
TITLE: Development of a prediction model for 30-day COVID-19 hospitalization and death in a national 
cohort of Veterans Health Administration patients – March 2022 - April 2023. 
 
AUTHORS: David P. Bui1,2, Kristina L. Bajema1,3, Yuan Huang4,5, Lei Yan4,5, Yuli Li4, Rajeevan 
Nallakkandi4, Kristin Berry6, Mazhgan Rowneki2, Stephanie Argraves4, Denise Hynes2,7, Grant Huang8, 
Mihaela Aslan4,8, George N. Ioannou6,9 
 

1. Veterans Affairs Portland Health Care System, Portland, OR  
2. Center of Innovation to Improve Veteran Involvement in Care (CIVIC), Veterans Affairs Portland 

Healthcare System, Portland, OR  
3. Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, 

Portland, OR 
4. Veterans Affairs Cooperative Studies Program Clinical Epidemiology Research Center (CSP 

CERC), Veterans Affairs Connecticut Healthcare System, West Haven, CT  
5. Department of Biostatistics, Yale School of Public Health, New Haven, CT  
6. Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA  
7. Health Management and Policy, School of Social and Behavioral Health Sciences, College of 

Public Health and Human Sciences; Health Data and Informatics Program, Center for 
Quantitative Life Sciences, Oregon State University, Corvallis, OR  

8. Office of Research and Development, Veterans Health Administration, Washington, DC  
9. Divisions of Gastroenterology, Veterans Affairs Puget Sound Healthcare System and University 

of Washington, Seattle, WA  
 

 
 
Corresponding Author:  
David Bui 
Veterans Affairs Portland Health Care System  
3710 SW UW Veterans Hospital Road  
Portland, OR 97239 
David.bui@va.gov  
 
 

  



ABSTRACT  

Objective: Develop models to predict 30-day COVID-19 hospitalization and death in the Omicron era for 

clinical and research applications.   

Material and Methods: We used comprehensive electronic health records from a national cohort of 

patients in the Veterans Health Administration (VHA) who tested positive for SARS-CoV-2 between March 

1, 2022, and March 31, 2023. Full models incorporated 84 predictors, including demographics, 

comorbidities, and receipt of COVID-19 vaccinations and anti-SARS-CoV-2 treatments. Parsimonious 

models included 19 predictors. We created models for 30-day hospitalization or death, 30-day 

hospitalization, and 30-day all-cause mortality. We used the Super Learner ensemble machine learning 

algorithm to fit prediction models. Model performance was assessed with the area under the receiver 

operating characteristic curve (AUC), Brier scores, and calibration intercepts and slopes in a 20% holdout 

dataset.  

Results: Models were trained and tested on 198,174 patients, of whom 8% were hospitalized or died 

within 30 days of testing positive. AUCs for the full models ranged from 0.80 (hospitalization) to 0.91 

(death). Brier scores were close to 0, with the lowest error in the mortality model (Brier score: 0.01). All 

three models were well calibrated with calibration intercepts <0.23 and slopes <1.05. Parsimonious 

models performed comparably to full models. 

Discussion: These models may be used for risk stratification to inform COVID-19 treatment and to 

identify high-risk patients for inclusion in clinical trials. 

Conclusions: We developed prediction models that accurately estimate COVID-19 hospitalization and 

mortality risk following emergence of the Omicron variant and in the setting of COVID-19 vaccinations and 

antiviral treatments.  



INTRODUCTION 

Early in the COVID-19 pandemic, many prognostic prediction models were developed to identify 

persons infected with SARS-CoV-2 who could be at high risk for adverse outcomes (1–3). These models 

informed implementation of risk reduction measures, clinical care, and resource allocation (4). Despite 

reductions in mortality and hospitalization rates, COVID-19 remains a leading cause of death in the 

United States and accounts for thousands of hospitalizations every week nationally (5). COVID-19 risk 

prediction models may continue to inform patient care and policy decisions, particularly as effective 

vaccines and antiviral treatments have become available (6,7). Such models may also help identify high-

risk patients for facilitating future clinical trials of new pharmacotherapies.  

Currently available COVID-19 risk prediction models have important limitations. First, most 

models were developed early in the pandemic (8–13) and do not account for current circulating viral 

strains, population immunity from previous infection or vaccination, and treatments. This is particularly 

important as risk models are sensitive to population contextual factors under which they are developed. 

Model performance, especially calibration, may diminish over time as context (e.g., population immunity, 

treatment availability) changes (14,15). Moreover, most models were developed among acutely ill 

patients receiving care in the hospital (13,16–18) and emergency department settings (19), focusing 

predominantly on mortality and severe outcomes, and may not be applicable to or perform well in a 

broader population, particularly as mortality rates have declined. Most COVID-19 risk models have largely 

relied on parametric regression models with strong assumptions of linearity (e.g., logistic regression) 

which may not be met for many predictors. Further, most available models rarely leverage ensemble 

methods which can utilize parametric and nonparametric modeling approaches to hedge against model 

misspecification and have been shown to improve predictive performance in diverse applications (20–22).  

We report the development, assessment, and internal validation of multivariable risk prediction 

models for 30-day hospitalization and death among patients with COVID-19, which use more recent data 

to reflect the current context of COVID-19 and leverage an ensemble modeling approach. These models 

were developed on a large national source population of United States Veterans enrolled in Veterans 

Health Administration (VHA) care using detailed covariates captured in electronic health records (EHR).  

 



MATERIAL AND METHODS 

 Data sources, Participants, and Sample Size 

We used the Department of Veterans Affairs (VA) COVID-19 Shared Data Resource (CSDR) to 

identify patients with COVID-19. The CSDR includes data on all VHA patients who had laboratory-

confirmed SARS-CoV-2 tests performed in the VHA as well as tests performed outside the VHA and 

documented in clinical notes. In addition to CSDR, we used the VA Corporate Data Warehouse, a 

repository of VA comprehensive electronic health records, which includes a broad range of demographic 

(e.g., age, sex, race), geographic, and clinical variables (e.g., vaccination, comorbidity indicators) in our 

prediction models. Hospitalization and mortality outcomes obtained from CSDR, and hospitalizations 

were further supplemented with claims data for purchased care provided outside of the VHA through the 

VHA Integrated Veteran Care Program and with Fee-for-Service claims from the Centers for Medicare & 

Medicaid Services (CMS). CMS data were also used to supplement data on COVID-19 vaccinations.   

For model development and validation, we selected all patients aged 18 years and older with a 

first positive SARS-CoV-2 test in CSDR between March 1, 2022, and March 31, 2023. Patients from all 

VHA facilities across 50 states and territories were eligible for inclusion. We limited the cohort to patients 

obtaining VHA care, define as having a VHA primary care encounter in the 18 months preceding the 

positive test to minimize missing data and improve ascertainment of key variables.   

Outcomes 

We developed separate models to predict three outcomes: 1) 30-day hospitalization or death 

(composite outcome model), 2) 30-day hospitalization (hospitalization model), and 3) 30-day all-cause 

mortality (mortality model). Hospitalizations and deaths were counted if they occurred within 30 days from 

the first test-positive date for each patient.  

Predictors 

We reviewed predictors available in the EHR and selected covariates for model development 

based on prior research and clinical knowledge (6,24–26). We selected 84 predictors, including 

demographic variables (e.g., age, sex, race), geographic variables (e.g., region of residence, rurality), 

body mass index, indicators for comorbidities, COVID-19 vaccination status, and receipt of outpatient 

anti-SARS-CoV-2 treatments, including nirmatrelvir-ritonavir, molnupiravir, and monoclonal antibodies. 



COVID-19 treatments were considered in the list of candidate predictors as studies have shown including 

treatments known to affect outcomes can enhance predictive performance and precision in prognostic 

models (27,28); inclusion of post-infection treatment further flexibly allows prediction of pre-treatment and 

on-treatment risk.  We included both individual comorbidity indicators (e.g., type 1 diabetes, type 2 

diabetes, diabetes with complications) as well as composite indicators of related comorbidities (e.g., any 

diabetes). We also included three index measures of vulnerability and frailty, including the Area 

Deprivation Index (ADI) (29) the Charlson Comorbidity Index (CCI) (30), and the Care Assessment Needs 

(CAN) score (31), an automated EHR-based risk score developed at the VHA to predict 1-year mortality 

(32). See Supplement S1 for full list of predictors.  

Training and holdout test datasets 

We used a random 80/20 data split of our full cohort to create a training and a holdout dataset, 

respectively. Sampling was done at the VHA facility level such that all patients from a given station were 

either allocated to the training dataset or test dataset but not both. This data partition approach ensured 

our models were developed on a population that was geographically different from the population in which 

we tested model performance.  

Data Pre-Processing and Missing Data 

 We pre-processed the training dataset to ensure categorical variables were properly modeled and 

missing data was imputed. Missing data was rare, with just 3,971 (2%) of our cohort missing one or more 

variables; the CAN score was the most frequently missing variable and was missing for 2,883 (1.4%) of 

patients. Categorical predictors were one-hot coded by creating a series of binary ‘dummy’ indicator 

variables for each factor level with a reference level omitted; most prevalent levels served as the referent. 

Missing continuous covariates were imputed with observed medians, and missing categorical covariates 

were imputed with observed modes. We created covariate-specific missing indicators (0/1) to flag 

observations with missing and imputed covariate values to allow covariate missingness to be an outcome 

predictor, which will allow future prediction with missing data (33,34).  

Statistical analysis methods: model development 

We used the Super Learner (SL) algorithm to develop a risk prediction model for each specified 

outcome (20). SL is an ensemble machine learning algorithm that leverages cross-validation to find 



optimal weighted combinations of a pre-specified ensemble of models and algorithms (i.e., learners) to 

improve prediction. The SL algorithm requires minimal assumptions, is flexible enough to include both 

parametric and nonparametric learners, and mitigates the risk of overfitting in high-dimensional 

applications through cross-validation making it an ideal algorithm for complex prediction problems 

(21,22,34). The SL algorithm has been applied in numerous prediction (35) and causal inference studies 

and shown to perform as well as or better than the best performing individual learner, and is especially 

well-suited for rare outcomes (21,36). We used the ‘SuperLearner’ R package (version 2.0-28.1) to build 

our SL models.  

In total, our final ensembles included a library of 10 distinct learners, including general linear 

models, penalized regressions (LASSO and ridge regression LASSO and ridge regression), and machine 

learning algorithms such as generalized additive models, multivariate adaptive regression splines, neural 

networks, random forest , and XGBoost (see Supplement S2 for learners and hyperparameters). For 

machine learning algorithms included in the ensemble, we used the ‘caret’ package (version 6.0-94) to 

perform a series of cross-validated grid searches of hyperparameters in a random 50% sample of the 

training dataset (to reduce computation time) and used the set of parameters that maximized the cross-

validated area under the receiver operating characteristic curve (AUC) for the composite hospitalization or 

death outcome model (37).  

To fit ensemble models, we used a 5-fold cross-validation scheme stratified on outcome to 

generate cross-validated predictions from each included learner, which were then used in a meta-learner 

to obtain final ensemble model weights for prediction. Based on our effective sample size and guidance 

from Phillips et al. (22), we chose 5-fold cross-validation for fitting our SL models to minimize computation 

time and bias in cross-validated risk estimates. We used the non-negative binomial likelihood 

maximization meta learner in the ‘SuperLearner’ package which has been shown to perform well for SL 

classification models (36) (see Supplement S3 for full SL model specifications).  

Assessing ensemble model performance and variable importance 

For each fitted outcome model, we assessed model performance in two ways. First, we 

conducted 5-fold cross-validation of each ensemble model with the training dataset to estimate the 

ensemble model’s performance in unseen data with average AUC (a measure of discrimination, with 1 



indicating perfect discrimination) as the target performance metric. Second, we assessed each model’s 

performance in the holdout dataset and reported each model’s AUC, Brier score (a measure of accuracy, 

with 0 indicating perfect accuracy), and Cox’s calibration intercept and slope (an intercept of 0 and slope 

of 1 indicating perfect calibration); no model updating or recalibration was conducted (38,39). Model 

calibration was also visually assessed in the holdout test dataset using local regression-smoothed 

calibration curves. We further estimated calibration intercepts and slopes for each model across various 

subgroups in the holdout dataset to assess local model calibration by age, race, ethnicity, region, and 

CAN score (39).  

To compare our models’ performance against existing risk stratification scores, we estimated 

AUC, Brier scores, and calibration intercepts and slopes for the CAN score and the VACO Index, a 

publicly available risk score for 30-day COVID-19 mortality that was developed in the VHA population 

early in the pandemic (11,40). For the CAN score, we used Platt scaling to recalibrate the score to our 

COVID-19 outcomes in the training model dataset (39). The CAN score was modeled using restricted 

cubic splines with five knots and outcomes were predicted and assessed in the holdout dataset. We also 

calculated the absolute net reclassification index (NRI) for our full mortality model compared with CAN 

and VACO index to assess the improvement in our models’ ability to classify patients into lower and high 

risk groups (41). The absolute NRI measures the absolute percent of patients correctly reclassified in our 

developed model; greater positive NRIs suggest improvements in classification. Model performance 

metrics and NRI were estimated in the holdout test dataset.  

To understand variable importance from our SL models, we calculated SHapley Additive 

exPlanations (SHAP) values from each model to understand the average marginal contribution of each 

variable to the predicted outcome probability (42). For computational efficiency, we estimated SHAP 

values from the individual learner assigned the most weight in each ensemble. SHAP values were 

estimated using the ‘shapviz’ R package (version 0.9.2). For visual clarity, we collapsed comorbidity 

indicators in the same domain (e.g., indicators for heart disease and heart failure were collapsed into 

‘cardiovascular diseases’) and collapsed one-hot coded categorical variables (e.g., individual race 

indicators) and plot the top 15 feature domains in terms of largest average absolute SHAP value.  

 



Parsimonious model development  

 In addition to the full models, we developed and assessed a set of parsimonious models for each 

outcome which included the subset of most important predictors from our full models (the top 15 feature 

domains with highest SHAP values). To facilitate future model implementation in other healthcare 

systems, we omitted variables used exclusively within VHA, including the CAN score, facility complexity 

indicator, and residency at a Community Living Center (VA nursing home). These models were trained 

using the same learners and parameters used to fit the full ensemble models. We use the same 

performance metrics used to assess our full models and further calculate the absolute NRI for these 

parsimonious models compared with the full models. All analyses were conducted in R (version 4.3.1). 

We followed the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis (TRIPOD) statement in preparing this manuscript (23).  The study was approved 

by the VA Central Institutional Review Board. 

 

 

RESULTS 

Participants 

We identified 198,174 VHA patients engaged in VHA care with a first positive COVID-19 test 

between March 1, 2022, and March 31, 2023; the cohort was predominantly male (174,110 [88%]), White 

(133,461 [67%]), non-Hispanic or Latino (166,670 [84%]), and with average age of 63 years (Table 1). 

Comorbid conditions were common, with 141,256 (71%) having cardiovascular disease, 91,144 (46%) 

having a mental health diagnosis (including bipolar disorder, depression, post-traumatic stress disorder, 

and schizophrenia), and 19,999 (10%) who were immunocompromised. Most (156,956 [79%]) were 

COVID-19 vaccinated. The patients in the training and holdout test datasets were similar on nearly all 

characteristics except race (SMD=0.18) and region (SMD=0.35). There were 15,037 (8%) persons in the 

cohort who were hospitalized or died within 30-days of testing positive, including 2,444 (1%) who died 

(Table 1). 



Table 1. Cohort characteristics  

Characteristic 
Overall,  

N = 198,1741 
Training,  

N = 158,7481 
Holdout,  

N = 39,4261 
SMD 

Age (years) 63.7 (15.51) 63.6 (15.54) 64.0 (15.38) -0.026 
    Unknown 1 1 0   
Male sex 174,110 (87.9%) 139,175 (87.7%) 34,935 (88.6%) -0.029 
Race       0.183 
    American Indian/Alaska Native 1,541 (0.8%) 1,199 (0.8%) 342 (0.9%)   
    Asian 3,015 (1.5%) 2,682 (1.7%) 333 (0.8%)   
    Black or African American 42,285 (21.3%) 35,815 (22.6%) 6,470 (16.4%)   
    Native Hawaiian/Pacific Islander 1,938 (1.0%) 1,610 (1.0%) 328 (0.8%)   
    White 133,461 (67.3%) 105,233 (66.3%) 28,228 (71.6%)   
    Unknown 15,934 (8.0%) 12,209 (7.7%) 3,725 (9.4%)   
Ethnicity       0.009 
    Not Hispanic or Latino 166,670 (84.1%) 133,613 (84.2%) 33,057 (83.8%)   
    Hispanic or Latino 18,765 (9.5%) 14,978 (9.4%) 3,787 (9.6%)   
    Unknown 12,739 (6.4%) 10,157 (6.4%) 2,582 (6.5%)   
Smoking Status       0.050 
    Never 80,256 (40.5%) 64,869 (40.9%) 15,387 (39.0%)   
    Former 80,316 (40.5%) 64,216 (40.5%) 16,100 (40.8%)   
    Current 30,920 (15.6%) 24,264 (15.3%) 6,656 (16.9%)   
    Unknown 6,682 (3.4%) 5,399 (3.4%) 1,283 (3.3%)   
Rurality       0.040 
    Rural 50,747 (25.9%) 40,097 (25.5%) 10,650 (27.3%)   
    Urban 145,474 (74.1%) 117,101 (74.5%) 28,373 (72.7%)   
    Unknown 1,953 1,550 403   
Region       0.350 
    South 78,360 (39.5%) 60,599 (38.2%) 17,761 (45.0%)   
    West 47,701 (24.1%) 41,233 (26.0%) 6,468 (16.4%)   
    Midwest 36,781 (18.6%) 26,593 (16.8%) 10,188 (25.8%)   
    Northeast 35,332 (17.8%) 30,323 (19.1%) 5,009 (12.7%)   
Facility Complexity 1a 93,817 (47.3%) 74,743 (47.1%) 19,074 (48.4%) -0.026 
VA Station Population 2,252.9 (1,181.95) 2,254.0 (1,196.06) 2,248.4 (1,123.33) 0.005 
Care Assessment Needs Score 51.6 (30.29) 51.5 (30.30) 52.1 (30.22) -0.022 
    Unknown 2,883 2,253 630   
Charlson Comorbidity Index 1.9 (2.27) 1.9 (2.27) 2.0 (2.30) -0.020 
Area Deprivation Index 53.2 (25.14) 52.4 (25.38) 56.5 (23.91) -0.164 
    Unknown 519 429 90   
Chronic Kidney Disease 32,615 (16.5%) 26,101 (16.4%) 6,514 (16.5%) -0.002 
Cardiovascular Disease 141,256 (71.3%) 112,883 (71.1%) 28,373 (72.0%) -0.019 
Diabetes 68,286 (34.5%) 54,625 (34.4%) 13,661 (34.6%) -0.005 
Immunocompromised 19,999 (10.1%) 15,945 (10.0%) 4,054 (10.3%) -0.005 
Liver Disease 19,851 (10.0%) 15,647 (9.9%) 4,204 (10.7%) -0.027 
Lung Disease 67,101 (33.9%) 53,405 (33.6%) 13,696 (34.7%) -0.023 
Substance/Alcohol Use Diagnosis 45,504 (23.0%) 36,080 (22.7%) 9,424 (23.9%) -0.028 
Mental Health Diagnosis 91,144 (46.0%) 73,222 (46.1%) 17,922 (45.5%) 0.013 
COVID-19 Vaccination Status       0.018 
    Primary 50,013 (25.2%) 40,307 (25.4%) 9,706 (24.6%)   
    Boosted 106,943 (54.0%) 85,485 (53.8%) 21,458 (54.4%)   
    Unvaccinated 41,218 (20.8%) 32,956 (20.8%) 8,262 (21.0%)   
30-day COVID-19 Hospitalization or Death 15,037 (7.6%) 11,739 (7.4%) 3,298 (8.4%) -0.036 
30-day All-cause Mortality 2,444 (1.2%) 1,924 (1.2%) 520 (1.3%) -0.010 
30-day COVID-19 Hospitalization 13,183 (6.7%) 10,265 (6.5%) 2,918 (7.4%) -0.037 
1 Mean (SD); n (%) 



 

Model development 

 The ensemble models were successfully fitted with all ten pre-specified learners. In the composite 

and hospitalization models, only the XGBoost, random forest, and GAM learners received an ensemble 

weight; the XGBoost learner accounted for over 60% of the ensemble weights for the composite and 

hospitalization models. The mortality model showed greater diversity in learners that were weighted 

(including LASSO regression, and multivariate adaptive regression splines) with a more even weight 

distribution (Table 2).  

 Overall, each model showed good cross-validated discrimination with AUC estimates >0.80 in the 

composite (AUC: 0.82, range: 0.81 – 0.83) and hospitalization (AUC: 0.80, range: 0.80 – 0.81) models 

(Table 2). The mortality model had the highest cross-validated AUC of 0.91 (range: 0.90 – 0.93). The full 

ensemble models generally had higher average cross-validated AUCs than the individually included 

learners.  

Model performance in holdout test dataset 

 Histograms of predicted risks from each model are shown in Supplement S4, showing a right-

skewed distribution with predicted risks ranging from <1% to 70% for the composite outcome model, <1% 

to 57% for the hospitalization model, and <1% to 49% for the mortality model. The ensemble models all 

performed well in the holdout test dataset with AUCs >0.80 and were similar to the cross-validated 

estimates (Figure 1). The Brier scores for the ensemble models were all close to 0 with the largest score 

in the composite model (Brier score: 0.07) and lowest score in the mortality model (Brier score: 0.01) 

suggesting good prediction and classification accuracy. The ensemble models all showed good model 

calibration, with calibration slopes all close to 1 suggesting the spread of estimated risks generally align 

with observed risk. Calibration intercepts were all positive suggesting slight underestimation in predicted 

risks, but the magnitude of miscalibration was low with calibration intercepts all <0.3 (Figure 1). Model 

calibration by age, sex, race, ethnicity, region, and CAN score generally display consistent calibration 

across all subgroups (see Supplement S5a – S5c).  



Table 2. Ensemble model weights and 5-fold cross-validated area under the receiver operating characteristic curve (AUC) 
for individual learners and fitted ensemble model in training dataset. 

 Ensemble Model Learner Weights Mean 5-fold Cross-validated AUC (range) 

  

Composite 
model 

Hospitalization 
model 

Mortality 
model 

Composite outcome 
model 

Hospitalization 
model Mortality model 

SL Ensemble -- -- -- 0.821 (0.809, 0.834) 0.803 (0.796, 0.811) 0.911 (0.9, 0.925) 

Mean Model 0 0 0 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 
Logistic Regression 0 0 0 0.813 (0.799, 0.825) 0.796 (0.789, 0.801) 0.904 (0.893, 0.916) 
Bayesian GLM 0 <0.001 0 0.813 (0.800, 0.825) 0.796 (0.789, 0.801) 0.905 (0.893, 0.920) 
MARS 0 0 0.16 0.807 (0.794, 0.818) 0.788 (0.782, 0.795) 0.889 (0.873, 0.905) 
GAM 0.15 0.14 0.14 0.817 (0.805, 0.829) 0.799 (0.792, 0.807) 0.908 (0.899, 0.917) 
Ridge Regression 0 0 0 0.814 (0.800, 0.825) 0.797 (0.79, 0.803) 0.905 (0.893, 0.920) 
LASSO Regression 0 0 0.19 0.813 (0.800, 0.825) 0.796 (0.789, 0.802) 0.905 (0.893, 0.920) 
Random Forest 0.22 0.21 0.24 0.817 (0.803, 0.830) 0.798 (0.791, 0.807) 0.907 (0.893, 0.921) 
Neural Network 0 0 0 0.814 (0.801, 0.827) 0.795 (0.787, 0.801) 0.878 (0.854, 0.900) 
XGBoost 0.63 0.65 0.26 0.821 (0.809, 0.833) 0.803 (0.796, 0.811) 0.908 (0.897, 0.919) 

LM: generalized linear model; LASSO:  least absolute shrinkage and selection operator.  



Comparison with existing risk scores 

  Both the recalibrated CAN score and VACO Index had lower AUCs than our full ensemble 

models for predicting COVID-19 outcomes, although the AUCs for mortality in both the CAN score and 

VACO Index were >0.80 (Supplement S6). In terms of model calibration, the CAN score showed nearly 

perfect calibration with intercepts <0.2 and slopes of 1. The VACO Index had an intercept of -2.1 and a 

calibration slope >1, suggesting more extreme predicted risks than observed in our holdout cohort. 

Compared with the VACO Index, our mortality model showed an absolute increase of +13% in correctly 

reclassifying 30-day mortality (Supplement S7a). Compared with the recalibrated CAN score, our 

mortality model showed a decrease in the absolute NRI of -7%, driven by reclassification errors among 

patients without the outcome. 

Variable importance 

SHAP values were estimated from the XGBoost model in each ensemble since it was the learner 

with the greatest weight and values for the top 15 variable domains in each ensemble model are shown in 

Figure 2 (See Supplement S7 for SHAP values for all predictors). In all models, the CAN score had the 

highest importance with SHAP values all >0.5 and was highest in the mortality model (CAN score SHAP 

value: 1.35). The vulnerability and frailty indices were strong predictors of outcomes with CAN, CCI, and 

ADI all included in the top 15 predictors. Outpatient COVID-19 treatment and vaccination status were 

important predictors, ranking among the top 5 with largest SHAP values. Facility complexity level was 

also among the top 5 predictors in the composite and hospitalization models (but not the mortality model), 

suggesting treating facility complexity may be more relevant for hospitalization risk than death (43). While 

cardiovascular disease, receipt of immunosuppressive medications or cancer therapies, and mental 

health conditions were among the top 15 predictors, other high-risk chronic conditions like diabetes, liver 

disease, and lung disease did not have high SHAP values (see Supplement for full list). Notably, race had 

the 9th largest SHAP value (SHAP value: 0.076) in the mortality model but was not among the top 15 

features for the composite or hospitalization models.  



Figure 1. Calibration plots and performance metrics in holdout test dataset for A) Full 30-day Composite Model, B) Full 30-day 
Hospitalization Model, C) Full 30-day Mortality Model, D) Parsimonious 30-day Composite Model, E) Parsimonious 30-day Hospitalization 
Mode, and F) Parsimonious 30-day Mortality Model. 

 

White 45-degree line represents ideal model calibration. Solid black line represents the nonparametric local regression-smoothed calibration curve. Triangle points 
represent the average actual outcome probability for grouped deciles of the predicted probability. The rug plot at the bottom of each panel shows the distribution of 
predicted probabilities. 



 

Figure 2. Bee swarm plot showing distribution of SHAP values and mean absolute SHAP value from outcome models predicted on holdout 
test dataset  

 

ADI: area deprivation index 
CCI: Charlson Comorbidity Index 
CAN score: Care Assessment Needs score 
CLC: community living center  
 
Treatment SHAP value estimate includes indicators for receipt of outpatient nirmatrelvir-ritonavir, molnupiravir, or anti-SARS-CoV-2 monoclonal antibody 
treatment. Age includes age at index and indicator for being >65 years old. SHAP value estimates for cardiovascular diseases, immunocompromise, other diseases, 
substance use disorders, and mental health conditions,  include SHAP values for all indicators within those domains (see supplement for list of indicators and their 
domains used in prediction).



Parsimonious models 

 The performance and calibration of the parsimonious models trained using the subset of the top 

15 most important predictors are shown in Supplement S9. Overall, these parsimonious models showed 

comparable discrimination to the fully fitted models (parsimonious composite model AUC: 0.79, 

parsimonious hospitalization model AUC: 0.77, and parsimonious mortality model AUC: 0.89) and slightly 

improved calibration in the composite and hospitalization model, but poorer calibration in the 

parsimonious model where risks were underestimated. The absolute NRIs for all parsimonious models 

compared with fully fitted models showed a loss in reclassification accuracy of about -2% in the 

composite and hospitalization model and a loss in reclassification accuracy of <1% in the mortality model 

(Supplement S11).  

DISCUSSION 

 Using data from a national cohort of veterans diagnosed with COVID-19 during the Omicron era, 

we developed three multivariable prediction models for 30-day COVID-19 hospitalization and death which 

demonstrated good discrimination and calibration in internal validation. We found age, composite 

measures of frailty including CCI and CAN score, select medical comorbidities such as cardiovascular 

disease, COVID-19 vaccination, and outpatient COVID-19 pharmacotherapies to be important predictors 

of adverse outcomes. Parsimonious models which included a small subset of predictors created to be 

accessible in non-VHA healthcare systems also showed comparable performance.  

In all models, we found the CAN score to be the most important predictor for adverse COVID-19 

outcomes. Osborne et al., previously demonstrated the CAN score was associated with COVID-19 

mortality in the first three months of the pandemic and recommended its use for risk stratification (32). 

The CAN score is an automated and validated model for predicting patient hospitalization or death 

developed and used at the VHA (4). In addition to demographic and comorbidity data, the CAN score 

includes healthcare utilization measurements such emergency department visits and medication refills, 

and vital sign measurements like blood pressure and heart rate (31). While the CAN score was the most 

important predictor in our ensemble models and performed well alone once calibrated (Supplement S6), it 

is not available in healthcare systems outside of the VHA. Our parsimonious models, which excluded the 

CAN score, performed comparably to our fully fitted models and could be implemented more widely. 



Our models have multiple strengths. They address a significant gap in the field, given that only 5% of 

developed COVID-19 outcome models predict hospitalization risk (3). We also focused on COVID-19 

diagnoses during the Omicron era and included COVID-19 vaccines and treatments. Following the early 

pandemic and Delta era, COVID-19 hospitalization and mortality rates significantly declined, and effective 

vaccines and treatments became available. Thus, early risk prediction models may no longer be well-

calibrated (44). Furthermore, many prior risk models were developed during a period of lower population 

immunity (45). Dickerman et al. have demonstrated how prediction model calibration can worsen when 

applied to settings where treatment strategies and availability differ from the context in which models 

were developed (14). We demonstrated that our prediction models outperformed the VACO Index (11), 

with improved discrimination, calibration, and classification for mortality. We chose not to assess the 

VACO Index’s performance on hospitalization outcomes since it was only developed and validated for 

mortality.  Reasons for this improvement could be our use of an ensemble of model and a larger number 

of predictors; however, model training on a more recent cohort reflecting contemporary contexts may be 

the most important as we showed the VACO index is no longer well calibrated.  

Our models have important implications for clinical practice and research applications. Since our 

models were trained using predictors readily available in CSDR, it is possible to automate risk scores for 

all VHA patients similar to the CAN score (4). Identifying high risk patients who might benefit the most 

from outpatient COVID-19 treatments, for example, could facilitate improved prescribing, particularly as 

utilization remains low in many settings (46,47). In addition, the parsimonious models, which exclude 

VHA-specific predictors, may be more broadly implemented in other healthcare systems as well as 

facilitate recruitment of high-risk patients to power future clinical trials.  

Limitations 

Our risk models have several important limitations. First, we did not have data on re-infections, an 

important prognostic factor for severe COVID-19-related outcomes.  Second, while we considered many 

predictors for adverse COVID-19 outcomes, it is possible we are missing important, unmeasured 

prognostic factors; however, such factors would also likely be unavailable for model implementation. 

Third, while we expect the models to perform well in an out-of-sample population given good cross-

validated discrimination, we have not demonstrated external model validation. Since our models were 



developed using readily available predictors, validation in future infection periods is possible and external 

validation of our parsimonious models in a separate healthcare system is feasible. Finally, while we 

included a diverse set of learners in our ensemble models, our set of ten learners is relatively small 

compared with typical super learner applications (20). We limited the number of included learners for 

computational efficiency; future work could consider incorporating additional algorithms and models with 

multiple parameter sets to enhance prediction (22).   

 

CONCLUSION 

 We developed machine learning risk prediction models that accurately estimate risk of COVID-19 

hospitalization and mortality in the VHA, in the context of recent, Omicron-era COVID-19 infections, 

COVID-19 vaccinations and antiviral treatments. These models may be used for risk stratification of 

individual patients to optimize care and to identify high-risk patients for inclusion in clinical trials.  
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