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Abstract 

Introduction: Little is understood about the dynamic interplay between brain 

morphology and cognitive ability across the life course. Additionally, most existing 

research has focused on global morphology measures such as estimated total 

intracranial volume, mean thickness, and total surface area.  

Methods: Mendelian randomization was used to estimate the bidirectional effects 

between cognitive ability, global and regional measures of cortical thickness and 

surface area, estimated total intracranial volume, total white matter, and the volume 

of subcortical structures (N=37,864). Analyses were stratified for developmental 

periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years).  

Results: The earliest effects were observed in childhood and early adulthood in the 

frontoparietal lobes. A bidirectional relationship was identified between higher 

cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late 

adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex 

and a larger surface area in the caudal middle frontal cortex and temporal pole were 

associated with greater cognitive ability. Contrary, a thicker temporal pole was 

associated with lower cognitive ability.  

Discussion: Stable effects of cognitive ability on brain morphology across the life 

course suggests that childhood is potentially an important window for intervention. 

Keywords: Cognitive ability, brain structure, Mendelian randomization, lifecourse, 
brain reserve, ALSPAC, UK Biobank, IMAGEN, Generation R, ABCD   
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Introduction 

Individuals with higher cognitive ability are more likely to have favourable health 

outcomes that impact health outcomes and quality of life. Individual differences in 

cognitive ability have underpinnings in both (epi-)genetic and environmental 

exposures 1–3. 

Family and twin studies suggest that the heritability of cognitive ability ranges from 

50 to 80% 5–7, with several studies suggesting estimates to increase from childhood 

to adulthood 8,9. The latest genome-wide association study (GWAS) for cognitive 

ability, as measured mainly through verbal-numeric tests, identified 187 single 

nucleotide polymorphisms (SNPs) in 248,482 participants, indicating that cognitive 

ability is highly polygenic 10. The identified variants cluster in genes expressed in 

synapses and genes involved in the development of the nervous system 10. 

Findings from 37 neuroimaging studies using functional and structural data 

supported the hypothesis that individual differences in human cognitive ability are 

predicted by structural and functional differences in the parieto-frontal network (P-FIT 

model) 11. The P-FIT model associates the network of frontal, superior temporal, 

middle temporal, temporal, and sensory areas in the parietal and lateral occipital 

regions to differences in cognitive ability. This model, which aims to reflect the 

neurological underpinnings of cognitive ability, was updated to consider the posterior 

cingulate cortex and subcortical structures such as the caudate 12.  

The association between cognitive ability and brain morphology has previously been 

suggested to be age-dependent by some studies, as differences in cognitive ability 

are associated with size differences of different brain regions across the lifespan in 

observational studies. In children, there is evidence that the surface area of the 
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prefrontal and anterior cingulate cortices is associated with cognitive ability 13–15. 

However, the orbitofrontal and middle frontal brain regions are most strongly 

associated with cognitive ability in adolescents (ages 12-21 years) 16. Cognitive 

ability has a strong genetic and phenotypic correlation with total cortical surface area 

in childhood and early adulthood. Still, there is little evidence of correlation with 

average cortical thickness, which may be due to the distinct genetic and phenotypic 

origins of these two endophenotypes 17,18. 

It is likely that the interplay between cognitive ability and brain morphology is 

dynamic and may vary across the life course. Results from observational studies 

may merely reflect correlation and causal inference methods such as Mendelian 

randomization can aid in disentangling the causality or directionality of observed 

associations. Establishing causality is important in finding a suitable intervention and 

causal inference methods integrated with age-stratification analyses can aid in 

identifying a critical window for these interventions. Bidirectional two-sample 

Mendelian randomization was used to investigate 1) whether cognitive ability has a 

causal effect on regional and global brain structures, 2) whether any causal effects of 

cognitive ability on brain morphology are time-varying, using five cohorts from 

different stages of the life course and 3) whether brain morphology has a causal 

effect on cognitive ability.  

Results 

The effects of SNPs associated with cognitive ability at p<5×10-8 on cortical 

thickness, surface area, the volume of subcortical structures and total white matter 

were estimated in five independent cohorts across the life course 19–25, using two-

sample Mendelian randomization 26,27. Univariable Mendelian randomization using a 
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random-effects inverse variance weighted (IVW) regression was employed to 

estimate the causal effect of cognitive ability on structural brain measures. The 

causal effect estimates of cognitive ability on brain morphology were interpreted as a 

one standard deviation (SD) change in brain morphology per one SD increase in 

cognitive ability. Descriptive statistics are in Table 1. 

Forest plots for the age-stratified analyses can be found in Figures 1-3, where 

unadjusted p-values for the age trend have been included for each region/structure. 

A p-value corrected for the false discovery rate (FDR) in the age-stratified analyses 

is provided in Supplementary tables 4, 8, and 9. After this adjustment, there was 

evidence of association between cognitive ability and 13 outcomes (e.g., total 

surface area, estimated total intracranial volume, accumbens, superior temporal 

thickness, entorhinal area and superior parietal thickness). Results for the effects of 

cognitive ability on regional cortical thickness and surface area at each stage in the 

life course were visualised with a brain atlas (Figure 4), using the ggseg tool 28.  

Additionally, we aimed to replicate the age-stratified results in in the Enhancing 

Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, which is larger 

and more well-powered than individual cohort studies with genetic and neuroimaging 

data.  

In the reverse direction, the causal effects of cortical thickness, surface area, and 

volumes of subcortical structures on cognitive ability were estimated using summary-

level data from ENIGMA 29–32 (Figure 5). Again, univariable Mendelian randomization 

was employed to examine the causal effects of each brain structure on cognitive 

ability. All effect estimates represent an SD change in cognitive ability per standard 

deviation increase in brain structure. Steiger directionality tests were performed to 
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examine whether the genetic instruments are valid for the direction of analysis that 

they were used in. 

In the online repository1, detailed results with false discovery rate adjusted p-values 

accounting for the number of tests in the age-stratified analyses and the analysis of 

brain morphology on cognitive ability are provided in Tables 4, 8, 9 and 11. However, 

our results were not interpreted with a focus on p-values, but rather by examining 

causal effect estimates, the precision with which they were estimated (95% 

confidence intervals (CIs)), and on patterns of causal effects across cohorts and 

brain structures 33,34.   

Effects of cognitive ability on brain morphology 

Cortical thickness 

In childhood, a greater cognitive ability was associated with a thicker postcentral 

cortex (β: 0.14; 95% CI: 0.04, 0.24) in the parietal lobe. In early adulthood, a one SD 

increase in cognitive ability was associated with a decreased thickness of the 

superior parietal and postcentral cortices of the parietal lobe (β: -0.23; 95% CI: -0.40, 

-0.03 and β: -0.25; 95% CI: -0.40, -0.03, respectively). In contrast, greater cognitive 

ability in early adulthood was associated with a greater thickness of the inferior 

temporal cortex (β: 0.26; 95% CI: 0.02, 0.50). For participants aged 45-68 years, 

there was evidence to suggest that cognitive ability was associated with a reduced 

thickness of the precuneus and insula (β: 0.11; 95% CI: 0.02, 0.22). Furthermore, 

there was evidence that cognitive ability was associated with a greater thickness of 

the lingual cortex of the occipital lobe, as well as that of the transverse temporal 

cortex for participants aged 45-60 years and 68-81 years, respectively (Figures 1a 

                                            
1 https://github.com/rskl92/intelligence_brain_morphology_bidirectional_MR 
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and 1b). Furthermore, a higher cognitive ability was associated with lower thickness 

in the medial orbitofrontal cortex in participants of ages 45-60 years and 60-68 years 

(β: -0.12; 95% CI: -0.22, -0.02 in participants of ages 60-68 years). A higher 

cognitive ability was also associated with a lower thickness of the pars opercularis 

and rostral middle frontal cortices in the participants of ages 60-68 years and the 

thickness of the rostral anterior cingulate cortex in the participants of ages 68-81 

years. Additionally, a higher cognitive ability was associated with a reduced 

thickness of the superior parietal cortex in participants aged 68-81 years (β: -0.10; 

95% CI: -0.18, -0.02). As observed in the participants aged 45-60 years, a greater 

cognitive ability was associated with a greater thickness of the transverse temporal 

cortex. Similar to participants aged 60-68 years, a greater cognitive ability was 

associated with a greater thickness of the superior temporal cortex (Figure 1b).  

Cortical surface area 

A higher cognitive ability was associated with a larger lateral orbitofrontal surface 

area in childhood (β: 0.09; 95% CI: 0.01, 0.18). This effect was also consistent in 

early adulthood (β: 0.22; 95% CI: 0.05, 0.39) (Figure 2a). In the temporal lobe, a one 

SD increase in cognitive ability was associated with a larger surface area of the 

banks of the superior temporal sulcus, entorhinal and inferior temporal cortices in 

participants aged 45-60 years (Figure 2b). Additionally, a higher cognitive ability was 

associated with a greater surface area of the caudal anterior cingulate in participants 

aged 60-68 years. Furthermore, a higher cognitive ability was associated with a 

smaller surface area of regions in the parietal lobe in mid-to-late adulthood, such as 

a smaller surface area of the cuneus and the superior parietal cortex in participants 

of ages 60-68 years and those aged 68-81 years, respectively (Figures 2a and 
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Figure 2b). The largest and most consistent effect across all age cohorts was that of 

higher cognitive ability on a larger total cortical surface area (Figure 2b). 

Subcortical volumes 

In childhood, higher cognitive ability was associated with differences in the volume of 

the accumbens (β: 0.28; 95% CI: 0.15, 0.41), brainstem (β: 0.13; 95% CI: 0.02, 

0.23), hippocampal volume (β: 0.13; 95% CI: 0.01, 0.25) and total white matter 

volume (β: 0.09; 95% CI: 0.01, 0.18) (Figure 3). Additionally, a greater cognitive 

ability was associated with a larger volume of the accumbens in participants aged 

60-68 years (β: 0.12; 95% CI: 0.01, 0.22) (Figure 3), and brainstem in participants of 

ages 68-81 years (Figure 3). The largest effect of cognitive ability was observed on 

estimated total intracranial volume in most cohorts (β: 0.40 per one SD increase in 

cognitive ability; 95% CI: 0.28, 0.52 in childhood); however, the evidence in the early 

adulthood cohort was weaker (β: 0.18 per one SD increase in cognitive ability; 95% 

CI: -0.03, 0.39) (Figure 3). 

Replication analysis of cognitive ability on brain morphology using the 
ENIGMA consortium 

Again, we employed two-sample Mendelian randomization to examine the effect of 

cognitive ability on brain morphology with the aim of replicating the findings from 

individual-level cohorts, using the ENIGMA consortium 30,35,36. As in the UK Biobank 

age-stratified analyses, a greater cognitive ability was associated with a lower 

thickness of the rostral anterior cingulate cortex and a greater thickness of the lingual 

cortex in the frontal lobe (Figures 1.1 and 1.2, Supplementary Material). A greater 

cognitive ability was associated with a lower thickness of the isthmus cingulate 

cortex in the parietal lobe, which is an effect not observed in the individual-level 

cohorts studied (Figure 1.1, Supplementary Material). Contrary to the early 

adulthood cohorts, where there is evidence of a small effect of cognitive ability on a 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.17.23297145doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.17.23297145
http://creativecommons.org/licenses/by/4.0/


 

greater thickness in the inferior temporal cortex, the opposite is observed with the 

ENIGMA consortium data. Furthermore, a higher cognitive ability was associated 

with a larger surface area of the banks of the superior temporal sulcus and the 

entorhinal cortex, while it was associated with a reduced surface area of the cuneus, 

precuneus and the superior parietal cortex (Figures 2.1 and 2.2, Supplementary 

Material). Except for the cuneus and precuneus which were not identified with the 

individual-level cohorts, all the other regions previously mentioned were observed in 

the mid-to-late adultood age-stratified analyses of surface area. As with those 

results, the largest effect was observed for total surface area (Figure 2.2, 

Supplementary Material). Similar to the age-stratified mid-to-late adulthood analyses, 

cognitive ability was associated with a larger volume of the accumbens, brainstem 

and estimated total intracranial volume (Figure 3, Supplementary Material).  

However, cognitive ability was also associated with increases in the the volume of 

the thalamus (β: 0.10; 95% CI: 0.02, 0.18) and amygdala (β: 0.13, 95% CI: 0.06, 

0.21) in ENIGMA (Figure 3, Supplementary Material).  

Effects of brain morphology on cognitive ability 

Cortical thickness 

A greater thickness in the posterior cingulate region of the cortex was associated 

with a higher cognitive ability (β: 0.11; 95% CI: 0.03, 0.20) (Figure 4.1, 

Supplementary Material). Contrary, a greater thickness in the temporal pole was 

associated with a lower cognitive ability (β: -0.17; 95% CI: -0.26, -0.07) (Figure 4.2, 

Supplementary Material). 

Cortical surface area 

A larger surface area in the posterior cingulate cortex was associated with 

differences in cognitive ability (β: -0.10; 95% CI: -0.18, -0.02). A one SD larger 
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surface area of the caudal middle frontal cortex was associated with a higher 

cognitive ability by 0.12 SD (95% CI: 0.07, 0.16) (Figure 5.1, Supplementary 

Material). A greater surface area of the temporal pole, instrumented by only 1 SNP 

(precluding investigation of potential bias due to horizontal pleiotropy) was 

associated with a greater cognitive ability (β: 0.46; 0.33, 0.59) (Figure 5.2, 

Supplementary Material). Furthermore, a larger total surface area was associated 

with a higher cognitive ability (β: 0.18; 95% CI: 0.07, 0.28) (Figure 5.2, 

Supplementary Material).  

Subcortical structures 

A larger thalamus (β: 0.16; 95% CI: 0.09, 0.22), caudate (β: 0.06; 95% CI: 0.01, 

0.10) and estimated total intracranial volume (β: 0.22; 95% CI: 0.11,0.33) were 

associated with a greater cognitive ability (Figure 5).  

Sensitivity analyses  

Cognitive ability on brain morphology (age-stratified) 

Various sensitivity analyses were performed to test for potential violations of key 

Mendelian randomization assumptions. The effect estimates using pleiotropy-robust 

estimators were directionally consistent with the IVW for most measures in all 

cohorts. However, there was some evidence of heterogeneity and pleiotropy in the 

effects of cognitive ability on cortical thickness for the medial orbitofrontal, rostral 

middle frontal, and postcentral areas of the cortex.  

There was heterogeneity in the causal estimates of cognitive ability on the surface 

area of the caudal anterior cingulate cortex (Q=198, p=0.007), total surface area for 

participants of all age groups in the mid-to-late adulthood UK Biobank cohort 

(Q=315, p=2.15x10-13 for participants ages 45 to 60 years), well as surface area of 

the cuneus in the two older age tertiles (Q=211, P=0.001 for participants ages 45 to 
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60 years). Evidence of pleiotropic effects was identified only for cognitive ability 

SNPs on the total surface area for participants aged 60-68 years (p=0.002).  

The directionality tests suggested the causal direction was from cognitive ability to all 

the brain structures examined (Table 1 of Sensitivity analyses in online repository). 

However, there was evidence that the SNPs instrumenting cognitive ability explained 

more variance in total surface area and estimated total intracranial volume (i.e., the 

outcome) than in cognitive ability (the exposure). When the SNPs that were in the 

wrong causal direction were removed for total surface area and estimated total 

intracranial volume (i.e., explained more variance in the outcome than exposure), the 

associations attenuated (e.g., total surface area IVWtertile1=0.07, 95% CI: -0.04, 0.18, 

Table 1 of Supplementary Material).  

Cognitive ability on brain morphology (replication) 

There was heterogeneity for all identified structures except for lingual thickness and 

entorhinal surface area (Q statistic: 174.77, p=0.08). There was evidence of small 

pleiotropic effects for the thickness of the isthmus cingulate (p=0.04) and the surface 

area of the superior parietal (p=0.03) and whole cortex (p=0.03). The directionality 

tests suggested that the causal direction was from cognitive ability to cortical 

thickness, cortical surface area and subcortical structures in the ENIGMA consortium 

(i.e., SNPs for cognitive ability explained more variance in cognitive ability than in 

brain morphology) for all associated outcomes. Although the Steiger tests suggested 

the causal direction was false for estimated total intracranial volume in the age-

stratified analyses, the test were equivocal (R2 in cognitive ability = 2.71%, R2 in 

estimated total intracranial volume=2.31%, p=0.19) in the ENIGMA analysis. Again, 

as opposed to the age-stratified UK Biobank analysis, the Steiger test suggested that 
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the Mendelian randomization assumptions held for total surface area (R2 in cognitive 

ability=2.6%, R2 in total surface area=1.95%, Steiger test p=1.75x10-4).  

Brain morphology on cognitive ability 

Due to an insufficient number of genetic instruments, the presence of pleiotropy for 

the thickness of the posterior cingulate and temporal pole on cognitive ability could 

not be tested, nor the causal effect estimates from any of the pleiotropy-robust 

methods. There was little evidence of pleiotropy (Egger intercept=-0.01, p=0.49) and 

heterogeneity (Q=1, p=0.53) in the causal effects of pericalcarine thickness on 

cognitive ability. For cortical surface area and subcortical structures, the effect 

estimates from IVW were consistent across all the pleiotropy-robust methods for all 

the identified outcomes and there was little evidence of pleiotropy and heterogeneity 

for most outcomes. Of the structures identified to influence cognitive ability, 

heterogeneity was detected in the causal estimates for the SNPs proxying the 

accumbens (NSNP=3, Q= 59, p=1.13x10-12) and estimated total intracranial volume 

(NSNP=4, Q=23, p=1.12x10-4). Still, there was little evidence of pleiotropy (p>0.05). 

The directionality tests suggested that the causal direction was from brain 

morphology to cognitive ability (i.e., SNPs for brain morphology explained more 

variance in brain morphology than in cognitive ability) for all associated outcomes. 

Discussion  

This study examined the bidirectional effects between cognitive ability and cortical 

surface area and thickness, as well as subcortical brain morphology. There was little 

evidence of cognitive ability having large regional or age-dependent effects on the 

brain. However, there was consistent evidence of effects between cognitive ability 

and global measures of brain structure, in both directions.  
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Effects of cognitive ability on structural brain morphology 

Our results suggest cognitive ability affected the surface area and thickness of 

regions in the frontal, occipital, parietal, and temporal lobes, with the earliest effects 

observed on the lateral orbitofrontal cortex (in childhood and early adulthood). The 

lateral orbitofrontal cortex has been found to integrate previous information with 

current information in the anticipation of upcoming stimuli/events 37. A higher 

cognitive ability increased the surface area of the inferior temporal, entorhinal, and 

banks of the superior temporal sulcus and decreased the surface area of the 

transverse temporal cortex in age-stratified UK Biobank analyses. The temporal lobe 

has distinct functions such as perceptual processing of auditory stimuli, including 

speech, performing tasks requiring visual object discrimination and recognition, 

processing emotions, semantic knowledge, initial memory acquisition and retrieval 

38,39. Other important roles of the temporal lobe include processing information 

relating to time 40 and spatial navigation 41. In the parietal lobe, using age-stratified 

UK Biobank, the meta-analysed early adulthood cohort and the summary-level 

ENIGMA data, we found that a higher cognitive ability was associated with a lower 

cortical thickness and surface area of the superior parietal cortex. The superior 

parietal cortex is thought to play a role in aspects of visuospatial perception and 

attention 42, as well as the manipulation and rearrangement of information in working 

memory 43. In the occipital lobe, we found evidence to suggest that higher cognitive 

ability was associated with a thicker lingual cortex, which is involved in higher-order 

processing of emotional expression 44 and motional information 45. We observed that 

cognitive ability had the largest effects on total surface area and estimated total 

intracranial volume, but not mean thickness. This is in agreement with the findings of 

Mitchell and colleagues 46, showing the same associations with educational 
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attainment and global measures of brain morphology. However, they found that 

educational attainment explained more variation in the surface area and cortical 

thickness of regions in the frontal and temporal lobes over-and-above the global 

effect. Although educational attainment and cognitive ability are similar, educational 

attainment is likely to also reflect non-cognitive skills, which may, at least in part 

explain the discrepancies in our findings. 

Finally, individual differences in cognitive ability are associated with differences in 

the volume of the accumbens (childhood cohort meta-analysis) and brainstem 

(childhood cohort meta-analysis and adults of ages 68-81 years). A previous 

analysis in the IMAGEN cohort showed that cognitive ability is associated with an 

increase in the grey matter volume of the striatum (the accumbens is in the striatum) 

and functional activation in the accumbens 47, induced by reward-prediction error 

cues which is known to affect dopamine neurotransmission.  Dopamine has an 

established role in cognitive ability and decision-making 48–50.  

Effects of structural brain morphology on cognitive ability 

A larger caudate, thalamus and estimated total intracranial volume were associated 

with a higher cognitive ability. The effect of the thalamus on cognitive ability 

(βIVW=0.16), adjusted for estimated total intracranial volume, has a comparable 

strength of association to estimated total intracranial volume (βIVW=0.22) and is 

above and beyond what would be considered a global change. This may suggest 

that larger estimated total intracranial volume in participants with higher cognitive 

ability may be attributed to a larger thalamic volume. This observation aligns with a 

non-genetic study in the UK Biobank 51, wherein thalamic volume and white matter 

microstructure of thalamic and association fibres display the highest levels of 
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correlation with a latent factor of general cognitive ability. Medial thalamic nuclei are 

densely interconnected with prefrontal and temporal cortices and control working 

memory 52,53 and attentional control 54, while posterior nuclei project to occipital 

cortices and aid in visual processing. Functional and structural studies suggest that 

the thalamus contributes to the pathogenesis of diseases such as dementia 55, 

Parkinson’s disease 56, and schizophrenia 57. The caudate, another striatal structure 

with evidence of association with cognitive ability has afferent and efferent 

connections to the prefrontal and anterior cingulate cortices 58 and is highly 

innervated with dopamine neurons, which support brain networks for seeking, 

evaluation, value learning, orienting, cognition and general motivation 59.  

For the cortical measures and in concordance with the P-FIT model 11, there is 

evidence that a thicker posterior cingulate cortex and a larger surface area of the 

caudal middle frontal cortex and temporal pole increase cognitive ability.  

Functionally, these regions have been shown to be associated with internally 

directed cognition (memory retrieval or planning for the future) 60, the control and the 

reorientation of attention in response to exogenous stimuli 60,61. A larger cortical 

surface area can boost information processing by accommodating more cortical 

columns 62,63, which are the functional units of the cortex 64 . The larger number of 

cortical columns is expected to correspond to fewer intercolumnar connections, 

which is thought to enhance the functional specificity of cortical columns and reduce 

the overlap in their representations, consequently increasing their capacity to store 

information 65,66. Contrarily, cortical thickness is linked to neuronal migration, the 

number neurons, dendritic arborisation, and the support provided by glial cells within 

cortical columns 66.  Observations of decreases in thickness in relation to cognitive 

ability have been reported to reflect pruning of weak neural connections, resulting in 
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a more organised neural network66. In our study, the genetic instruments for the 

brain morphology measures were extracted from a consortium which comprised 

mainly of adults. Hence, the mechanisms which mediate the relationship between 

cognitive ability and cortical thickness may be different across the lifespan (e.g., 

synaptic pruning in childhood and myelin loss in late adulthood).  

Age-varying effects of cognitive ability on brain morphology 

Overall, there was little evidence of age-varying effects of cognitive ability on 

structural brain morphology; the positive effects persisted across the life course with 

a relatively similar magnitude. This suggests that a higher cognitive ability results in 

larger brain structures in early life and therefore, given a similar rate of 

neurodegeneration, people with higher cognitive ability will have, on average, larger 

brain structures in old age. Theories of 'brain reserve' and 'brain maintenance' are 

used to explain the brain's ability to be resilient against processes of aging, 

neurological diseases, and cognitive decline. Brain maintenance describes the 

brain's capacity to maintain neurochemical, structural and functional brain health 

over time, irrespective of ageing processes 67. Brain reserve refers to 

neuroanatomical resources such as a larger brain size or a greater number of 

neurons which increase the brain's capacity to tolerate age-related changes or 

pathological process without displaying symptoms of neurological disease such as 

cognitive decline 68. The findings of our study support the former hypothesis, 

indicating that early brain morphology (i.e., brain reserve) is underpinned by early 

cognitive ability, potentially through neurodevelopmental mechanisms. In a 

longitudinal study (N=974; ages 4-88 years), trajectories of change in cortical surface 

area in individuals with higher and lower cognitive abilities followed parallel 

trajectories throughout their lifespan. Adaptive responses to the environment are 
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thought to decrease with age, as stability becomes important in supporting social 

continuity and the energy requirement for adaptability is higher in older individuals 

due to accumulated damage, influenced by evolved limitations in bodily maintenance 

69. 

Potential explanations for the observed relationships 

The observed findings of more and larger effects of cognitive ability on structural 

brain morphology than vice versa may be counterintuitive, given the early 

developmental origin of structural brain morphology. A potential explanation for the 

directionality may be dynastic effects (and shared parent-offspring genetics for the 

two traits). For instance, in our analyses, there may be a confounding path linking 

SNPs for cognitive ability to brain morphology via the correlation between the 

offspring’s genes for cognitive ability (inherited from the parent) and the environment 

the parents create for their offspring. A different explanation may be due to 

pleiotropic effects, which can affect Mendelian randomization studies. However, 

several studies have shown experience-dependent structural neuroplasticity, where 

the brain structure changes in response to tasks 70–72; albeit the timespan that these 

effects last for are not well-established. The exploration selection refinement (ESR) 

model of human brain plasticity, which is motivated from developmental theory and 

animal studies, suggests that when individuals learn new skills, the microcircuits in 

the brain are initially widely explored resulting in higher neural activity. This 

consequently induces structural changes in neurons 73,74 , such as new dendritic 

spines 75 and increased myelination 76,77. This process is influenced by reinforcement 

learning and neurotransmitters (e.g., dopamine) 78 . The exploration phase is 

followed by experience-dependent selection and refinement of reinforced 

microcircuits and the retraction of structures associated with unselected circuits 69.  
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Given the MR results, it is not possible to disentangle how exactly these effects 

unfold. 

Strengths and limitations 

Most genetic and observational studies focus on cognitive ability and anatomical 

features of the cortex. We examined both cortical and subcortical structures and 

showed that subcortical structures might play an even greater role in affecting 

differences in cognitive ability than anatomical features of the cortex. Additionally, 

genetic studies have examined genetic correlations between brain morphology and 

cognitive ability using measures of regional cortical volume. Cortical surface area 

and thickness are genetically and phenotypically independent 17,79 and analyses of 

cortical volume (which reflects a combination of both cortical surface area and 

thickness), may not provide clear insight as to which one (if either) drives observed 

associations. Additionally, a life course approach was taken using five cohorts 

capturing different life stages to see if effects differ in the earlier neurodevelopmental 

or later neurodegenerative periods. The fewer regional effects of differences in 

cognitive ability on surface area in childhood/early adulthood compared to mid- and 

later adulthood despite the presence of effects on total surface area and estimated 

total intracranial volume, may be due to developmental noise 80 or non-linear 

trajectories81. 

As mentioned previously, the two groups of phenotypes analysed are susceptible to 

bias due to dynastic effects. This study design is optimal for examining the question 

with the data currently available. However, once there is availability of a well-

powered cohort with neuroimaging, genetic, and family data, within-family Mendelian 

randomization studies could minimise risk of confounding of genetic instruments by 

dynastic effects, by including a fixed effect for shared familial environmental effects. 
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Additionally, our study included volumetric neuroimaging markers and consequently, 

inferences cannot be made for other neuroimaging markers, such as brain 

microstructure or functional connectivity. Finally, pleiotropy is a phenomenon which 

may affect Mendelian randomization study findings, where a SNP affects an 

outcome through pathways other than the exposure. However, our sensitivity 

analyses for most structures showed little evidence of pleiotropy, and where they did, 

we have indicated heterogeneity and pleiotropy statistics. 

Conclusion 

Cognitive ability had effects on cortical surface area and estimated total intracranial 

volume from early in childhood and across the life course, suggesting that it may to 

be useful to find ways to improve cognitive ability to increase brain reserve and 

potential neuroprotective effects. Further research needs to integrate data from other 

modalities into structural studies, such as these, to establish the functional role of 

these differences in brain structure.  

  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.17.23297145doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.17.23297145
http://creativecommons.org/licenses/by/4.0/


 

Methods 

Data 

Cognitive ability GWAS 

Genetic instruments for cognitive ability were extracted from a Multi-Trait Analysis of 

GWAS (MTAG) of 269,867 European participants 10, where cognitive ability was 

measured through verbal-numerical (VNR) test scores. All the VNR scores were 

controlled for age, sex, assessment centre, genotype batch, array, and 40 principal 

components. The genome-wide significant SNPs (p<5x10-8) were re-clumped at an 

r2 threshold of <0.001 within a 10mb window using the 1000 genomes reference 

panel to ensure independence of SNPs 82. We identified 153 SNPs for cognitive 

ability. SNP coefficients reflect the SD increase in verbal-numeric reasoning test 

scores (SD=15 points) per allele increase. 

Brain morphology GWAS 

GWAS of MRI-derived neuroimaging measures of thickness and surface area of 34 

regions defined by the Desikan-Killiany atlas 83 in five cohorts across the life course 

were used in our analyses. For the peri-pubertal period, Generation R (a prospective 

population-based birth cohort from Rotterdam, the Netherlands, N=1,175, age range 

8.71 to 11.99) 21,84, the Adolescent Brain Cognitive Development study (ABCD, N= 

5,022, age range 8.92 to 11.00 at baseline) 19,20 and IMAGEN 25, a multi-centre 

genetic neuroimaging study recruiting adolescents from secondary schools across 

Europe, N=1,739, age range = 12.94 to 16.04) were used. For early adulthood, the 

Avon Longitudinal Study of Parents and Children (ALSPAC) 22–24,85 (N=776, age 

range 18.00 to 24.5 years), and the second wave of IMAGEN data collection 

(N=1,161, age range=17.68-21.53) were used. ALSPAC consists of data on offspring 

of pregnant women resident in Avon, UK with expected delivery dates in 1991/1992. 
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The core sample includes 13,988 children but we used data from a subset of 

ALSPAC offspring invited to participate in three different neuroimaging sub-studies; 

the ALSPAC Testosterone study, the ALSPAC Psychotic Experiences (PE) study 

and the ALSPAC Schizophrenia Recall-by-Genotype Study 85. Please note that the 

study website contains details of all the data that is available through a fully 

searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). UK Biobank was stratified 

into age-ordered tertiles to examine age-specific effects in adulthood. The UK 

Biobank is a population-based study of 503,325 participants who were recruited from 

across Great Britain between 2006 and 2010 86 (N=9,377 per tertile, youngest age 

tertile = 45 to 60 years, middle age tertile = 60 to 68 years and oldest age tertile = 68 

to 81 years). We also used volume measures of nine subcortical structures and total 

white matter, as well as the global measures of mean thickness, total surface area 

and estimated total intracranial volume. Finally, we used summary data for the same 

structural brain measures as in the individual-level data cohorts from the ENIGMA 

consortium GWAS (N for subcortical structures=37,741; N for estimated total 

intracranial volume and hippocampus; N for cortical regions=33,392), which included 

study samples from various studies, approximately 75% of which are population-

based 30–32,35,36. SNPs for estimated total intracranial volume and hippocampal 

volume were identified from GWAS by Adams et al 31 and Hibar et al 32, respectively, 

but we used the effect sizes from an earlier GWAS 36 due to data restrictions in 

investigations relating to cognitive ability-associated genetics in the CHARGE 

summary statistics. For the MR examining the effects of brain structure on cognitive 

ability, genetic variants for brain structure were obtained from the ENIGMA 

consortium GWAS. All GWAS for regional cortical thickness, surface area and 
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subcortical volumes in our analyses were adjusted for global mean cortical 

thickness, total surface area and estimated total intracranial volume, respectively, to 

identify region-specific effects. 

Statistical Analyses  

Estimating the causal effects of cognitive ability on brain morphology 

MR is a form of instrumental variable analysis, which uses SNPs to proxy for 

environmental exposures to estimate the causal effects of an exposure on an 

outcome 26. Two-sample MR is where the association of the genetic variant and the 

exposure and outcome are obtained from separate GWAS and this method was 

used for all the analyses in this study. For MR to generate unbiased causal effect 

estimates, each genetic variant that is used as an instrumental variable must satisfy 

three assumptions: (1) that it is associated with the exposure (relevance 

assumption), (2) that it is not associated with the outcome through a confounding 

pathway (exchangeability assumption), and (3) is only associated with the outcome 

through the exposure (exclusion restriction assumption). More details on terms 

related to MR can be found in the MR dictionary 87. SNPs associated with cognitive 

ability were extracted from each brain structure GWAS at p≤5×10-8. Where a SNP for 

cognitive ability was not available in the brain structure GWAS, proxy SNPs identified 

at r2>0.80 were used across all individual-level datasets (SNPs rs1174546, 

rs17381294, rs1105307, rs10760199, rs8028238, rs4982712 proxied rs28420834, 

rs61787263, rs7033137, rs4446794, rs55894132, rs12900061, respectively). The 

cognitive ability GWAS were harmonised with the brain structure GWAS in IMAGEN, 

Generation R, ABCD, ALSPAC and the UK Biobank. Random-effects IVW 

regression, which assumes no directional horizontal pleiotropy was employed in the 

analyses 88. The F-statistic was used as a measure of instrument strength 89. We 
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meta-analysed the effects of SNPs for cognitive ability on structural brain measures 

for the three peri-pubertal cohorts, using random-effects models. Additionally, to test 

whether there is strong evidence of an age-varying effect, the metareg command in 

STATA 90 was used to obtain a p-value for the difference in the effects observed 

between childhood, early adulthood, and the different stages of adulthood.  

Estimating the causal effect of brain structures on cognitive ability 

Using the ENIGMA consortium 30–32,35, we extracted SNPs associated with structural 

brain measures at 5x10-8. SNPs were clumped using r2>0.001 and a physical 

distance for clumping of 10,000 kb. Analyses were performed as described 

previously. We identified considerably less genetic instruments for brain structure 

than cognitive ability (Nmin=1, Nmax=17) 

Sensitivity analyses 

IVW regression assumes no directional horizontal pleiotropy and only provides 

unbiased causal effect estimates when there is balanced or no horizontal pleiotropy. 

IVW estimates were compared to those from Egger regression 91, weighted median 

92 and weighted mode 93 which relax this assumption. Heterogeneity in the causal 

estimates (which can indicate pleiotropy) was calculated using Cochran’s Q statistic 

91. For meta-analyses, these heterogeneity statistics were examined in each cohort 

and are available in the online repository. Additionally, to exclude the possibility that 

the genetic variants used as proxies for cognitive ability are better instruments for 

brain structures and vice versa (i.e., to test that the hypothesized causal direction is 

correct for each SNP used), directionality (Steiger) tests were used 94. Steiger tests 

were not performed for the analyses in childhood and early adulthood as Steiger 

filtering has been shown to be biased in small samples 95. Where the hypothesized 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.17.23297145doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.17.23297145
http://creativecommons.org/licenses/by/4.0/


 

direction was false, SNPs explaining greater variance in the outcome than the 

exposure were removed, to examine change in the estimated causal effects.  

Replication 

As with the previous analysis, two-sample MR was used to examine the effects of 

structural brain morphology derived from the ENIGMA consortium on cognitive 

ability. There is overlap between ENIGMA and some of the individual-level cohorts. 

However, it has been shown that sample overlap results in little bias in the presence 

of strong instruments (i.e., F>10) 96.  

Data availability  

The ENIGMA consortium MRI summary measures from genetic association analyses 

of estimated total intracranial volume, subcortical structures, as well as cortical 

thickness were requested online. The ABCD Study data are openly available to 

qualified researchers for free (https://nda.nih.gov/abcd/request-access). Requests for 

Generation R data should be directed toward the management team of the 

Generation R Study (secretariaat.genr@erasmusmc.nl), which has a protocol of 

approving data requests. For access to IMAGEN data, researchers may submit a 

request to the IMAGEN consortium (https://imagen-europe.com/resources/imagen-

project-proposal/). ALSPAC details and data descriptions are available on their 

website (www.bristol.ac.uk/alspac/researchers/access), where applications for 

individual-level data can be made (managed access). UK Biobank data are available 

through a procedure described on their website (http://www.ukbiobank.ac.uk/using-

the-resource/). UK Biobank is approved by the National Health Service National 

Research Ethics Service (ref 11/NW/0382; UK Biobank application number 48970. 

Ethics approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees and informed consent for the 
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use of data collected via questionnaires and clinics was obtained from participants. 

In Generation R, all study protocols and measurements assessed in each wave of 

data collection were approved by the Medical Ethical Committee (MEC 

198.782/2001/31) of the Erasmus MC, University Medical Center Rotterdam. The 

IMAGEN study was approved by the institutional ethics committee of Kings College 

London, University of Nottingham, Trinity College Dublin, University of Heidelberg, 

Technische Universität Dresden, Commissariat á l Energie Atomique et aux 

Energies Alternatives, and University Medical Center at the University of Hamburg in 

accordance with the Declaration of Helsinki. The UCSD IRB approved all data 

collection protocols for ABCD. IRB number: 160091. All analyses in this study used 

de-identified data, therefore no additional IRB approval was required. 

Code availability 

Code is available at 

https://github.com/rskl92/intelligence_brain_morphology_bidirectional_MR.  
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Table 1. Descriptive statistics for included samples across the life course 

Figure 1a The causal effects of genetically predicted cognitive ability on the thickness of the frontal 
and occipital cortices at different ages across the life course (see Figure 1b for structures in the + 
parietal and temporal cortices, as well as mean thickness). The childhood cohorts include meta-
analysed effects of three peri-pubertal cohorts: ABCD, GEN R and IMAGEN. The early adulthood 
cohort includes meta-analysed effects of ALSPAC and IMAGEN (second wave for data collection), 
and the later adulthood cohort includes UK Biobank. Effect estimates represent SD changes in 
thickness. Regional measures were adjusted for mean thickness. Where an effect estimate is 
missing, that structural measure was unavailable in that cohort. 

Figure 1b The causal effects of genetically predicted cognitive ability on the thickness of the parietal 
and temporal cortices at different ages across the life course. The early adulthood cohort includes 
meta-analysed effects of ALSPAC and IMAGEN (second wave for data collection), and the later 
adulthood cohort includes UK Biobank. Effect estimates represent SD changes in surface area. 
Regional measures were adjusted for total surface area. Where an effect estimate is missing, that 
structural measure was unavailable in that cohort. 

Figure 2a The causal effects of genetically predicted cognitive ability on the surface area of the 
frontal and occipital cortices at different ages across the life course (see Figure 2b for structures in the 
occipital, parietal, and temporal cortices, as well as total surface area). The childhood cohorts include 
meta-analysed effects of three peri-pubertal cohorts: ABCD, GEN R and IMAGEN. The early 
adulthood cohort includes meta-analysed effects of ALSPAC and IMAGEN (second wave for data 
collection), and the later adulthood cohort includes UK Biobank. Effect estimates represent SD 
changes in surface area. Regional measures were adjusted for total surface area. Where an effect 
estimate is missing, that structural measure was unavailable in that cohort. 

Figure 2b The causal effects of genetically predicted cognitive ability on the surface area of the 
parietal and temporal cortices at different ages across the life course. The childhood cohorts include 
meta-analysed effects of three peri-pubertal cohorts: ABCD, GEN R and IMAGEN. The early 
adulthood cohort includes meta-analysed effects of ALSPAC and IMAGEN (second wave for data 
collection), and the later adulthood cohort includes UK Biobank. Effect estimates represent SD 
changes in surface area. Regional measures were adjusted for total surface area. Where an effect 
estimate is missing, that structural measure was unavailable in that cohort. 

Figure 3 The causal effects of genetically predicted cognitive ability on the volume of subcortical 
structures at different ages across the life course. The childhood cohorts include meta-analysed 
effects of three peri-pubertal cohorts: ABCD, GEN R and IMAGEN. The early adulthood cohort 
includes meta-analysed effects of ALSPAC and IMAGEN (second wave for data collection), and the 
later adulthood cohort includes UK Biobank. Effect estimates represent SD changes in surface area. 
Regional measures were adjusted for the estimated total intracranial volume. Where an effect 
estimate is missing, that structural measure was unavailable in that cohort. 

Figure 4 The causal effects of genetically predicted volume of subcortical structures from the 
ENIGMA consortium on cognitive ability.  

Figure 5 Regions affected by genetically predicted cognitive ability at different life stages at p<0.05. 
Below, the overall function of the regions in both hemispheres are described (in this study, we 
averaged measures across hemispheres). In this figure, we depict the regions from a lateral and 
medial view of the left hemisphere of the brain. The regions are: (1) the postcentral gyrus contains the 
primary somatosensory cortex, which receives sensory information about touch, temperature, pain 
and pressure from the contralateral side 97; (2) the pars triangularis is part of the Broca’s area and 
plays a role in retrieving and selecting lexical and syntactic information from stimuli 98,99; (3) the middle 
temporal is involved in processing words and meaningful actions 100; (4) the superior parietal cortex 
plays a role in features of attention and visuospatial perception, as well as manipulating and 
rearranging information 43; (5) the inferior temporal gyrus is involved in visual object recognition 101; (6) 
the precuneus has a role in a range of highly integrated tasks, such as navigation, episodic memory 
retrieval and self-reflection processes 102; (7) the lingual gyrus plays a role in word processing 103; (8) 
the medial orbitofrontal cortex is involved in goal-directed decision making 104; (9) the rostral middle 
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frontal gyrus is important for execution functions, such as working memory and emotional regulation 
and a study has shown that a higher thickness in the region is associated with stress-related cognitive 
bias which may encourage vulnerability to depression 105,106; (10) the superior frontal gyrus is 
associated with higher cognitive processes, particularly working memory 107; (11) the pars opercularis, 
forms the Broca’s area, alongside the pars triangularis region and represents the interface between 
sensory stimuli and cognitive demands with motor representations of hand and face-associated 
actions 108; (12) the insula is considered an ‘integral brain hub’ which connects a range of different 
functional systems associated with ‘sensory, emotional, motivational and cognitive processing’. The 
insula monitors the current environment, in addition to emotional and bodily states, and on the basis 
of experience, predicts how potential actions may affect survival and wellbeing 109; (13) the superior 
temporal sulcus contains the auditory association cortex (Wernicke’s area) and is a multi-sensory 
integration site which plays a role in spoken word recognition and processing 110; (14) the transverse 
temporal cortex has a role in early processing associated with understanding of speech (e.g., 
frequency and duration of sound). Language competence is believed to develop from decoding of 
auditory stimuli. However, the activation of the area is influenced from other modalities (e.g., 
observing faces producing speech without the associated auditory speech activates the transverse 
temporal gyrus in normal hearing 111,112 and in deaf participants 111,112; (15) rostral anterior cingulate is 
located between limbic and cortical structures and is involved in processing emotion 113,114; (16) the 
isthmus of the cingulate gyrus has a less known role but there is evidence in its involvement in 
processing memory and pain, as well as mood symptoms such as anhedonia 115; (17) the lateral 
orbitofrontal cortex integrates previous information with current information, in the anticipation of 
upcoming stimuli/events 37; (18) the banks of the superior temporal sulcus are involved in speech and 
language processing, but its functional association with auditory areas is not well known 116,117; (19) 
the inferior parietal cortex plays a role in the processing and identification of visual stimuli and in 
memory and memory recollection to identify objects 118; (20) the cuneus plays a role in basic visual 
processing and has been found to be associated with inhibitory control in individuals with bipolar 
disease 119; (21) the entorhinal cortex acts as an interface between the hippocampus and the 
neocortex and thus, plays an important role in initial memory acquisition and retrieval (397), as well as 
in the processing of information relating to time 40 and spatial navigation (399); (22) the supramarginal 
gyrus has a role in phonological processing in language and memory tasks (400) in addition to 
overcoming egocentric bias to make judgments in social situations 121; (23) the caudal anterior 
cingulate gyrus is involved in processing “sensory, motor, cognitive and emotional information” and 
affects the activity in other brain regions and changes “cognitive, motor, endocrine and visceral 
responses” 122; (24) the superior parietal gyrus is thought to play a role in aspects of visuospatial 
perception and attention 42 and the manipulation and rearrangement of information in working memory 
43. 
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 Table 2. Descriptive statistics for included samples across the life course 

Timepoint Cohort N Mean age (SD) 
(years) 

Age range 
(years) 

% female 

Childhood ABCD 5,022 9.91 (0.61) 8.92-11 52.6 
Generation R 1,134 10.18 (0.61) 8.71-11.99 49.2 
IMAGEN (first 
wave)  

1,698-1,739 14.42 (0.39) 12.94-16.04 50.4 

Early 
adulthood 

ALSPAC 405-678 20.51 (1.56) 18-24.5 27.9 
IMAGEN 
(second wave) 

1,144-1,161 19.05 (0.74) 17.68-21.53 51.1 

Later 
adulthood 

UK Biobank T1 9,377 55.09 (3.42) 45-60 57 
UK Biobank T2 9,377 64.34 (2.24) 60-68 53.7 
UK Biobank T3 9,376 72.01 (2.88) 68-81 46 

Abbreviations: T1, timepoint 1; T2, timepoint 2; T3, timepoint 3. 
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