, we also find that the 

performance with combinations of different data types (mutations and CNV; mutations and gene 

expression) was found to be lower than that of each of the individual data types (CNV and gene 

expression respectively), in most cases. This suggests that the modelling approach can be further 

improved with respect to integrating diverse data types. One approach could be to use multimodal 

techniques to handle different data types. 

 

Assessment of mutational profiles of patients with low versus high predicted probability of 

response suggests DruIDs ability to identify biomarkers of poor response/prognosis consistent 

with prior knowledge. Alterations in KRAS and NOTCH1 appeared more frequently in predicted 

non-responders from the CRC patient dataset (Fig 4[e]). This is consistent with the known function 

of KRAS alterations as a poor prognostic marker in colorectal cancer (Zhu 2021). The role of 

NOTCH1 as a prognostic marker is not as clear in CRC, but in oesophageal SCC it is reported to 

be associated with cancer progression and lower response rates. (Song 2015, Jackstadt 2019).  

In the analysis of ovarian cancer patients' mutational profile by predicted probability of response, 

it is difficult to draw strong patterns from the frequencies presented (Fig. 4[f]).  A possible trend is 

seen for KDM5A alterations, appearing in patients with high predicted probability of response but 

absent in those with low predicted probability. This will benefit from further patient analysis. The 

role of KDM5A in cancer is continuing to be elucidated, but overexpression is thought to drive 

progression(Ren 2020).  

 

The current design of our model could be improved further. While patients often undergo a 

treatment regimen comprising multiple drugs, in our experiments we treat each drug as being 
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administered independent of the others. To consider a regimen as a whole, a possible approach 

could be to use the combination of drugs as an input to the drug embedder network. The multi-

task learning architecture in Stage III of DruID also allows the addition of related tasks. Patient 

survival information can be incorporated into the model in the form of an additional task. Further 

improvements can be made to the model's explainability as well. Currently, it is not inherently 

explainable. Explainable algorithms (Jiménez-Luna 2020) can be used over the model predictions 

to obtain useful insights to improve user confidence and guide clinical decision making. While in 

Stage II, DruID leverages available unlabelled data, Stage III relies on labelled patient data  similar 

to earlier DRP methods. 

 

DruID has significant potential as a clinically applicable DRP.  Due to its design it can be fine-

tuned for any drug or cancer type provided sufficient training data (both unlabelled and labelled) 

is available. Additionally, it has the possibility to be utilised as a drug repurposing tool as it can 

provide response predictions for previously unseen drugs by utilising drug molecular information 

as a model input (Fig. 2). This is of potential significance to patients with refractory advanced 

malignancies, who in the absence of an actionable mutation being identified on cNGS, will often 

undergo empiric anti-cancer therapy with low expected response rates. The prospect of a drug 

repurposing tool that can utilise cNGS data to give a personalised treatment recommendation 

based on a tumour mutational profile is both exciting and appealing. Such an application of a DRP 

model requires prospective validation, the first steps of which we are undertaking in an ongoing 

trial incorporating DRP recommended therapy in patients with refractory solid organ malignancies 

in Singapore (NCT05719428). 

 

Conclusion 

In this paper, we evaluated state-of-the-art DRP models on the limited subset of genes sequenced 

in cNGS panels and established that gene panels can perform as well as WES panels for DRP. 

To improve the performance of DRP models on cNGS panels, we present a novel transfer learning 

based DRP algorithm - DruID - which can handle sparse nature of cNGS mutation data and the 

limited availability of patient response to drugs. Results presented show DruID to be superior to 

existing state-of-the-art DRP methods on a pan-cancer TCGA dataset with satisfactory 

performance seen on two cancer-specific clinical datasets. While we have utilised a panel of 

genes specific to one commercially available cNGS test, DruID can be altered to work on any 

panel gene set. Future work developing such tools for drug repurposing endeavours may provide 

further clinical applications.   
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Methods 

DruID Method Description 

 

In the following sections, we describe each of the three stages of DruID(Fig. 2a) in more detail. 

Stage I: Variant Annotations 

For each point mutation in the input dataset, we generate annotations using the following tools: 

1. ClinVar (Landrum 2017) – provides clinical significance of each mutation. We group these 

together into 3 broad categories - pathogenic, benign and variants of unknown significance 

(VUS). 

2. GPD (Li 2020) – provides annotations based on the location of each mutation - protein 

information unit (PIU), linker unit (LU) and non-coding unit (NCU). 

3. Annovar (Wang 2010) – provides annotations for each mutation that indicates if it is 

deleterious or not, from 17 different prediction algorithms (as shown in Supplementary 

Table 3). These are aggregated (via mean) to calculate a d-score for each mutation. 

The categories from GPD, Clinvar and the score from Annovar are shown on the top right of Fig. 

5. These are aggregated to obtain gene-level features, shown on the bottom right of Fig. 5. Below 

we describe more details. 

 

 
Figure 5: Stage (I) Variant Annotation starts with the extraction of mutations from the cNGS report. We first use the 

protein level annotation feature of TransVar on the extracted mutations. This returns the genomic coordinates, 

consequence attributes for the mutation. The output of TransVar, specifically the genomic coordinate information, is 

used to obtain both ClinVar and Annovar annotations. ClinVar annotations, indicating the clinical significance of the 

mutations, are generated using filter-based Annovar annotations with ClinVar database. The resulting annotations are 
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grouped into one of 3 categories - pathogenic, benign and variants of unknown significance. Annovar annotations 

indicate whether a mutation is deleterious or tolerated, using the predictions from 17 algorithms. These annotations are 

encoded as a binary vector and mean aggregated to obtain a d-score per mutation. GPD annotation needs an Ensembl 

ID for each gene, which is generated using the MyGene package. GPD annotates each mutation based on its location 

as lying in a protein information unit(PIU), linker unit(LU) or non-coding unit(NCU). The output of the annotation is 

shown in the table on the bottom left. These are further aggregated at a gene level, as indicated on the right. All 

mutations in a gene belonging to each of the 3 GPD categories are aggregated using mean, max, sum and count. This 

is repeated for each of the 3 ClinVar categories to obtain 4 features per category. This results in 24 features for each 

gene. Thus for the Foundation One report comprising 324 genes, a 324 * 24 = 7776 dimensional annotated mutation 

vector is constructed per patient. 

Processing for ClinVar, GPD and Annovar 

 

Before annotations from ClinVar (Landrum 2017), Annovar (Wang 2010) and GPD (Li 2020) can 

be obtained, we use TransVar (Zhou 2015), which takes as input a point mutation and provides 

the location of the mutation on the genome. The TransVar output is used by Annovar, GPD and 

ClinVar.  

 

For GPD, the input is expected to be in the MAF(Mutation Annotation File) format. The TCGA 

dataset is directly available in this format. However, for the NUH ovarian cancer and colorectal 

cancer datasets, an additional processing step must be done to obtain the Variant Classification 

attribute. We use the Consequence field returned by TransVar, to obtain this attribute. The 

Consequence field indicates if the input point mutation is a missense, synonymous, nonsense, 

frameshift or splice site mutation. GPD also needs the Ensembl Gene ID, which we generate from 

Entrez Gene ID using myGene python package (https://docs.mygene.info/projects/mygene-

py/en/latest/ ). GPD returns a category (from PIU, LU and NCU) for each point mutation based on 

its location. 

 

For each point mutation, Annovar returns 17 categorical scores, one score for each of the 

algorithms listed in Supplementary Table 3. We convert these 17 categorical values into a single 

score, called d-score, as follows: if x of the 17 algorithms flag a point mutation as deleterious, we 

set the d-score of the point mutation to be x/17. Thus after Annovar annotation, each point 

mutation has a d-score, whose value lies between 0 and 1. ClinVar annotation provides a clinical 

significance for each point mutation. Each point mutation is annotated as pathogenic, benign or 

as a variant of unknown significance(VUS). The mapping from ClinVar generated annotation to 

these 3 categories is available in Supplementary Table 4. 

Gene-level Features 

 

After obtaining annotations from ClinVar, Annovar and GPD, we aggregate the d-scores of the 

point mutations at a gene level. As shown in Fig. 5, a gene can have multiple point mutations, 

and each point mutation can belong to one of 3 ClinVar categories and one of 3 GPD categories. 

Each point mutation is also associated with a d-score. To aggregate these at a gene level, we 

obtain the mean, max, sum and count of point mutations present in each gene, in each of the 

ClinVar and GPD categories. For example, from Fig. 5, we see that the 4 point mutations in the 
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ABL1 gene are distributed across PIU and NCU GPD categories and VUS ClinVar category. We 

can aggregate across all ABL1 mutations in the PIU and NCU categories, as well as all ABL1 

mutations in the VUS category separately. Each gene now has 6 subcategories (GPD - PIU, LU, 

NCU and ClinVar - pathogenic, benign,VUS), each with 4 statistics (mean, max, sum, count), 

resulting in 24 features per gene per patient sample. If a gene has no mutations, it is represented 

as a 24-dimensional zero vector.  

Stage II: Unsupervised domain-invariant representation learning 

 
Figure 6: Stage (II) Unsupervised domain-invariant representation learning involves the use of two separate variational 

autoencoders, one per domain (cell line or patient). The VAEs take as input the annotated mutation vectors generated 

in Stage (I) Variant Annotations and learn a lower dimensional representation for each domain. To account for the 

sparse nature of the input data, the VAEs are trained to maximise the likelihood of the data following a zero-inflated 

distribution(zero-inflated negative binomial for count data and zero-inflated normal for real-valued data). To ensure the 

domain-invariant nature of representations, an alignment loss (CORAL loss) is introduced between the representations 

learnt from both VAEs. This stage does not require labelled samples and can be trained in a fully unsupervised manner. 

 

In this stage, we use Variational Autoencoders (VAE), which are unsupervised generative neural 

models (Kingma and Welling 2013), to obtain domain-invariant low-dimensional representations 

of the input data. One VAE is used for each domain (cell lines, patients) as shown in Fig. 6. The 

VAEs are trained to maximise the likelihood of the data assuming zero-inflated data distributions 

which allows us to model both count and real-valued data (through Zero-inflated Negative 

Binomial and Zero-inflated Normal distributions respectively) and with varying levels of noise and 

sparsity (Eraslan 2019, Mariappan 2022). To ensure that a shared embedding space is learnt 

across the two domains, an alignment loss is introduced during training of the VAEs. This is 

achieved through the CORAL loss (Sun 2016). Note that this stage does not need any drug 

response data from either domains and is done in an unsupervised manner. Doing so allows 

effective use of any patient or cell line data that has just genomic data, unlike previous approaches 

such as AITL, TCRP, PACE. We now formally describe the details. 

 

Let  and  denote the input data associated with cell lines and patients 

respectively, where  denotes the number of cell lines,  denotes number of patients and  
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denotes number of input features. In the VAEs used to obtain representations  and  for cell 

lines and patients respectively, the probabilistic encoders  and  - which learn distributions 

 and  respectively - infer the mean ,  and standard deviation  and  

of the normal distributions of the latent variables. Thus, each input vector is mapped to a 

distribution and we use the inferred mean vectors as the latent representations  and  for 

downstream tasks. The probabilistic decoders  and  which learn distributions  

and  respectively use zero-inflated distributions to model varying levels of sparsity in 

the reconstructed data. Let   and   denote the reconstructed outputs 

from the decoders. These are used to learn the parameters of the zero-inflated distribution ( ,  

and ), using linear layers followed by relevant activation functions. In the equations below,  can 

be  or  to denote cell lines or patients. 

  
Each VAE is trained by minimising the negative log-likelihood of the data distribution and a KL 

divergence term (that acts like a regularizer). Thus, we have the combined loss term 

  
where 

 

  
More details of the VAE construction and loss functions can be found in (Mariappan 2022). 

 

The VAE architecture, as described above, can obtain low-dimensional dense representations of 

cell lines and patients. However, it does not ensure domain invariance in the representations. To 

achieve domain invariance, we use the CORAL loss(Sun 2016) to minimise the difference in 

covariance of the domain-specific representations. If  and  are the covariance 

matrices of cell lines and patients representations  and  , the CORAL loss is defined as 

, where  . Here  is 

the number of samples in the batch,  is the size of the dimensional space  and  is the mean 

of the representations, across samples in the batch. Thus the overall loss function optimised in 

the pretraining stage is . The 

hyperparameters used in this stage are listed in Table 3. 
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Stage III: Multi-task drug response prediction 

 
Figure 7: Stage (III) Multi-task drug response prediction uses the representations learnt for patients and cell lines from 

Stage (II) Unsupervised domain-invariant representation learning. This is achieved by attaching the trained encoders 

of the VAEs from Stage (II). In addition, at this stage, we also introduce drug information in the form of the Morgan 

fingerprint. This is passed through a feedforward neural network. This is followed by a pair of task-specific feedforward 

neural networks - one for the regression task for AUDRC prediction on cell lines and another for the classification task 

of RECIST category prediction on patients. The representations of cell lines are concatenated with the drug 

representation, before being passed through the AUDRC predictor multi-layer perceptron(MLP). Likewise, the patient 

representation is concatenated with the drug representation and fed into the RECIST predictor multi-layer 

perceptron(MLP). Binary cross-entropy loss and mean square error are calculated for the classification and regression 

task respectively. The network is trained for the two tasks through multi-objective optimization (Chebyshev 

scalarization). 

 

Drug response in cell lines and patients are known to be different due to biological and 

environmental differences. Further, measurement of responses are different – real-valued 

AUDRC for cell lines and categorical RECIST scores for patients, which correspond to regression 

and classification tasks. To build a model that can learn from both domains and, at the same time, 

predict for each task separately we use multi-task learning (MTL), a well established paradigm for 

jointly learning models for multiple correlated tasks. 

 

There are three inputs to the MTL model – a cell line representation, a patient representation and 

a drug representation. The first two are obtained from the encoders of the VAEs from stage II. To 

obtain a drug representation, we build another feedforward neural network, called the drug 

embedding network, which takes as input the drug’s binary Morgan fingerprint (Morgan 1965). 

Corresponding to each task, AUDRC prediction and RECIST prediction, we have a separate 

feedforward neural network. The output of the drug embedding network is concatenated 

separately with the cell line and patient representations from the respective encoders and passed 
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through one of the two task-specific networks. The concatenated drug - cell line representation is 

passed through the AUDRC prediction network while the concatenated drug - patient 

representation is passed through the RECIST prediction network. Let  be the 

input features associated with the drug and  be the drug embedding from the drug 

network . The input to the AUDRC predictor network  is  where  denotes 

concatenation. Likewise, the input to the RECIST predictor network  is . It is possible 

to `attach’ the VAE encoders from stage I, to further train them with the rest of the network in a 

supervised manner; in most cases, this is found to improve performance. 

 

The entire network (Fig. 7) is trained using two objective functions – the MSE loss for AUDRC 

regression and the BCE logit loss for RECIST classification. Let  and  denote the 

ground truth labels and  and , the BCE logit loss 

and MSE loss are calculated as follows 

 

 
 

A common approach to train MTL models is by minimising the weighted sum of the losses for 

each task, where the weights specify relative priorities among the tasks; this is known as the linear 

scalarization approach. However, when the tasks are conflicting, it may not be possible to 

optimise all the objectives simultaneously and trade-offs between tasks may be required. In such 

cases, Pareto optimal solutions, obtained through multi-objective optimization, are natural choices 

where each optimal solution is non-dominated, i.e., no objective value can be improved further 

without degrading some other objectives. The efficacy of multi-objective optimization for MTL has 

been demonstrated in, e.g., (Sener & Koltun, 2018; Mahapatra and Rajan 2020). 

 

There can be multiple (possibly infinite) Pareto optimal solutions, represented by the Pareto front, 

each solution with a different trade-off between the conflicting objectives. For non-convex 

objective functions common in machine learning, linear scalarization cannot guarantee reaching 

every possible solution on the Pareto front (Miettinen 2004, Lin 2019, Boyd 2021). This can be 

guaranteed through the use of Chebyshev scalarization (Van Moffaert 2013) that we utilise for 

training our MTL network:  where  and  are 

hyperparameters denoting the weights assigned to each loss term. Details of hyperparameters 

are listed in Table 3. 
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Inference 

 
Figure 8: During inference, a (patient, drug) pair is passed in. The trained network takes as input the patient mutations 

and annotates it using Stage (I) Variant Annotations. This is passed through the trained encoder of the patient VAE to 

obtain the patient representation. The Morgan fingerprint of the drug in the test pair is passed through the trained drug 

embedder. The drug and patient representations are concatenated and passed through the RECIST predictor network, 

which returns a predicted probability of response (RECIST category of CR or PR). 

 

The trained network can be used to predict drug response for a given mutation profile and drug. 

Note that only the drug embedding network, patient-specific VAE encoder and RECIST predictor 

networks are required during inference as shown in Fig. 8.  

 

Comparison of DruID with previous modelling approaches 

The architecture proposed above for DruID allows us to utilise unlabeled patient data, while 

simultaneously modelling both the distributional differences in omics inputs and differences in 

drug response measured across patients and cell lines. DruID also handles sparse nature of 

mutation data and enables the use of variant level information associated with these mutations. 

While some of these can be handled by extant DRP methods, DruID can perform all of these 

simultaneously. Table 2 shows a comparison of DruID against extant DRP methods. 
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Table 2: Comparison of existing DRP methods and DruID 

Method Variant 
Level 
Informati
on Used 

Use of 
unlabelled 
patient data 
in training 

Evaluation 
on 
mutations 

Modelling 
differences 
in drug 
response 
in patients 
and cell 
lines 

Modelling 
distribution
al 
differences 
in omics 
inputs 
across 
patients 
and cell 
lines  

Prediction 
possible on 
drugs not 
seen 
during 
training 

CODE-AE 
(He 2022) 

✗ ✓ ✓ ✗ ✓ ✗ 

Velodrome 
(Sharifi 
2021) 

✗ ✓ ✗ ✓ ✓ ✗ 

TUGDA 
(Peres 2021) 

✗ ✓ ✗ ✗ ✓ ✓ 

TCRP (Ma 
2021) 

✗ ✗ ✓ ✗ ✓ ✗ 

AITL (Sharifi 
2020) 

✗ ✗ ✗ ✓ ✓ ✗ 

PRECISE 
(Mourragui 
2019) 

✗ ✓ ✗ ✗ ✓ ✗ 

TRANSACT 
(Mourragui 
2021) 

✗ ✓ ✗ ✗ ✓ ✗ 

PACE 
(Anastopoulo
s 2021) 

✗ ✗ ✗ ✗ ✓ ✓ 

Prasse 2022 ✗ ✗ ✗ ✗ ✓ ✓ 

Tang 2022 ✗ ✗ ✓ ✓ ✓ ✓ 

DruID ✓ ✓ ✓ ✓ ✓ ✓ 

Table compares and contrasts existing DRP methods with respect to whether they (1) use variant level information 

about mutations, (2) use mutations for training or evaluating their models, (3) utilise unlabelled patient data, (4) model 

differences in drug responses across patients and cell lines (5) handle distributional differences between patients and 

cell lines and (6) can predict on drugs that are not seen during training. While most methods handle distributional 
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differences between patients and cell lines, most do not handle the differences in drug  response. Most methods do 

not use mutations and often do not utilise the available unlabelled data. 

Datasets 

TCGA 

The raw mutation data was obtained from The Cancer Genome Atlas (Weinstein 2013) GDC 

portal (https://portal.gdc.cancer.gov/). The response data was obtained from (Jia 2021). We only 

consider the cancer types belonging to the following TCGA projects/cancer types - LUAD, STAD, 

HNSC, SKCM, BLCA, UCEC, COAD, LUSC, BRCA, CESC. We further retain the TCGA samples 

which have a corresponding RECIST v1.1 response to the drugs Cisplatin, Paclitaxel, 5-

Fluorouracil, Gemcitabine, Docetaxel, Cyclophosphamide. These are the drugs with at least 50 

TCGA samples having a documented RECIST response. We further convert the RECIST labels 

into two categories - complete response(CR) and partial response(PR) are grouped together as 

responders while stable disease(SD) and progressive disease(PD) are grouped together as non-

responders. 

Mutations 

We first filter out and retain those TCGA samples which have a mutation classified as one of 

"Missense_Mutation", "In_Frame_Del", "Splice_Site", "Nonsense_Mutation", "Frame_Shift_Ins", 

"Frame_Shift_Del", "Nonstop_Mutation", "Translation_Start_Site", "In_Frame_Ins".  

Gene Expression 

The gene expression data from the TCGA GDC portal(v1.29.0) (Weinstein 2013) was used 

directly.  

IMAC Colorectal Cancer (IMAC-CRC) 

The raw data was obtained from patients with advanced colorectal cancer enrolled and consented 

into the Integrated Molecular Analysis of Cancer (IMAC) study. The IMAC study is an ongoing 

prospective trial using broad panel sequencing of refractory solid-organ malignancies to identify 

targetable molecular alterations in the Phase I unit of the National University Cancer Institute, 

Singapore (NCIS). We retained patients with successful sequencing on FoundationOne CDx and 

available response data from their first line therapy in the metastatic setting. Drugs with more than 

10 response events (patient, drug pairs) and available smiles string were included in subsequent 

training. These included 5-fluorouracil (includes capecitabine), irinotecan, oxaliplatin and 

cetuximab. We converted the RECIST labels into two categories - complete response(CR) and 

partial response(PR) are grouped together as responders while stable disease(SD) and 

progressive disease(PD) are grouped together as non-responders. 

 

IMAC-GO Ovarian Cancer (IMAC-OV) 

The raw data was obtained from patients with advanced ovarian cancer enrolled and consented 

into IMAC-Gynaecologic Oncology (IMAC-GO) study, a prospective study using broad panel 
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sequencing of advanced gynaecological malignancies in National University Cancer Institute, 

Singapore (NCIS).  We retained cases with successful sequencing on FoundationOne CDx and  

an evaluable response to first line treatment.  Patients who had undergone upfront cytoreductive 

surgery with no remaining evaluable disease post-operatively were excluded. Regimens in 

retained cases included cis/carbo-platin (combined as for analysis purposes) and paclitaxel.  

 

Both IMAC-CRC and IMAC-OV included cases utilising the FoundationOne CDx testing platform, 

giving mutational information of 324 genes of interest. We included reported pathogenic 

alterations and variants of uncertain significance. 

Cell Lines 

The raw data was obtained from the CCLE (Barretina 2012) DepMap portal 

(https://depmap.org/portal/download/all/?releasename=DepMap+Public+21Q3). The drug 

response for these cell lines was obtained from the GDSC portal 

(https://www.cancerrxgene.org/downloads/bulk_download ). We retained the cell lines which 

have a corresponding drug response measured in terms of AUDRC. 

 

For training with datasets listed above (TCGA, IMAC-CRC and IMAC-OV) we filter cell lines with 

responses to drugs retained in the the dataset in question.  

- For training with TCGA, we filter cell lines with responses to the drugs Cisplatin, Paclitaxel, 

5-Fluorouracil, Gemcitabine, Docetaxel and Cyclophosphamide.  This set of cell lines and 

TCGA patient samples is labelled CCLE-TCGA dataset.  

- For training with IMAC-CRC, we filter cell lines with responses to the drugs 5-Fluorouracil, 

Irinotecan, Cetuximab and Oxaliplatin. We call this set of cell lines and IMAC-CRC 

samples the CCLE-CRC dataset. 

- For training with IMAC-OV samples, we filter cell lines with responses to the drugs 

Cisplatin, Paclitaxel, Gemcitabine and Doxorubicin. This set of cell lines and IMAC-OV 

samples is labelled the CCLE-OV dataset.  

 

The CCLE-TCGA dataset consists of 689 cell lines and 470 TCGA patients, the CCLE-CRC 

dataset contains 689 cell lines and 82 colorectal cancer patients, while the CCLE-OV dataset 

contains 677 cell lines and 105 ovarian cancer patients. 

Mutations 

We retain only the mutations that are annotated as “damaging” and “other non-conserving”.  

Gene Expression 

The gene expression data from the CCLE DepMap portal was used directly. 

Experiment Settings 

After processing described above, we have three datasets consisting of a combination of cell lines 

and patient samples: (1) CCLE-TCGA, (2) CCLE-CRC and (3) CCLE-OV. The 3 datasets (i.e. 
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(patient, drug) pairs) were divided into 80-20 train-test splits, with 3 different random states to 

generate 3 splits (Supplementary Tables 5-15). 

 

Evaluation Metrics 

Since we modelled the task of drug response prediction in patients as a classification problem, 

we evaluated the performance of the model in terms of Area Under the Receiver Operating 

Characteristic curve (AUROC) and the Area Under the Precision Recall Curve (AUPRC). These 

metrics were calculated on the held-out 20% test splits on all 3 splits for CCLE-TCGA, CCLE-OV 

and CCLE-CRC datasets. The overall AUROC and AUPRC were calculated for each split by 

considering the predictions and ground truth labels for all the drugs together. The final results 

were reported per drug on each dataset, for all those drugs with at least 80 RECIST responses 

for CCLE-OV and CCLE-TCGA datasets, and at least 10 RECIST responses for CCLE-CRC 

dataset. The baseline AUPRC is calculated as the fraction of positive labelled test (patient, drug) 

pairs with respect to all test (patient, drug) pairs (Saito and Rehmsmeier). 

Features 

We encode the mutation, gene expression and copy number variation data, for all datasets, into 

vectors of different dimensions (Supplementary Table 16). These vectors can be binary (CNV, 

mutations) or real valued(annotated mutations, gene expression). These vectors also differ in the 

dimensionality based on the input genes used and the processing done. 

Experiments 

Clinical NGS data is sufficient for DRP model performance 

CODE-AE was trained on the train split of the CCLE-TCGA dataset (comprising patients and cell 

lines) and evaluated on the patients in the test split. 3 subsets of genes were considered: 

(i) only FoundationOne cNGS panel genes (324 genes) 

(ii) whole exome sequencing (WES) panel of 19536 genes and  

(iii) 285 genes that are common across FoundationOne, TruSight Oncology 500 and Tempus xF+ 

panels.  

This was repeated across all 3 random train-test splits of the CCLE-TCGA dataset. Details of the 

input features in each subset are provided in Supplementary Table 16.  

 

For WES, the feature space dimension was first reduced by using an autoencoder (AE) to project 

down to 324 dimensions before running CODE-AE. The AE had an encoder-decoder architecture 

with one bottleneck layer to project from 19536 to 324 dimensions. It was trained to minimise the 

Mean Squared Error (MSE) loss between input and reconstructed matrices, over 2000 epochs 

with a learning rate of 1e-4 and convergence threshold of 1e-5. This allowed us to train in our 

computing environment that had limited memory. For evaluation, the overall AUROC and AUPRC 

were calculated for each train-test split, by combining the predictions for each (patient, drug) pair 

in the test split. During evaluation only (patient, drug) pairs with 5-Fluorouracil, Cisplatin and 
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Paclitaxel as the drug were considered. These drugs had more than 80 (patient, drug) pairs in the 

TCGA dataset. To calculate the overall AUROC and AUPRC, the predicted responses from 

CODE-AE for (patient, drug) pairs for all three drugs, 5-Fluorouracil, Cisplatin and Paclitaxel, and 

their ground truth RECIST labels, were considered together. To test if the performance was 

significantly different across the 3 gene subsets, we conducted an ANOVA test across the overall 

AUROC and AUPRC for the 3 test splits. This resulted in a p-value of 0.8367 for overall AUROC 

and 0.78 for overall AUPRC. As such, we could not reject the null hypothesis that all 3 subsets 

had a similar performance across 3 test splits. 

 

Further, we combined all (patient, drug) pairs in the test splits of the 3 train-test splits, with respect 

to the predicted responses from CODE-AE and the ground truth RECIST labels. For (patient, 

drug) test pairs present in more than one test split, we took the mean predicted response across 

the test splits. This aggregation allowed us to combine the test split (patient, drug) pairs across 

the 3 test splits. In total the aggregated test set had 203 samples (patient, drug pairs on which 

the model predicts), with 90, 82 and 90 pairs across the three splits. To consider the differences 

across cancer types, we considered cancer types with more than 20 (patient, drug) test pairs. We 

repeated the above comparison across all 3 subsets of genes, using Velodrome as 

well(Supplementary Fig. 2).  

DruID: predicting chemotherapy drug response with cNGS data 

All the existing baseline models (CODE-AE, TCRP, TUGDA, Velodrome) were trained on the cell 

lines and patients in the train splits of the CCLE-TCGA dataset, and evaluated on the patients in 

the corresponding test splits. Only 324 genes from the FoundationOne panel were considered for 

all the experiments. This was repeated across all 3 train-test splits of the CCLE-TCGA dataset. 

For the baseline methods, the inputs were binary mutation vectors (i.e., without variant 

annotations). For DruID, initially a model was trained using CCLE-OV data (including all IMAC-

GO patients) (annotation, unsupervised domain adaptation and multi-task learning). Then another 

DruID model was instantiated with these learnt weights for each of the 3 drugs - 5-Fluorouracil, 

Cisplatin and Paclitaxel for each train split. Each of these drug-split-specific models was trained 

using the CCLE-TCGA train split consisting of (patient,drug) train pairs where the drug matched 

the drug in the drug-split-specific model. 

 

For evaluation, the overall AUROC and AUPRC were calculated for each train-test split, by 

combining the predictions for each (patient, drug) pair in the test split. To calculate the overall 

AUROC and AUPRC, the predicted responses from all the baseline methods for (patient, drug) 

pairs with 5-Fluorouracil, Cisplatin and Paclitaxel, along with their ground truth RECIST labels, 

were considered together. We checked the significance of overall AUROC and AUPRC across 

the 3 test splits for DruID and Velodrome (second-best performing model), using a t-test. We 

obtained a p-value of 0.004 on AUROC and 0.037 on AUPRC, indicating a significant difference 

between the performance of DruID and the second best-performing model. 

 

Further, for each method, we combined all (patient, drug) pairs in the 3 test splits as described 

earlier.The aggregated test set had 203 samples (patient-drug pairs), with 90, 82 and 90 pairs 
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across the three splits. This aggregated test set had 88 patients treated with Cisplatin, 58 patients 

treated with Paclitaxel and 57 patients treated with 5-Fluorouracil.  

 

We also conducted an ablation study by successively removing components of the DruID 

architecture(Supplementary Fig. 3). In the first ablation, we removed the variant annotation step. 

In the second ablation, we also removed the zero inflated loss terms and the zero inflated layer 

in the unsupervised domain adaptation step.  

Copy number variation (CNV) information or gene expression data does not improve 

DruID performance 

DruID was trained with different input data types, in this experiment. We used the cell lines and 

patients in the train splits of the CCLE-TCGA dataset for training and evaluated it on the patients 

in the test splits.  

 

We compared the performance when using only CNV data (this was one hot encoded to indicate 

loss, no change and amplification), only variant annotated mutation data and a combination of the 

two. For combining binary CNV and real valued variant annotated mutation data, the UDA step 

involved the use of 2 separate ZI VAEs (ZINB for CNV and ZINorm for variant annotated 

mutations) per domain. The representations from both ZI VAEs were concatenated and used as 

the representation in the further layers of the architecture. For evaluation, the overall AUROC and 

AUPRC were calculated for each train-test split, by combining the predictions for each (patient, 

drug) pair in the test split. To check the significance of the performance using annotated 

mutations, we ran a t-test between AUROC and AUPRC from DruID trained using only variant 

annotated mutations and DruID trained using a combination of copy number variation and variant 

annotated mutations (second best performing model), across the 3 test splits. This yielded a p-

value of 0.003 for AUROC and 0.013 for AUPRC, which indicated significant difference in 

performance of annotated mutations over copy number variation. 

 

Further, for each method, we combined all (patient, drug) pairs in the 3 test splits to obtain an 

aggregated test split, as described earlier, to obtain the AUROC and AUPRC curves (Fig. 3 (a)).  

We also compared the performance of these 3 input data types, across various drugs. For each 

input type, the mean AUROC and AUPRC for each drug across all 3 test splits were calculated, 

while plotting Fig. 3 (b). The significance was tested by comparing the AUROC and AUPRC 

across the 3 test splits for each drug, between annotated mutations and a combination of 

annotated mutations and copy number variation using a t-test. Annotated mutations were 

significantly better with respect to AUPRC and AUROC for 5-Fluorouracil (p = 0.004), and for 

AUROC for Paclitaxel (p = 0.009).  

 

Further, we compared the performance when using only gene expression data, only variant 

annotated mutation data and a combination of the two. Both data types were real valued and 

involved the use of ZINorm VAEs. Since some TCGA samples did not have gene expression data 

available, we dropped these from the test splits while comparing the performance across the 

various input types. For evaluation, the overall AUROC and AUPRC were calculated for each 

train-test split, by combining the predictions for each (patient, drug) pair in the test split. To check 
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the significance of the performance using annotated mutations, we ran a t-test between AUROC 

and AUPRC from DruID trained using only variant annotated mutations and DruID trained using 

only gene expression (second best performing model), across the 3 test splits. This yielded a p-

value of 0.007 for AUROC and 0.04 for AUPRC, which indicated significant difference in 

performance of annotated mutations over gene expression. Similar to CNV, we combined all 

(patient, drug) pairs in the test splits of the 3 train-test splits, with respect to the predicted 

responses from the method and the ground truth RECIST labels, to obtain the AUROC and 

AUPRC curves in Fig. 3(c). 

 

We also compared the performance of these 3 input data types, across various drugs. The 

significance was tested by comparing the AUROC and AUPRC across the 3 test splits for each 

drug, between annotated mutations and gene expression using a t-test. Annotated mutations 

were significantly better with respect to AUPRC (p = 0.021) and AUROC for Cisplatin (p = 0.028). 

Details of the input feature vectors are in Supplementary Table 16. 

Validating DruID on clinical datasets 

We evaluated DruID on two clinical datasets - CCLE-CRC and CCLE-OV, as described in the 

Results section.   

DruID was trained using the train splits of each dataset and evaluated on the corresponding test 

splits. We combined all (patient, drug) pairs in the 3 test splits (34, 33, 35 patient, drug pairs in 

each test split of CCLE-CRC and 32, 64, 32 patient, drug pairs in each test split of CCLE-OV 

dataset) as described earlier. The aggregated CRC test set had 38 patients treated with 5-

Fluorouracil, 23 patients treated with Oxaliplatin and 15 patients treated with Irinotecan, resulting 

in a total of 76 test (patient, drug) pairs. The aggregated OV test set had 55 patients treated with 

Cisplatin/Carboplatin, 53 patients treated with Paclitaxel, resulting in a total of 108 test (patient, 

drug) pairs. The mean predicted probability of response (Figure 4(d)), across responders and 

non-responders to each drug, was calculated by passing the prediction from DruID through a 

sigmoid function.  

 

Oncoplots for predicted non-responders and responders to 5FU and Cisplatin/carboplatin, across 

3 train-test splits on patients in CCLE-CRC and CCLE-OV, were generated using the maftools R 

package (Mayakonda 2018) (Fig. 4(e, f)). Predicted responders were those with predicted 

response in the top 20th percentile of predicted responses to the drug and predicted non-

responders were those with predicted response in the bottom 20th percentile of predicted 

responses to the drug. 
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Table 3: Key hyperparameters used to train DruID 

Stage II Unsupervised Domain Invariant Representation Learning 

Hyperparameter CCLE-TCGA CCLE-CRC CCLE-OV 

VAE hidden layer 
dimensions (encoder 
and decoder) 

No pre-training; uses 
model pre-trained on 
CCLE-IMACGO for 

fine tuning 

[128, 64] [128, 64] 

VAE activation 
function 

tanh tanh 

Learning Rate 1e-5 1e-5 

Epochs 1000 1000 

Convergence 
threshold 

1e-5 1e-5 

Stage III Multi-task Drug Response Prediction 

Hyperparameter CCLE-TCGA (fine-
tuning) 

CCLE-CRC CCLE-OV 

Batch size 256 256 256 

Epochs 50 500 500 

Cell line embedder 
learning rate 

1e-4 1e-4 1e-6 

Patient embedder 
learning rate 

1e-4 for 5-fu; 1e-3 for 
Cisplatin and 
Paclitaxel 

1e-3 1e-4 

AUDRC and RECIST 
predictor learning 
rate 

1e-3 for 5-fu; 1e-5 for 
Cisplatin; 1e-6 for 
Paclitaxel 

1e-6 1e-6 

Drug embedder 
learning rate 

1e-4 1e-4 1e-4 

Table shows the key hyperparameters used to train DruID, specifically in stages II and III on train split 0 for each dataset 

used in the experiments. For CCLE-TCGA dataset, the initial pre-training is done on the CCLE and IMAC-GO datasets 

with further fine-tuning done per drug. In all other cases, initial pre-training and fine-tuning are done on the same 

dataset. 
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Supplementary Material 

Background on other ML approaches 

Prior literature on drug response prediction has largely focused on cancer cell lines(Adam 2020, 

Chen 2021, Firoozbakht 2021). The availability of transcriptomic data in the form of gene 

expression, mutations, copy number variations in cell lines has resulted in a wide variety of 

machine learning models for drug response prediction. These methods range from linear 

regression and ensemble models to graph neural networks. However, DRP models trained on 

cell lines alone often translate poorly to patients (Mourragui 2019, Mourragui 2021, Sharifi-

Noghabi 2020).  This is partly due to inherent biological differences, meaning cell lines do not 

accurately represent patient tumours. Cell lines are essentially a subpopulation of the primary 

tumour and do not exhibit heterogeneity seen in vivo. The absence of the tumour 

microenvironment and interactions with the host of stromal cells present in patients is also key 

(Mourragui 2019, Huo 2020). In addition, technical differences in response measurement in cell 

lines versus in patients, and differences in drug dosing between cell lines and patients will affect 

interpretation of results by a DRP model.  

 

While omics data is increasingly available for many cancer patients (TCGA 2013, Cerami 2012), 

drug response data for these patients remains scarce and limited to standard of care therapies 

only. To address such challenges, transfer learning approaches including domain adaptation have 

been developed to train DRP models from both cell lines and patients (He 2022, Sharifi 2021, Ma 

2021). Transfer learning approaches are useful when there are limited samples available in the 

domain of interest (target domain), but a related domain (source domain) has a large number of 

labelled samples. (Pan 2009) have broadly grouped various transfer learning approaches based 

on whether the source and target domains are labelled or not. When both source and target 

domains are unlabeled, it is called unsupervised transfer learning. Methods which learn a shared 

representation space as part of pretraining, like CODE-AE (He 2022), fall into this category. If the 

source domain has labelled samples but the target domain is unlabeled, it is called transductive 

transfer learning. Methods like TUGDA, PACE, Velodrome (Peres 2021, Anastopoulos 2021, 

Sharifi 2021) fall into this category. If both domains have labelled samples, it is called inductive 

transfer learning. Methods like AITL (Sharifi 2020, Prasse 2022), TCRP (Ma 2021), molecular 

pathway based model (Tang 2022) use this approach where they utilise the limited number of 

labelled target domain samples as well.  

 

In all of these methods, they focus on one of two aspects that differentiate patients from cell lines 

- (1) distributional differences in omic profiles owing to differences in biological environment - 

termed “input space discrepancy”and (2) differences in the way drug response is measured - 

termed “output space discrepancy” (Sharifi 2020). Input space discrepancy is handled by finding 

a shared embedding space that is common to both cell lines and patients. To deal with the output 

space discrepancy, one way is to have separate drug response prediction networks for cell lines 

and patients. Doing so allows both networks to learn nuances specific to each domain, in the 

output space. Except AITL and Velodrome, all other methods address only one of these two 
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discrepancies. Models like (Prasse 2022), (Tang 2022), CODE-AE (He 2022), PACE 

(Anastopoulos 2021), PRECISE (Mourragui 2019), TRANSACT (Mourragui 2021), TUGDA 

(Peres 2021) and TCRP (Ma 2021) handle input space discrepancy but the same drug response 

prediction network is used by both the domains. The discrepancy in the output space is handled 

either by discretizing the cell line response based on empirically determined thresholds or by 

evaluating the predictions using correlation metrics. Models like Velodrome and AITL use a 

shared space for the domains to address input space discrepancy and use two separate 

prediction networks to handle discrepancies in the output space. In both cases, they train one 

model for each drug. When networks are trained in this manner, it becomes difficult to predict the 

response for a new/unseen drug since there is no trained network to perform inference with. This 

proves to be a challenge in the problem of drug repurposing.  

 

State-of-the-art transfer learning methods, which evaluated their models on patient data, have 

largely restricted their analysis to gene expression data (Sharifi 2021, Peres 2021). For example, 

CODE-AE(He 2022) used a set of 1426 genes (selected based on percentage of unique gene 

expression values) and Velodrome(Sharifi 2021) used a set of 2128 genes (selected based on 

network propagation over a protein-protein interaction network). The genes selected in these 

methods are not captured based on their presence in cNGS panels; nor are the number of chosen 

genes comparable across cNGS and these methods. Moreover, unlabeled patient samples 

remain unused resulting in inefficient use of available data. Requiring transcriptomic input data 

represents a challenge in bringing these methods to mainstream patient care and it remains 

unknown if such tools can accurately predict response from the limited number of recurrently 

altered cancer genes that are included in cNGS panels such as FoundationOne CDx (324 genes), 

Tempus (523 genes), and TruSight Oncology 500 (523 genes). To the best of our knowledge, no 

prior transfer learning methods have been evaluated on such a restricted subset of genes. 

Moreover, methods which have used mutations as inputs, have not considered the variant level 

information captured in cNGS reports; instead they treat all alterations as equal, resulting in loss 

of granularity and potential reduction in predictive accuracy. A comparison of existing DRP 

methods is available in Table 2. 
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Supplementary Results 

 
Supplementary Figure 1: Comparison of CODE-AE performance across 3 cNGS panels distinguished by cancer type 

(BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma, CESC: Cervical squamous cell carcinoma 

and endocervical adenocarcinoma, LUAD: Lung adenocarcinoma, STAD: Stomach adenocarcinoma, UCEC: Uterine 

Corpus Endometrial Carcinoma). Only cancer types with more than 20 (patient, drug) test pairs are considered here. 
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In most cancer types, the confusion matrices look similar across all 3 cNGS panels suggesting a similar predictive 

performance of cNGS panels compared to WES. 

 

Supplementary Table 1: CODE-AE performance across various subsets of genes. 

 Foundation One 
(324 genes) 

Common genes 
across 3 panels 
(285 genes) 

WES panel  
(19,536 genes) 

Sensitivity/Recall 0.272 0.291 0.311 

Specificity 0.673 0.692 0.692 

Precision 0.707 0.733 0.746 

Sensitivity, Specificity and Precision values, from CODE-AE, corresponding to confusion matrices in Fig.1b. 

 

  
 
Supplementary Figure 2 (a) Comparison of AUROC and AUPRC scores of response prediction for different input 

subsets of genes. Performance is measured on 3 randomly chosen test splits, using TCGA data. Velodrome is used 

to predict response. Results show that performance is not significantly different (p-value associated with AUROC 

comparison: 0.259, p-value associated with AUPRC comparison: 0.281) across the 3 subsets of genes, suggesting 

that predictive value of a subset of genes used in cNGS panels is similar to that of all genes from WES. Baseline 

value for AUPRC: 0.7438 
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Supplementary Figure 2 (b) Confusion matrices for different input subsets of genes on 203 samples from TCGA; 

predictions obtained using the method Velodrome. Predicted values were converted to binary responses using FPR 

and TPR thresholds of 0.3 each. Colour indicates the input subset, shade indicates magnitude of the values. All 3 

subsets of genes yield similar distributions in the confusion matrices. 

 

Supplementary Table 2: Velodrome performance across various subsets of genes. 

 Foundation One 
(324 genes) 

Common genes 
across 3 panels 
(285 genes) 

WES panel  
(19,536 genes) 

Sensitivity/Recall 0.3377 0.3709 0.3245 

Specificity 0.6923 0.6923 0.6538 

Precision 0.7612 0.7778 0.7313 

 
Sensitivity, Specificity and Precision values, from Velodrome, corresponding to confusion matrices in Figure 

Supplementary Fig. 2 (b).  
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Supplementary Figure 3 Ablation study with DruID. Performance (AUPRC, above and AUROC, below) after 

incremental component-wise removal from DruID of variant annotation (DruID-VA) and zero inflated loss (DruID-VA-

ZINB). Removal of each component reduces DruID’s performance, thus showing the importance of each component. 

 

Supplementary Fig. 3 shows the importance of two of our modelling strategies through an 

ablation study. From the complete DruID method, we first remove stage I to obtain DruID-VA 

(“DruID minus VA”). In DruID-VA, variant annotations are not used; instead 324-dimensional 

binary representations of cell lines and patients are used with each binary value indicating 

presence/absence of mutation(s) in the gene. We observe that DruID-VA achieves AUROC, 

AUPRC of 0.5715 and 0.7783 respectively, which is lower than that of DruID (0.6236 and 

0.8206 respectively). Next, we change our VAE model, to not use zero-inflated distributions to 

model sparse inputs. This further reduces the performance to AUROC of 0.5316 and AUPRC of 

0.762. 
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Data Processing 

Supplementary Table 3: Mapping ClinVar annotations 

Updated category ClinVar generated annotations 

Pathogenic Pathogenic, Pathogenic|drug_response|other, 
Pathogenic/Likely_pathogenic, Likely_pathogenic, 
Pathogenic/Likely_pathogenic|other, drug_response, 
Likely_pathogenic|other, Pathogenic|risk_factor, 
Pathogenic/Likely_pathogenic|drug_response, 
Likely_risk_allele, risk_factor 

Benign Likely_benign, Benign/Likely_benign, Benign 

Variants of Unknown Significance ., Uncertain_significance, 
Conflicting_interpretations_of_pathogenicity, 
not_provided, 
Conflicting_interpretations_of_pathogenicity|other, 
Uncertain_significance|drug_response, other 

Mapping of clinical significance categories obtained from ClinVar to 3 broad annotation categories - pathogenic, 

benign and variants of unknown significance. 

 

Supplementary Table 4: Description of AnnoVar annotations 

Algorithm Description 

SIFT (Ng, 2022) 

 

SIFT (Sorting Intolerant From Tolerant) uses sequence homology 

and the physical properties of amino acids to predict whether an 

amino acid substitution affects protein function; D: Deleterious 

(sift<=0.05); T: tolerated (sift>0.05) 

SIFT4G(Ng, 2022) SIFT 4G is a faster version of SIFT that scales up and provides 

SIFT predictions for more organisms 

LRT (Chun & Fay, 

2009) 

 

LRT (Likelihood Ratio Test) uses comparative genomics to 

identify variants that disrupt highly conserved amino acids within 

protein-coding sequences; D: Deleterious; N: Neutral; U: 

Unknown 

MutationTaster 

(Schwarz et al., 

2010) 

 

MutationTaster applies a naive Bayes classifier eventually predict 

the disease potential of an alteration; "A" 

("disease_causing_automatic"); "D" ("disease_causing"); "N" 

("polymorphism"); "P" ("polymorphism_automatic"); A, D signifies 

deleterious alterations 

MutationAssessor 

(Reva et al., 2011) 

 

MutationAssessor is based on evolutionary conservation of the 

affected amino acid in protein homologs by combinatorial entropy 

formalism to compute a Functional Impact Score (FIS); H: high; 
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M: medium; L: low; N: neutral. H/M signifies functional alterations 

and L/N signifies non-functional alterations 

FATHMM (Shihab 

et al., 2013) 

 

Predicts the functional, molecular, and phenotypic consequences 

of amino acid substitutions using hidden Markov models; D: 

Deleterious (<=-1.5); T: tolerated (>1.5) 

PROVEAN (Choi & 

Chan, 2015) 

 

PROVEAN (Protein Variation Effect Analyzer) provides a 

generalized approach to predict the functional effects of protein 

sequence variations including single or multiple amino acid 

substitutions, and in-frame insertions and deletions; D: 

Deleterious (<=-2.282); N: neutral(>-2.282) 

MetaSVM (Dong 

et al., 2015) 

Similar to SIFT but less missing values; D: Deleterious; T: 

Tolerated 

M-CAP 

(Jagadeesh et al., 

2016) 

M-CAP is a classifier for rare missense variants in the human 

genome that is tuned to the high sensitivity required in the clinic 

(combines previous pathogenicity scores (including SIFT, 

Polyphen-2 and CADD) with novel features and a powerful 

model); D: Deleterious (>=0.025); T: tolerated (<0.025) 

PrimateAI 

(Sundaram et al., 2018) 

 

Deep residual neural network for classifying the pathogenicity of 

missense mutations; D: Deleterious (>=0.803); T: tolerated 

(<0.803) 

DEOGEN2 

(Raimondi et al., 

2017) 

 

DEOGEN2 incorporates heterogeneous information about the 

molecular effects of the variants, the domains involved, the 

relevance of the gene and the interactions in which it participates. 

This is then non-linearly mapped into one single deleteriousness 

score for each variant; D: Deleterious (>=0.45); T: tolerated 

(<0.45) 

BayesDel - AF 

(Tian et al., 2019) 

 

BayesDel is a deleteriousness meta-score. It works for coding 

and non-coding variants, single nucleotide variants and small 

insertion / deletions. The range of the score is from -1.29334 to 

0.75731. The higher the score, the more likely the variant is 

pathogenic; For MaxAF -> D: Deleterious (>=0.0692); T: tolerated 

(<0.0692) 

BayesDel - noAF 

(Tian et al., 2019) 

 

BayesDel is a deleteriousness meta-score. It works for coding 

and non-coding variants, single nucleotide variants and small 

insertion / deletions. The range of the score is from -1.29334 to 

0.75731. The higher the score, the more likely the variant is 

pathogenic; Without MaxAF -> D: Deleterious (>=-0.0570); T: 
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tolerated (<-0.0570) 

ClinPred (Alirezaie 

et al., 2018) 

 

Prediction Tool to Identify Disease-Relevant Nonsynonymous 

Single-Nucleotide Variants; D: Deleterious (>=0.5); T: tolerated 

(<0.5) 

LIST-S2 (Malhis et 

al., 2020) 

 

Taxonomy based sorting of deleterious missense mutations 

across species where e higher scores imply higher potential 

deleteriousness; D: Deleterious (>=0.85); T: tolerated (<0.85) 

FATHMM MKL 

(Shihab et al., 

2015) 

 

Predicts the functional consequences of both coding and non-

coding sequence variants utilizing various genomic annotations, 

which have recently become available, and learns to weight the 

significance of each component annotation source; D: Deleterious 

(>=0.5); T: tolerated (<0.5) 

FATHMM XF 

(Rogers et al., 

2018) 

FATHMM with an eXtended Feature set (FATHMM-XF) which 

yields highly accurate predictions for SNVs across the entire 

human genome; D: Deleterious (>=0.5); T: tolerated (<0.5) 

Description of the 17 prediction algorithms used by Annovar to annotate a given mutation. These algorithms broadly 

flag mutations as deleterious or tolerated, which is further encoded as a binary outcome as part of DruID processing 

in Stage I variant annotations. 

 

Data Statistics 

Supplementary Table 5 

 

Drug Name Train split 
TCGA 

Test split 
TCGA 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 167 39 425 112 

PACLITAXEL 87 26 542 134 

5-
FLUOROURA
CIL 

100 25 468 121 

OVERALL 354 90 1435 367 

Number of (patient, drug) pairs in the train and test splits of CCLE-TCGA dataset split 0. Each cell indicates the 

number of patients/samples who were treated with the corresponding drug, which are further divided up across the 

train and test splits. 
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Supplementary Table 6: Overall - cancer type distribution: 

 

Cancer type Train split TCGA Test split TCGA 

BLCA 48 8 

BRCA 56 21 

CESC 49 13 

COAD 27 7 

HNSC 46 7 

LUAD 39 12 

LUSC 22 3 

SKCM 10 1 

STAD 59 16 

UCEC 27 7 

Supplementary Table 7: Number of (patient, drug) pairs in the train and test splits of TCGA dataset split 0. Each cell 

indicates the number of patients belonging to the specific cancer type indicated by the row, which are further divided 

up across the train and test splits. 

 

Drug specific - cancer type distribution (TCGA): 

 

Drug Cancer type Train split TCGA Test split TCGA 

CISPLATIN BLCA 32 4 

 CESC 39 11 

 HNSC 32 6 

 LUAD 27 10 

 LUSC 14 1 

 SKCM 7 0 

 STAD 12 7 

 UCEC 4 0 

PACLITAXEL BLCA 8 0 

 BRCA 19 12 
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 CESC 6 2 

 HNSC 12 1 

 LUAD 11 2 

 LUSC 2 1 

 SKCM 1 1 

 STAD 3 0 

 UCEC 25 7 

5-FLUOROURACIL BLCA 1 0 

 BRCA 16 5 

 CESC 4 0 

 COAD 27 7 

 HNSC 1 0 

 STAD 51 13 

Supplementary Table 7: Number of (patient, drug) pairs in the train and test splits of TCGA dataset split 0. Each cell 

indicates the number of patients belonging to the specific cancer type indicated by the row, which are further divided 

up across the train and test splits. These are also categorised based on the drug administered in each case. 

 

Split 0 (CCLE/NUH CRC): 

 

Drug Name Train split NUH 
CRC 

Test split NUH 
CRC 

Train split 
CCLE 

Test split 
CCLE 

5-
FLUOROURA
CIL 

65 17 468 121 

IRINOTECAN 20 10 531 137 

OXALIPLATIN 44 7 441 114 

OVERALL 129 34 1440 372 

Supplementary Table 8: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH CRC dataset split 0. 

Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are further 

divided up across the train and test splits. 
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Split 0 (CCLE/NUH Ovarian): 

 

Drug Name Train split NUH 
Ovarian 

Test split NUH 
Ovarian 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 88 17 425 112 

PACLITAXEL 87 15 540 136 

GEMCITABINE   425 112 

DOXORUBICI
N 

  447 110 

OVERALL 175 32 1837 470 

Supplementary Table 9: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH ovarian dataset split 

0. Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are 

further divided up across the train and test splits. 

Split 1 (CCLE/TCGA): 

 

Drug Name Train split 
TCGA 

Test split 
TCGA 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 168 38 426 111 

PACLITAXEL 87 26 538 138 

5-
FLUOROURA
CIL 

107 18 472 117 

OVERALL 362 82 1436 366 

Supplementary Table 10: Number of (patient, drug) pairs in the train and test splits of CCLE-TCGA dataset split 1. 

Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are further 

divided up across the train and test splits. 
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Split 1 (CCLE/NUH CRC): 

 

Drug Name Train split NUH 
CRC 

Test split NUH 
CRC 

Train split 
CCLE 

Test split 
CCLE 

5-
FLUOROURA
CIL 

65 17 468 121 

IRINOTECAN 22 8 532 136 

OXALIPLATIN 43 8 440 115 

OVERALL 130 33 1440 372 

Supplementary Table 11: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH CRC dataset split 

1. Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are 

further divided up across the train and test splits. 

Split 1 (CCLE/NUH Ovarian): 

 

Drug Name Train split NUH 
Ovarian 

Test split NUH 
Ovarian 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 73 32 430 107 

PACLITAXEL 70 32 540 136 

GEMCITABINE 1  430 107 

DOXORUBICI
N 

  449 108 

OVERALL 144 64 1849 458 

Supplementary Table 12: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH Ovarian dataset 

split 1. Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are 

further divided up across the train and test splits. 
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Split 2 (CCLE/TCGA): 

 

Drug Name Train split 
TCGA 

Test split 
TCGA 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 167 39 431 106 

PACLITAXEL 86 27 541 135 

5-
FLUOROURA
CIL 

101 24 473 116 

OVERALL 354 90 1445 357 

Supplementary Table 13: Number of (patient, drug) pairs in the train and test splits of CCLE-TCGA dataset split 2. 

Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are further 

divided up across the train and test splits. 

 

Split 2 (CCLE/NUH CRC): 

 

Drug Name Train split NUH 
CRC 

Test split NUH 
CRC 

Train split 
CCLE 

Test split 
CCLE 

5-
FLUOROURA
CIL 

65 17 473 116 

IRINOTECAN 24 6 534 134 

OXALIPLATIN 39 12 451 104 

OVERALL 128 35 1458 354 

Supplementary Table 14: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH CRC dataset split 

2. Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are 

further divided up across the train and test splits. 
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Split 2 (CCLE/NUH Ovarian): 

 

Drug Name Train split NUH 
Ovarian 

Test split NUH 
Ovarian 

Train split 
CCLE 

Test split 
CCLE 

CISPLATIN 89 16 430 107 

PACLITAXEL 86 16 540 136 

GEMCITABINE 1  430 107 

DOXORUBICI
N 

  449 108 

OVERALL 176 32 1849 458 

Supplementary Table 15: Number of (patient, drug) pairs in the train and test splits of CCLE-NUH Ovarian dataset 

split 2. Each cell indicates the number of patients/samples who were treated with the corresponding drug, which are 

further divided up across the train and test splits. 

Features 

 

Input Type Feature Set Encoding 

Mutations (F1 genes) 
vector 

324 genes sequenced in 
FoundationOne report 

324-dimensional binary vector with 1 bit 
per gene sequenced. A value of 1 
indicates presence of mutation in a gene 
and 0 indicates its absence. 

Mutations (All genes) 
vector 

All 19536 genes 
sequenced 

19536-dimensional binary vector with 1 bit 
per gene sequenced. A value of 1 
indicates presence of mutation in a gene 
and 0 indicates its absence. 

Mutations (285 
genes) vector 

285 genes sequenced in 
FoundationOne, Tempus 
xF+ and TruSight 
Oncology 500 reports 

285-dimensional binary vector with 1 bit 
per gene sequenced. A value of 1 
indicates presence of mutation in a gene 
and 0 indicates its absence. 

Gene expression (F1 
genes) vector 

324 genes sequenced in 
FoundationOne report 

324-dimensional real-valued vector with 1 
dimension per gene sequenced. No 
additional encoding done over raw data. 

Copy number 
variation CNV (F1 
genes) vector 

324 genes sequenced in 
FoundationOne report 

972-dimensional binary vector with 3 bits 
per gene sequenced. Raw data encoded 
with -1 indicating loss, +1 indicating 
amplification and 0 indicating no change. 
This was further one hot encoded to obtain 
3 bits per gene. 
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Combined CNV and 
annotated mutation 
(F1 genes) vector 

324 genes sequenced in 
FoundationOne report 

Obtained by concatenating VAE encoded 
representation for mutations (F1 genes) 
vector and VAE encoded representation 
for copy number variation CNV (F1 genes) 
vector. 

Combined gene 
expression and 
annotated mutation 
(F1 genes) vector 

324 genes sequenced in 
FoundationOne report 

8100-dimensional vector obtained by 
concatenating annotated mutations (F1 
genes) vector and gene expression (F1 
genes) vector. 

Variant annotated 
mutation (F1 genes) 
vector 

324 genes sequenced in 
FoundationOne report 

7776-dimensional vector obtained after 
variant annotation using Annovar, GPD 
and ClinVar, followed by an aggregation 
across all mutations in each gene. 

Supplementary Table 16: Summary of various input data types used across all the experiments in this paper. 

Mutations, copy number variations, gene expression and annotated mutation vectors are the key input data types. 

We further create different subsets based on the number of genes considered in each case. The resulting dimensions 

of the feature vectors are also described, in each case. 
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