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Abstract 

Natural language processing (NLP) is increasingly being applied to obtain unsupervised 

representations of electronic healthcare record (EHR) data, but their performance for the 

prediction of clinical endpoints remains unclear. Here we use primary care EHRs from 

6,286,233 people with Multiple Long-Term Conditions in England to generate vector 

representations of sequences of disease development using two input strategies (212 disease 

categories versus 9,462 diagnostic codes) and different NLP algorithms (Latent Dirichlet 

Allocation, doc2vec and two transformer models designed for EHRs). We also develop a new 

transformer architecture, named EHR-BERT, which incorporates socio-demographic 

information. We then compare use of each of these representations to predict mortality, 

healthcare use and new disease diagnosis. We find that representations generated using 

disease categories perform similarly to those using diagnostic codes, suggesting models can 

equally manage smaller or larger vocabularies. Sequence-based algorithms perform 

consistently better than bag-of-words methods, with the highest performance for EHR-BERT.  
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Introduction 

Due to population aging and the effective management of many long-term conditions (LTCs), 

an increasing number of people are living with Multiple Long-Term Conditions (MLTC), a 

health state defined as the co-occurrence of two or more LTCs, and associated with a range of 

adverse health outcomes.1,2 Understanding the determinants and consequences of MLTC has 

become a priority for medical research and represents a significant shift from a focus on 

individual diseases to a focus on understanding the interactions of combinations of LTCs.2–4 

Electronic healthcare records (EHRs), particularly those from primary care settings, which 

capture the history of a person’s diseases over time, provide a powerful resource for 

exploring these interactions. The growing use of EHRs in medical research has promoted the 

translation of methods which can handle such ‘big data’, such as those developed in natural 

language processing (NLP). Applied to the structured data in EHRs, the temporally-ordered 

sequence of medical codes or diseases in a patient’s record can be viewed as analogous to the 

sequence of words in a sentence or document.5 NLP approaches can be used to generate 

representations of patients based on their sequence of diseases;6–8 more recent transformer 

architectures can also be ‘fine-tuned’ to optimise the learned representation for prediction of 

clinical endpoint, such as next disease prediction.5,9 

 

In healthcare settings, there are advantages to learning a single unsupervised representation of 

a patient based on their characteristics and diseases, rather than fine-tuning a different model 

for every outcome of interest. For example, segmentation methods aim to cluster patients for 

risk stratification, based on measures of similarity derived from demographic and clinical 

criteria; if one representation performs well across a range of outcomes, then only one 

representation and clustering could be trained and implemented, reducing complexity.10 

However, there is little comparative research of the unsupervised representations of a 

person’s disease history generated by different NLP methods, and how these compare to 

standard epidemiological approaches in prediction of clinical outcomes. Furthermore, the 

optimal input strategies when translating methods designed for natural language to structured 

healthcare data remain uncertain. When analysing EHR data, a common approach is for 

clinical experts to manually group individual diagnosis codes (for example represented by 

ICD or SNOMED ontologies), into disease categories, to reduce the number of inputs into a 

model. This process is time-consuming, may be subjective, and risks discarding relevant 

information captured in a more specific code. If use of individual diagnosis codes alone can 
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perform as well, or better than disease groupings, this might reduce the need for clinically 

derived categories as inputs for predictive models. 

 

In this study, we compare different patient representations generated from widely used bag-

of-words and sequence-based NLP methods: Latent Dirichlet Allocation (LDA), doc2vec and 

two transformer architectures designed for EHR data: Med-BERT and BEHRT.5,9 We also 

develop a new transformer architecture EHR-BERT, which includes additional demographic 

information. For each model, we compare as inputs using disease categories versus using a 

larger vocabulary of individual diagnostic codes. We then evaluate the performance of these 

unsupervised patient representations as inputs to a predictive model (logistic classifier)  for 

clinically relevant outcomes over one year: mortality, emergency department (ED) 

attendance, emergency hospital admission, attendance with a condition or a new diagnosis of 

a condition. 
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Results 

Data description 

A total of 6,286,233 patients registered to GP practices in the Clinical Practice Research 

Datalink (CPRD) on 1st January 2015 with two or more LTCs were eligible for inclusion (see 

Figure 1). Characteristics of the eligible population are displayed in Table 1. The mean (SD) 

age of the population was 53.8 (18.2) years, with slightly more females (53.1%) compared to 

males (46.9%). The majority were of White ethnicity (86.2%), followed by South Asian 

(5.9%) and Black (3.5%). There was a roughly even spread across the ten deciles of 

socioeconomic deprivation as measured by the Index of Multiple Deprivation (IMD), but 

with slightly more in the five most deprived deciles (52.3%). 

 

Figure 1: Flow chart of patients included in the study for generating embeddings 
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Table 1: characteristics of the patient cohort (N = 6,286,233) 
Patient 

characteristic Total Percent 

Age (years)   

Mean (SD) 53.8 (18.2) 

18-29 707208 11.3% 

30-39 803366 12.8% 

40-49 1108696 17.6% 

50-59 1225401 19.5% 

60-69 1081293 17.2% 

70-79 797941 12.7% 

80+ 562328 8.9% 

Gender   

Female 3339743 53.1% 

Indeterminate 58 <0.1% 

Male 2946432 46.9% 

Ethnicity   

White 5419210 86.2% 

South Asian 372336 5.9% 

Black 220687 3.5% 

Other 83472 1.3% 

Mixed 64109 1.0% 

Missing 126419 2.0% 

IMD decile   
1 (most 
deprived) 710805 11.3% 

2 652898 10.4% 

3 665105 10.6% 

4 662155 10.5% 

5 594419 9.5% 

6 624994 9.9% 

7 622678 9.9% 

8 598585 9.5% 

9 598129 9.5% 
10 (least 
deprived) 552291 8.8% 

Missing 5174 0.1% 

Total 6286233  

 

Generating patient representations 

We generated vector representations of patients’ diseases using different NLP methods, 

comparing diseases versus Medcodes as inputs (Figure 2). Using LDA, we identified an 

optimal number of topics of 70 for diseases as inputs and 100 for Medcodes as inputs, based 

on the lowest perplexity score (see Supplementary Figures S2 and S3). With doc2vec, we 

found the Distributed Bag Of Words (DBOW) algorithm to perform better than the 

Distributed Memory (DM) algorithm in assigning patients with the same sequence as similar 

to each other (Supplementary Tables S3 and S4) and selected optimal models generating 

embeddings of size 100 for both disease and Medcode inputs. Finally, we created 
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embeddings using the three transformer models, Med-BERT, BEHRT and EHR-BERT, each 

trained for 100 epochs.
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Figure 2: Analysis pipeline for generating patient embeddings and predicting outcomes 
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Evaluation of embedding performance 

We evaluated the performance of the patient embeddings generated from each algorithm as 

inputs into a logistic classifier for predicting clinical outcomes over 12 months, including 

demographic covariates in the models. We compared these models to methods using binary 

indicators for having a disease (‘Binary disease indicators – unique’), using the count of 

codes for each disease (‘Disease frequency counts’), or using the demographic covariates 

alone as inputs. 

 

We first assessed the performance, as measured by AUC and APS, of the patient embeddings 

generated from each algorithm in predicting mortality, ED attendance and emergency 

admissions (Figure 3). The embeddings tended to perform well at predicting mortality, but 

relatively poorly on predicting any ED attendance. Across all endpoints, embeddings 

generated by EHR-BERT performed best, followed by those from BEHRT, with use of 

binary disease indicators performing similarly to Med-BERT. The predictive model using the 

count of diagnosis codes for each disease (‘Disease frequency counts’) had the second lowest 

performance for all three endpoints, ahead only of models using sociodemographic covariates 

alone.  

 

We next assessed the performance of the embeddings in predicting any attendance with 

hypertension, diabetes or depression over 12 months, versus models predicting new 

incidences of these diseases amongst patients not already diagnosed. For all diseases, the 

embeddings were better at predicting any occurrence than predicting newly incident diseases. 

Embeddings generated by EHR-BERT again performed best across all three diseases, 

followed by those from BEHRT and Med-BERT, and use of binary disease indicators 

performed comparatively worse. APS scores were consistently low for predicting new 

diseases. 

 

A sensitivity analysis running the prediction models using the patient embeddings alone, 

without addition of the sociodemographic covariates showed worse overall performance, and 

similar relative differences with greater absolute differences between the embeddings 

(Supplementary Figures S5 and S6). However, for BEHRT, which includes age, and EHR-

BERT, which includes sociodemographic variables in the MLM training, addition of 

sociodemographic covariates to the logistic regression classifier made little difference to the 

overall performance of the embeddings from these models.  
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Figure 3: Model ROC-AUC (panel A) and APS (panel B) for different embedding models for 

prediction of mortality, emergency department attendances and emergency admissions within 

12 months 
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Figure 4: Model ROC-AUC (panel A) and APS (panel B) for different embedding models across 

for prediction of any versus new diseases developed within 12 months 
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Discussion 

Using a representative sample of six million people with MLTC, we compared different 

inputs and methods to learn representations of patients’ disease patterns as recorded in the 

primary care EHR and evaluated the performance of these representations in predicting a 

range of clinically relevant health outcomes. There are three key findings from our work. 

First, we directly demonstrated the predictive improvement of representations generated by 

models which incorporate information on disease sequence. Bag-of-words NLP methods 

performed comparatively poorly, and in general were worse than simply using binary disease 

indicators. BEHRT outperformed Med-BERT, highlighting the contextual importance of age 

in generating disease representations, while EHR-BERT improved on the performance of 

BEHRT, supplementing with knowledge of gender, ethnicity, socioeconomic deprivation, 

and calendar year. Second, we found that BEHRT and EHR-BERT performed well across all 

tasks, even without fine-tuning, indicating the ability of these unsupervised representations to 

capture latent information on sequence relevant to a range of health outcomes. Finally, across 

all embedding algorithms, we found little difference in the performance when using either the 

large vocabulary of Medcodes, or the smaller vocabulary of clinically categorised diseases. 

 

Implications for prediction models 

Although transformer models performed best across all tasks, we found that using binary 

disease indicators generally performed well: better than both doc2vec and LDA in predicting 

mortality and healthcare attendance, and in predicting disease occurrence or incidence. This 

suggests that for many predictive tasks in clinical applications, particularly where model 

interpretability is important, there is little benefit of bag-of-words methods in prediction, 

particularly given the computational overhead. However, methods such as LDA, unlike 

doc2vec and transformer methods, may have an advantage in generating interpretable topic 

distributions which are more easily explainable.11 Notably, we found using the count of all 

repeated disease codes in the EHR performed particularly poorly and worse than methods 

using a single code occurrence, which suggests that crude code frequency in the EHR does 

not relate directly to disease severity and downstream risk. Previous work has highlighted the 

potential biases in code frequency in primary care data, which may relate to patient 

demographics, organisational policies, and coding incentives, rather than being an objective 

marker of a person’s health status.12 However, the better performance of BERT models, 

which also utilise recurrent codes, suggests that an ability of the attention mechanisms in 

these models to regulate the impact of repeated codes. 
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The similar performance of models using diseases (N=212) and Medcodes (N=9,462) 

suggests that the disease categories capture meaningful connections and use of the larger 

vocabulary does not add explanatory power. However, the manual grouping of codes into 

disease categories is a laborious process, that needs to be repeated as old codes are retired and 

new ones introduced. Our findings suggest that NLP models, as might be expected given their 

application to the large vocabulary found in natural language, can equally well manage with 

larger vocabulary, and extract relevant latent meaning. By extension, this indicates that 

inclusion of larger vocabularies of diagnosis codes, or use of other coded information, such as 

prescription data, may aid in prediction without the need for clinical categorisation. 

 

Performance also varied according to the task. Prediction of any ED attendance was 

particularly poor, which likely relates to absence of other factors relating to attendance in our 

models, such as proximity and access to both primary care and ED departments and 

presentations with conditions not strongly related to MLTC, such as injuries.13 Although the 

embeddings generally performed well at predicting any attendance with a disease in the next 

12 months, all performed poorly in predicting new diagnoses, with very low APS scores. In 

the original BEHRT paper (which also used CPRD data), the authors reported slightly higher 

AUC scores of 0.82, 0.81 and 0.88, compared with 0.76, 0.79 and 0.71 in our study, for 

hypertension, diabetes, and depression, respectively, which may relate to the additional 

benefit of fine-tuning beyond the MLM task that we employed.9 Solares et al (2021) also 

employed the disease embeddings used by BEHRT as weights to connect the inputs in a 

neural network, and found relatively higher precision scores (APS 0.15 for detecting 

hypertension).8 This might be explained by their use of a neural network architecture, which 

will allow for non-linear interactions between features, unlike logistic regression. 

 

Strengths and limitations 

A strength of our study is the large and representative primary care dataset of six million 

people with MLTC in England.14 In contrast to studies using only secondary care data, 

primary care data contains the longitudinal history of a person’s health from birth to death, 

making them ideally suited to analyses of disease incidence. However, there are well-

recognised biases in routinely collected data which impact on whether a code is recorded, 

dependent on it having taken place.15 First, there may be temporal delays in a code being 

entered, either due to late presentations by a patient, diagnostic uncertainty, or diagnostic 
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delays, waiting until a firm diagnosis or referral is made, or correspondence is received from 

hospital.16 Second, the recurrence of codes in the medical record is dependent on factors 

including the GP practice, patient demographics, and disease-related factors, such as whether 

the disease is part of a quality assessment metric for practices.12 Previous research has 

highlighted that those in some ethnic groups, and living in areas of higher socioeconomic 

deprivation have a greater frequency of recurrent codes, which may result in models having 

more data, and therefore learning sequences better for some patients than others.12 In our 

study, we focussed on the performance across the population, but further work could explore 

the relative differences stratified by patient demographics, such as ethnicity.  

 

A further strength of our study is the comparison of approaches applied to a single data 

source. However, a limitation of the large variety of methods trialled is the unavoidable  

difference in selection of the optimal hyperparameters between algorithms. With LDA, we 

used the perplexity score to determine the optimal number of topics, whereas for doc2vec, we 

used a metric based on creating a similar embedding for patients with identical disease 

sequences. This limitation is inherent to use of unsupervised methods, where there is no 

ground-truth for evaluating a learned embedding and represented a pragmatic approach. 

Nevertheless, it is likely that further hyper-parameter optimisation could improve upon the 

learned representations from LDA and doc2vec algorithms. Similarly, and in common with 

other machine learning approaches, BERT architectures include many hyperparameters 

which may affect performance. In our work, we used settings identified by other authors, 

rather than seek to evaluate the optimal configurations for our case, but this represents an 

avenue for further work. Furthermore, we used patient representations generated from the 

second-to-last hidden layer; further exploration of the optimal layer or combination of layers 

may lead to improved performance. However, previous literature applied to language has 

suggested only small differences between layer choice.17,18 

 

Given our focus on the direct comparison of the embeddings as inputs, we used only logistic 

regression, given its popularity in epidemiological research, interpretability, and relatively 

few hyperparameters for tuning. Use of different classification algorithms, such as kernel-

based algorithms, multi-layer perceptron or gradient boosting algorithms may result in better 

predictive performance of the embeddings, particularly given the likelihood of non-linear 

interactions between features.6 However, these algorithms also require a significant amount 
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of optimisation, with hyperparameters that are likely to vary both by the embedding input and 

the outcome, and would complicate comparative interpretation. 

 

Conclusion 

Comparing different NLP algorithms for representing patients’ disease patterns, we found 

that approaches using sequences performed significantly better in predicting clinical 

endpoints than methods using co-occurrence alone. Unsupervised patient representations 

from transformer architectures performed well across tasks without the need for fine-tuning, 

indicating the potential for learning multi-purpose representations which could be used in 

future for segmentation and risk stratification. 

 

 

Methods 

Data sources 

We used CPRD Aurum, a nationally representative EHR dataset which includes routinely 

collected healthcare data from General Practices in England.14 Our data extract includes all 

patients aged 18 years or over, marked as ‘research acceptable’ (a data quality marker defined 

by CPRD, such as including a valid date of birth and registration date19) and registered to a 

GP practice on 1st January 2015. We included all patients with two or more LTCs (defined 

below) eligible for linkage to secondary care data and those registered to a practice for at 

least one year to ensure sufficient time for data input.20 Cleaning rules for demographic data 

including age, gender and ethnicity are given in the Supplementary Information p.2-3. As a 

marker of socioeconomic deprivation, data were linked to deciles of the 2019 IMD of a 

patient’s geographical area of residence.21 Secondary care data was sourced from Hospital 

Episode Statistics (HES) data and data on death registrations from the Office for National 

Statistics, both linked to the Aurum dataset by CPRD.22 As CPRD Aurum data also includes 

a marker of mortality, any differences in the dates between sources were reconciled these 

using a modification of the algorithm recommended by Delmestri and Prieto-Alhambra 

(2020) (see Supplementary Information p.3).23 

 

Disease definition and sequence construction. 

Coded data entered during clinical encounters are stored in CPRD as numeric ‘Medcodes’. 

We included 9,462 Medcodes representing a group of 212 diseases defined in our previous 

study as LTCs.24–26 For each patient, we constructed a sequence of diagnostic codes ordered 
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by date of occurrence representing the full history of these Medcodes from birth until 1st 

January 2015. All retrospective clinical data for each patient is included in CPRD (i.e., prior 

to the study start date), where clinical diagnoses may be back-dated to the date of diagnosis 

rather than the date of data-entry. We created two separate sequences: the first, ‘Disease’, 

sequence using the disease categories (vocabulary size = 212), and the second, ‘Medcodes’ 

sequence using the individual Medcodes (vocabulary size= 9,462). Given our inclusion of 

patients with two or more LTCs, all sequences contained at least two diseases or Medcodes.  

 

Patient representation methods 

We applied a range of methods for deriving document representations (embeddings) in NLP. 

For each method, we ran separate models using the disease sequences or Medcode sequences 

(see Figure 2 for our analysis pipeline). 

 

Latent Dirichlet Allocation 

LDA is a generative probabilistic model which applies a distribution of topics over each 

document, assuming topics are drawn from a Dirichlet distribution.27 Details of our model 

set-up and choice of priors are given in the Supplementary Information. To select the optimal 

number of topics, we divided our data into an 80:20 train-test split and selected the number of 

topics resulting in the lowest value of the perplexity score on a test set not seen during 

training (see Supplementary Information, p.4-6).28 Using the optimal number of topics, we 

then repeated the LDA algorithm on the full dataset to generate topic distributions for the full 

patient cohort. 

 

Doc2vec 

Doc2vec is an extension of the word2vec algorithms, which directly learns vector 

representations of text sequences ranging in length from sentences to documents.29 Further 

details of our hyperparameter tuning are given in the Supplementary Information, based on 

our previous work using word2vec.26 We found that the default learning rate and epochs for 

text produced poor representations of the patient embeddings, when using diseases, rather 

than Medcodes, as inputs. To evaluate the performance of doc2vec models using different 

learning rates and epochs, we made use of patients with identical sequences in the record, 

who we would expect to have a similar embedding vector (further details given in the 

Supplementary Information, p.7-11). We compared both DBOW and DM algorithms for both 
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disease and Medcode sequences. The DM model learns features by approximating individual 

words (diseases or Medcodes in our case) using the surrounding context and the DBOW 

model samples a random word from a patient sequence to approximate the surrounding 

context. The former approach takes order into consideration, but is more likely to learn 

similar patterns with smaller lengths of sequence.29 

 

Transformer models 

We compared Med-BERT and BEHRT, two recent transformer-based architectures designed 

for coded EHR data. Med-BERT used as input 82,000 ICD-9 and ICD-10 codes from hospital 

EHR data for 20 million patients,5 whereas BEHRT grouped codes from 1.6 million patients’ 

primary care EHR data into 301 disease categories, and supplemented training with 

information on patient age at each code occurrence.9 Although the original BERT 

implementation included an additional pre-training step with a next-sentence prediction task, 

further studies have suggested improvement in downstream language tasks using masked-

language-modelling (MLM) alone.30 We therefore used MLM alone (as done in BEHRT) and 

did not conduct the further pre-training step performed in Med-BERT. The MLM approach in 

a Transformer architecture enables the model to learn a deep, bidirectional representation of 

an entire sequence. The attention mechanism, which is a mainstay of the Transformer-based 

architectures, allows the model to capture longer range of dependencies between the EHR 

codes, leading to better capturing of context. To better enable direct comparison between 

models, we made some changes to the default implementations and fixed the minimum 

sequence length per patient to two, and the maximum sequence length to 128, which 

accounted for the full sequence for 97.3% of patients (Table 2). Sequences longer than 128 

were truncated, retaining the most recent 128 codes. 

 

We also developed a new transformer architecture, which we call EHR-BERT. EHR-BERT 

adapts and extends the BEHRT model to include additional sociodemographic factors known 

to be associated with code frequency in the EHR.12 We added embedding layers for gender, 

ethnicity, socioeconomic deprivation decile and calendar year of the observation (Table 2 and 

Supplementary Information Figure S4). Compared to BEHRT, we removed the segment 

token, and the [SEP] tokens between visit, as most visits contained only one code, and we 

believed that visit number should suffice to capture sequential visit information.  
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Table 2: Model inputs and parameters for Med-BERT, BEHRT and EHR-BERT 

architectures 

 Med-BERT BEHRT EHR-BERT 

Model inputs  

Minimum visits 

per patientY 

3 5 2 

Maximum 

sequence length 

per patient* 

512 64 128 

Input embeddings 

(in addition to 

code input) 

Visit number +/- 

absolute position 

Visit number, age 

and segment 

Visit number, 

age, gender, 

ethnicity, 

deprivation, 

calendar year 

Use of [CLS] and 

[SEP] tokens 

Not used [CLS] at start of 

sequence and 

[SEP] between 

each visit 

[CLS] at start of 

sequence and 

[SEP] at end of 

sequence 

Model parameters  

Batch size 32 256 256 

Hidden layers 6 6 6 

Attention heads 6 12 12 

Hidden size 192 288 288 

Intermediate size 64 512 512 

Learning rate 5e-5 3e-5 3e-5 
Y We used a minimum sequence length of 2 in all configurations to include all 

patients with MLTC 

 * We used a maximum sequence length of 128 in all configurations 

 

The six models (three BERT variants, each with two separate model inputs (diseases or 

Medcodes) were trained on the full study cohort for 100 epochs, as used in BEHRT. To 

generate patient embeddings, we averaged the second-to-last hidden layer of each of the 
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contextualised disease embeddings in a patient’s sequence, resulting in a vector equal in 

length to the hidden size.17,31 

  

Evaluation 

We evaluated the performance of the embeddings in predicting the following binary 

outcomes measured in the 12 months after 1st January 2015 (the final date used for generating 

the embeddings), using data not seen during training: 

1. Mortality (of patients aged ≥60 years on 1st January 2015) 

2. Any emergency department (ED) attendance 

3. Any emergency hospital admission  

4. Any attendance with a coded diagnosis code for: 

a. Hypertension 

b. Diabetes (Type 1 or Type 2, or unspecified) 

c. Depression 

5. A new diagnosis of: 

a. Hypertension 

b. Diabetes (Type 1 or Type 2, or unspecified) 

c. Depression 

 

The three diseases were selected based on relatively high frequency in the dataset 

(Supplementary Information Table S2) and as important for early detection. For all outcomes, 

we excluded 305,142 patients who deregistered during the 12-month period, to ensure equal 

follow-up time (total population = 5,981,091). For all outcomes except mortality, we 

excluded the 85,260 patients who died during the 12-month follow-up (total population = 

5,895,831). For prediction of new diagnoses only, we additionally excluded any patient from 

analysis who already had the disease of interest diagnosed by 1st January 2015. 

 

As a comparison to a standard epidemiological approach without information on co-

occurrence or sequence, we constructed a ‘Binary disease indicator’ embedding where each 

of the 212 disease categories was represented as a binary feature (present or not present). We 

also constructed a ‘Disease frequency count’ embedding where each feature represented the 

number of times each disease appeared in the record for the patient. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.23298640doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.16.23298640
http://creativecommons.org/licenses/by/4.0/


To compare performance of different representations, we used them as inputs (features) into a 

logistic regression classifier, running separate models for each of the outcomes described 

above. Logistic regression models were trained with four-fold cross-validation, with L2 

penalisation (regularization strength of 1) and maximum iterations of 100. We experimented 

with smaller and larger values of the regularization parameter (0.01, 0.1 and 10) but found 1 

to be optimal. We included age, gender, ethnicity and deprivation decile, categorised as in 

Table 1. As a sensitivity analysis, we compared model performance using the patient 

representations alone, without inclusion of covariates. 

 

Models were evaluated on the test sets using the Receiver Operating Characteristic Area 

Under the Curve (ROC-AUC) score and Average Precision Score (APS), which is the area 

under the precision-recall curve and gives a better indication of model performance for 

predicting the positive class.32 As a sensitivity analysis for the Med-BERT, BEHRT and 

EHR-BERT models, we compared the performance at 10, 50 and 100 epochs, and selected 

100 epochs as the best performing (see Supplementary Information Tables S5 and S6). 

 

Implementation 

We used Python version 3.10.9 and Pandas version 2.0.3 for data manipulation and 

management.33,34 Skip-gram, LDA and doc2vec were applied using the gensim library.35 The 

BEHRT model was implemented using the authors’ source code available on GitHub 

(https://github.com/deepmedicine/BEHRT). We implemented Med-BERT and EHR-BERT 

using the HuggingFace Transformer library;36 Med-BERT used the same architecture and 

hyperparameter settings described by the authors.5 Transformer models were run on an 

NVIDIA Quadro RTX 8000 GPU with 48GB RAM; each model took approximately ten days 

to run for 100 epochs. Codes, including the Medcode to disease mapping are available from 

https://tbeaney.github.io/MMclustering/ 

 

Ethics 

Data access to CPRD and ethical approval was granted by CPRD’s Research Data 

Governance Process on 28th April 2022 (Protocol reference: 22_001818) and with linkage to 

HES data on 6th March 2023 (Protocol reference: 22_002481). 
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Data availability 

This study uses patient data which is not publicly available but can be requested for users 

meeting certain requirements: https://cprd.com/research-applications. Codes, including the 

Medcode to disease mapping are available from https://tbeaney.github.io/MMclustering/ 
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