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Abstract 

Background: Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used 
worldwide in the treatment of depression, however, we currently lack the means to reliably predict 
whether patients will respond to the treatment. Recent research suggests that the neurophysiological 
measures of beta power and correlation dimension may have predictive potential, however, studies of 
beta power and correlation dimension to differentiate rTMS group response in individuals with major 
depression are limited.  

Methods: Fifty treatment-resistant patients with major depressive disorder were recruited. Forty-two 
participants underwent baseline resting EEG sessions and 5-8 weeks of rTMS treatments and 12 
participants were responders to the treatment. Beta power and correlation dimension from baseline 
resting EEG were compared between responders and non-responders. 

Results: Responders demonstrated significantly lower beta power in baseline resting EEG, however, 
correlation dimension did not show a significant difference between groups. 

Limitations: There were a small number of responders in this study.  

Conclusion: Baseline resting beta power may help to differentiate responders from non-responders to 
rTMS treatment. However, further studies are needed with larger sample sizes. 

 

Abbreviations: rTMS, repetitive transcranial magnetic stimulation; fMRI, functional magnetic 
resonance imaging; sgACC, subgenual anterior cingulate cortex; DLPFC, dorsolateral prefrontal 
cortex; BL, baseline; EEG, electroencephalography; MDD, major depressive disorder; HAM-D, 
Hamilton Rating Scale for Depression; BDI-II, Beck depression inventory; MADRS, Montgomery 
Asberg Depression Rating Scale; RMS, root mean square; TANOVA, topographical analysis of 
variance 
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Introduction 

Major depressive disorder (MDD) is a common psychiatric illness. Approximately 30% of 
patients with MDD do not respond to standard medication and psychological therapies1. Repetitive 
transcranial magnetic stimulation (rTMS) is an increasingly available and effective treatment but not 
all participants respond, with studies reporting a wide range of response and remission rates, 29-58% 
and 6-37%, respectively2-4.  Due to the high cost and time-consuming nature of the standard rTMS 
protocol, an effective treatment-response predictor would help physicians make a more well-informed 
decision about whether to recommend rTMS treatment. 

Many studies have attempted to find demographic and clinical variables that provide accurate 
prediction of treatment response, but to date, no studies have found a consistently (replicable) strong 
relationship to differentiate responders from non-responders5. Functional magnetic resonance imaging 
(fMRI) and electroencephalography (EEG) have been widely used for studying the pathophysiology 
and neural circuitry of depression and for testing potential treatment-response predictors. One fMRI 
study has shown that one of four subgroups categorised by pre-treatment functional connectivity had a 
greater response to rTMS treatment provided to the dorsomedial prefrontal area6. Unfortunately, flaws 
have been suggested in their statistical testing method, and a recent non-replication of their results has 
been reported7. Research has also indicated that stimulating a DLPFC target that is functionally 
negatively correlated with subgenual anterior cingulate cortex (sgACC) is the most effective target for 
depression symptoms reduction8.  Moreover, a greater clinical response was associated with higher 
baseline sgACC metabolism and decreased sgACC metabolism after treatment9. These results are 
promising for the prediction of response to rTMS for depression, however, due to its cost, fMRI is not 
extensively available, especially in the clinical setting.  

EEG is another measure that can potentially be used to predict treatment response. For the 
prediction of response to treatment for MDD, many types of EEG measures have been examined, 
including resting EEG, sleep EEG, event-related potentials (ERPs) and transcranial magnetic 
stimulation-evoked EEG (TMS-EEG)10-12. Some EEG measures have been investigated both to help 
diagnose MDD and predict treatment response from both pharmacological treatment and other 
therapeutic interventions13. There have been resting EEG measures examined such as peak alpha 
frequency proximity to the stimulation frequency, the bispectrum of all frequency bands, and also 
nonlinear features (i.e., correlation dimension (CD), Lempel-Ziv complexity and Katz fractal 
dimension (KFD)) which have shown predictive potential14,15. The relationship between peak alpha 
frequency proximity to the stimulation frequency and treatment response has been shown to predict 
response to rTMS treatment for depression15, a finding that has been replicated in an independent 
dataset, suggesting that it might reflect a generalisable predictor16. If other potential predictors can be 
demonstrated to replicate, a combination of these generalisable predictors might provide accurate and 
clinically applicable treatment response predictions. This provides strong justification for replication 
studies of potential treatment response predictors. 

Beta oscillations are high-frequency brain activity ranged from 13-30 Hz. They can be seen in 
an awake state, especially when subjects are anxious, stressed or highly arousal. In the frontocentral 
regions, beta oscillations usually have maximal amplitude17,18. Higher beta activity has also been 
found in patients with a recurrent depression19. Another measure that was also shown to provide 
predictive accuracy is the correlation dimension of the EEG, which is a way to measure the 
dimensionality of the data, which represents the trajectory of dynamical system. When the correlation 
dimension is low, there is low complexity in the system20,21. In EEG analysis, the correlation 
dimension was first used to study human brain activity while sleeping22. It was found that there was 
less dimensionality in deeper sleep stages. The correlation dimension has also been used to 
differentiate people with and without depression with high accuracy compared to other non-linear 
features (i.e., detrended fluctuation analysis, Higuchi fractal and Lyapunov exponent)23. Interestingly, 
two recent studies using machine learning techniques found that beta power and correlation dimension 
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accurately predicted clinical response to rTMS14,24, holding promise for potential clinical application. 
However, robust determination of an effect that might be used clinically requires replication in 
independent datasets. As such, it is important to test if the effect replicates in other datasets. As such, we 
aimed to conduct an exploratory analysis of potential beta power and correlation dimension differences 
between responders and non-responders in an independent dataset, in order to confirm the findings of 
previous research. The objective of this study was to examine whether beta power and correlation 
dimension can differentiate responders to rTMS treatment from non-responders.  
 

Methods 

Participants 

 Participants included in the current study were identical to those reported in our previous 
research on resting EEG predictors of response to rTMS treatment for depression25, which was part of 
a larger treatment study to assess the effect of switching rTMS treatment approach in the event of 
non-response26. Here we report on data only from the MDD participants and only from the baseline 
EEG. We recruited 50 major depressive disorder participants. Participants were aged between 20 and 
72 years. Inclusion criteria for the MDD group were a DSM-IV diagnosis of major depressive episode 
using the MINI V5.0.027, aged between 18–75, treatment resistant MDD at stage 2 of the Thase and 
Rush (1997) classification, a Montgomery-Asberg Depression Rating Scale (MADRS) score of >20, 
and no change to medication in the four weeks prior to screening or for the duration of the trial. As is 
usual in rTMS trials for treatment resistant depression, a number of participants in the MDD group 
were medicated26. Exclusion criteria were: presence of an unstable medical condition or neurological 
disorder; history of seizure; contraindication to rTMS; or current pregnancy or lactating. Participants 
were also excluded if at sufficient risk of suicide to require immediate electroconvulsive therapy, or 
had a current DSM-IV diagnosis of substance abuse or dependence disorder, bipolar affective 
disorder, or schizophrenia spectrum disorders. Ethical approval was granted by the Alfred Hospital 
and Monash University's ethics committees, and all participants gave written informed consent. 
 
 
Relevant to the current analyses, all participants had a baseline EEG session which was conducted 
prior to their first treatment session. Eight MDD participants were excluded from analysis because 
they withdrew from the study before the end of the first week of rTMS treatment. For the purposes of 
the current analyses of the remaining 42 MDD participants, were defined 12 as responders using a 
criteria of by >50% reduction in the 17-item Hamilton Rating Scale for Depression (HAM-D), as per 
our previous research on measures that differentiated responders and non-responders in this 
dataset28,29.  
 
 
Procedure 
 
 The demographic and depression severity data were collected at baseline interview. We used 
the 17-item Hamilton Rating Scale for Depression (HAM-D)28, the Montgomery-Asberg depression 
rating scale (MADRS)30 and the Beck Depression Inventory-II (BDI-II)31 for assessing depression 
severity. MDD participants underwent unilateral left 10 Hz rTMS treatment for three weeks (five days 
per week). Responders at the end of the third week continued to receive an additional two weeks of 
titrated rTMS treatment (three sessions in week four and two sessions in week five). Non-responders 
at three weeks (defined as less than a 25% reduction in their MADRS scores at this three week 
timepoint) were randomised to either continue for the next three weeks with unilateral left 10 Hz 
rTMS treatment, switch to unilateral right 1 Hz rTMS, or switch to sequential bilateral rTMS 
consisting of right 1 Hz rTMS followed by left 10 Hz rTMS treatment. Individuals who had not 
responded by week three, but responded by week six were continued on an additional 2 weeks of 
titrated rTMS treatment using the treatment approach they had been switched to (three sessions in 
week seven and two sessions in week eight). All rTMS treatments were given at 110% of resting 
motor threshold. Left sided treatment consisted of 40 trains of 5 s durations with a 25 s inter-train 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.23298445doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.16.23298445


interval. Right sided rTMS consisted of 1 train of 1200 pulses. Bilateral rTMS combined these 
protocols but with only 900 right sided pulses. Treatments were given to the F3 and F4 electrode 
locations. MADRS and BDI-II measures were repeated at the end of week one and week three. The 
MADRS, BDI-II, and HAM-D were measured at week six, and at week eight for individuals who had 
not responded by week three, but had responded by week six.  
 

EEG recordings and pre-processing were identical to Bailey et al. (2019)25. All participants 
provided 63 or more noise free epochs of two seconds in length, which were available for analysis 
from eyes open and eyes closed resting recordings, providing enough trials for reliable analysis. Data 
were re-referenced to an averaged reference offline. 
 
Beta Power analysis 
 

EEG signal from each accepted epoch for each participant were submitted to a multitaper fast 
Fourier frequency transformation with a Hanning taper in order to calculate power in the beta band 
(12–30 Hz). Average power was calculated across the entire epoch within each frequency band, and 
then averaged across all trials from eyes open and eyes closed conditions together, resulting in a 
single value for each participant at each electrode. Statistical comparisons were made between groups 
and time points using these participant averages. 
 
Correlation dimension analysis 
 

Correlation dimension is a nonlinear measure that can be applied to EEG data to measure the 
complexity of EEG signals32. Average correlation dimension was calculated for each electrode for 
each epoch, then averaged across epochs resulting in a single value for each participant from each 
electrode in the eyes closed condition. Statistical comparison was made between groups using these 
participant averages.  
 

Primary Comparisons  

Primary statistical comparisons between groups in beta power EEG data were performed 
using RAGU33. RAGU uses reference free root mean square (RMS) measures and randomisation 
statistics to compare neural response strength and scalp field differences across all electrodes without 
a priori assumptions about locations that show significant effects. RAGU controls for multiple 
comparisons in the spatial dimension by collapsing differences to a single scalp difference map value 
for comparisons of the distribution of activity across the scalp, and using the single RMS value from 
each participant for global neural activity strength comparisons. Further details about RAGU can be 
found in Koenig, Kottlow33. Differences between groups in overall neural activity strength within the 
beta frequencies (across all electrodes) were compared using the RMS test. Differences between 
groups in the distribution of activity across the scalp were compared independently of amplitude using 
the topographical analysis of variance (TANOVA) after the recommended L2 normalization (which 
normalizes for global neural activity strength by converting data from each participant to the same 
RMS value). RMS and TANOVA tests were used to conduct repeated measure ANOVA design 
comparisons comparing beta power values averaged across all beta frequencies between responders 
and non-responders and within eyes open and eyes closed conditions. Because EEG measure can be 
affected by age34, independent t-tests was used to compare mean age between responder and non-
responder groups. 

The primary comparison between groups for correlation dimension was a repeated measures 
ANOVA design, with 2 groups x 28 electrodes conducted in SPSS 26. Only the main effect of group or 
interaction between group and electrode was of interest. 
 
Results 

 There were no significant differences in the ages of the responder and non-responder groups 
t(40) = 0.4934, p =  0.6244.  
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Beta power 

A significant group difference was present in the RMS test for averaged beta power (p = 
0.026, η2 = 0.114) such that responders to rTMS displayed lower BL beta power compared to non-
responders. No interaction between group and eyes open/closed was present (p = 0.213, η2 = 0.045). 
No significant group difference was present in the TANOVA test for averaged beta power (p = 0.624, 
η2 = 0.019), nor was there a significant interaction between group and eyes open/closed (p = 0.903, 
η2 = 0.012), suggesting that no significant difference was present in the topographical distribution of 
beta activity between two groups. 
 
 

 
Fig. 1. Mean root mean square value of beta power from responder and non-responder group. A significant difference was 
detected between responders and non-responders. Error bars reflect 95% confidence interval. 
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Correlation dimension 

There was no significant group difference in eyes-closed correlation dimension (F(1,40) = 
0.570, p = 0.455, ηp2 = 0.014). Nor was there an interaction between group and electrode (F(1,40) = 
1.303, p = 0.138, ηp2 = 0.032). 

 

 
Fig. 2. Mean correlation dimension values from responder and non-responder groups. No significant difference was 
detected. Error bars reflect 95% confidence interval. 

 

Discussion 

 Our study aimed to examine whether previously reported baseline beta power and correlation 
dimension measures are generalizable at differentiating rTMS treatment responders and non-
responders. Our results indicated that responders to rTMS treatment had significantly less beta power 
than non-responders in baseline resting EEG recordings in both eyes-open and eyes-closed combined 
conditions. The result was similar to those reported by Hasanzadeh et al., which they reported high 
predictive accuracy of 91.3% for beta power14, and Ebrahimzadeh et al.24, who also reported that beta 
power predicted response to rTMS treatment for depression. However, our result extends their results 
by demonstrating that the differences in beta power are present in both the resting eyes-closed 
condition and the eyes open resting state (in contrast to the previous research which only examined 
the eyes closed state)14. There were differences in our rTMS treatment protocol compared to that 
tested by Hasanzadeh et al.’, but a similar number of rTMS sessions and similar treatment sites were 
applied. As such, our results indicate that beta power differentiates responders and non-responders to 
rTMS treatment for depression, indicating the finding replicates across multiple independent datasets, 
suggesting it may be a reliable and generalizable measure for differentiating responders and non-
responders. This justifies further research using this measure, ideally using a prospective prediction 
study where participants are allocated to rTMS or another treatment based on their predicted 
responses. Interestingly, previous research has also indicated that both absolute and relative beta 
power are negatively associated with HAM-D score reduction in 6 weeks in pharmacological 
treatment (i.e., paroxetine)35. Similarly, another study demonstrated that higher beta power at the 
baseline resting EEG was correlated with more severe depressive symptoms after 4 week of 
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antidepressant treatment36. Therefore it is possible that beta power may be not only useful to 
differentiate responders and non-responders to rTMS treatment, but also to antidepressant 
medications.  

In contrast to our findings for beta power, our results showed no differences in correlation 
dimension between groups. This lack of replication of the research by Hasanzadeh et al., which they 
reported high predictive accuracy of 87% for correlation dimension14, could be explained by 
differences in concurrent medications, different complexity measures and participants’ age. However, 
if these differences explained the null result for the correlation dimension, it is not clear why the same 
would not be true for the beta finding. As such, it may be that the correlation dimension finding 
reported by Hasanzadeh et al., reflects a spurious finding. Alternatively, differences in study 
parameters, for example the EEG recording or pre-processing settings could also conceivably have 
affected our result, and it is possible these explain the difference between our studies. For example, 
there is evidence that correlation dimension increases with age in the healthy population because of 
the development and modification of neural cells and learning processes throughout lifespan37, so 
potential differences in the ages of participants between in our study and that have Hasanzadeh could 
be a potential explanation for the conflict in our results. Nevertheless,  research in correlation 
dimension in depressive population is limited38 and needs further investigation.  
 
 

Limitations 

There are some limitations in this study. Firstly, the sample size was not large and the number 
of responders was only 12 participants. This may offer a potential explaination for our non-significant 
correlation dimension result. Moreover, a small sample size and only a few measures in this study 
limited our capacity to conduct a valid machine learning analysis in direct replication of Hasanzadeh 
to determine prediction accuracy.  Secondly, participants were taking many medications which affect 
EEG39, although we note that this factor is difficult to control for when conducting research in real 
clinical settings. Lastly, the rTMS protocol applied in this study was different to the FDA-approved 
rTMS protocol, as participants that showed signs of non-response at 3 weeks were re-randomised to 
either receive continued high-frequency left hemisphere rTMS treatment, or low-frequency right 
hemisphere rTMS treatment, or bilateral rTMS treatment. The difference of rTMS protocol and 
treatment stimulating sites across studies may affect EEG measures to an unknown degree so caution 
should be considered in interpreting our results.  

 

Conclusions 

Global beta power differentiated responders to rTMS treatment for depression from non-
responders from baseline EEG data, in replication of two previous studies. Correlation dimension was 
not significantly different between two groups. Further studies are needed with larger sample size, 
standard rTMS protocol applied and the consideration of EEG recording type and concurrent 
medications to determine if these results might be considered in a prospective prediction study and 
also in clinical application. 
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