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Tingting Zhu

Abstract

Introduction: Atrial fibrillation (AF) and stroke are leading causes of death of heart failure patients. Several ML models have
been built using electrocardiography (ECG)-only data, or lab test data or health record data to predict these outcomes. However, a
multi-modal approach using wearable ECG data integrated with lab tests and electronic health records (EHRs) data has not been
developed.
Objective: The aim of this study was to apply machine learning techniques to predict stroke and AF amongst heart failure patients
from a multi-modal dataset.
Methods: This study analysed hospitalised patients with heart failure in Hong Kong between 1 January 2010 and 31 December
2016, with the last follow-up of 31 December 2019. The primary outcomes were AF and stroke. The secondary outcomes were
all-cause and cardiovascular mortality. ECG-only, non-ECG-only and multimodal models were built to assess feature importance.
Four machine learning classifiers and seven performance measures were used to evaluate the performance.
Results: There are in total 2,868 subjects with heart failure upon admission, among them 1,150 (40.10%) had new onset AF,
668 (23.29%) had new onset stroke/TIA. It was found that accurate and sensitive machine learning models can be created to
predict stroke and AF from multimodal data. XGBoost, which was the best algorithm tested, achieved a mean (over 10 iterations)
accuracy, AUROC, AUPRC, positive predictive value and negative predictive value of 0.89, 0.80, 0.74, 0.99 and 0.88, respectively,
for stroke and 0.78, 0.82, 0.77, 0.77 and 0.79, respectively, for AF. The predictive models, built using multimodal data, were easy
to use and had high accuracy.
Conclusion: Multi-modal machine learning models could be used to predict future stroke and AF occurrences in patients
hospitalised for heart failure.
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I. INTRODUCTION

Heart Failure (HF) is a clinical condition caused by either structural or functional defects in the myocardium resulting
in impairment of ventricular filling or ejection of blood [1]. With millions of individuals affected worldwide, HF poses a
pervasive and often devastating challenge within the realm of cardiovascular health [2]. In Hong Kong, HF contributed to 59
episodes of hospitalization per 100,000 population each year [3]. Because HF and atrial fibrillation (AF) are closely inter-related
with similar risk factors and shared pathophysiology, they frequently coexist, while AF stands as the most prevalent global
arrhythmia and is currently on the rise [4], [5]. Patients with concomitant HF and AF suffer from even worse symptoms and
poorer prognosis than those with either of these conditions alone [6]. Patients with AF experience HF have a risk of mortality
that is approximately two to threefold higher than that of those without AF [7]. In addition, HF and AF together increase
the risks of stroke or transient ischaemic attack, which is the second most common cause of death and the leading cause of
disability globally [8]–[10].

The relationships between HF, AF, and stroke are complex, which together complicate the treating outcomes [11]. AF is well
known as an independent risk factor for ischaemic stroke, and previous studies showed that this risk is increased by a factor
of five in patients with AF [12]. However, less is known about the occurrence of stroke in patients with HF, especially those
without AF [13]. Although HF leads to an increase in stroke severity, there is no difference in stroke risk between different HF
subtypes [9]. In light of these complexities, it is important to investigate the intricate relationships and the healthcare outcomes
for patients with these conditions. This allows identifying high-risk patients necessitating preventive measures, and enabling
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early detection and treatment of these conditions to prevent further health deterioration. For example, HF and AF are often
unrecognised and untreated, because they are frequently asymptomatic or minimally symptomatic; thus, methods to screen for
and identify undetected HF and AF are of significant interest to ultimately prevent strokes [14], [15].

Machine learning has seen a growing application in the analysis of electronic health record (EHR) data and electrocardiogram
(ECG) data for predicting outcomes related to these conditions. For HF, an artificial intelligence-based clinical decision support
system (AI-CDSS) was developed to distinguish HF patients with reduced ejection fraction, mid-range ejection fraction, and
preserved ejection fraction [16]; Additionally, a decision tree model was employed to assess mortality risk in both hospitalized
and ambulatory HF patients [17]. A convolutional neural network was developed to predict the five-year incident AF risk using
12-lead ECGs [18]. Several studies have also explored health outcomes associated with the coexistence of HF, AF, and stroke.
For instance, a deep learning model was designed to predict new-onset AF and identify individuals at risk of AF-related stroke
[15]. Previously, it was demonstrated that the ML algorithm had better accuracy in predicting mortality and hospitalization in
the setting of acute HF [19]. These studies underscore the potential of machine learning models in improving health outcomes
through risk assessment and prediction [20].

This study aims to employ advanced computational methods, specifically utilizing machine learning techniques, to predict
the occurrence of stroke/TIA and AF in patients diagnosed with HF.

II. RESULTS

A. Basic characteristics

There were in total 2,868 subjects with heart failure upon admission, among them 1,150 (40.10%) had new onset AF, 668
(23.29%) had new onset stroke/TIA, 604 (21.06%) passed away with cardiovascular diseases, and 2,084 (72.66%) passed away
with all-causes. The prevalence of the primary and the secondary outcomes are detailed in Table III. A summary of baseline
and clinical characteristics in HF patients, including patients with new-onset AF and stroke/TIA in patients can be found in
Table IV. The incidence of the adverse outcomes was also calculated (Table V).

The cumulative incidence curves illustrating primary and secondary outcomes stratified by age (Figure 7), sex (Figure 6), and
prior major adverse cardiovascular events (MACE) (Figure 8). The analysis revealed an association between age at admission
and increased Charlson’s standard comorbidity index with increased risks of AF, stroke/TIA, and increased mortality risks in
patients. This association were substantiated by the conditional margin effects analysis (Figure 9 and Figure 10.

B. ML model prediction performance

The establishment of train/test sets, illustrated in Figure 1, facilitated rigorous testing. The multi-modal model’s outcomes,
presented in Table I alongside alternative iterations of the machine learning model for comparative analysis, were derived
from 10 distinct train/test sets (80/20 split) to ensure robustness. Remarkably, the results underscored the superior performance
achieved with multi-modal data compared to ECG-only data. Moreover, individual classifiers exhibited marginally enhanced
performance compared to an XGBoost multilabel classifier, substantiating the efficacy of the proposed multi-modal approach
in predictive modeling.

The predictive performance for the stroke/TIA was suboptimal when relying solely on electrocardiogram (ECG) data, with
an area under the precision-recall curve (AUPRC) of 0.2606±0.00196. However, an enhancement was observed with the
incorporation of electronic health record (EHR) data, resulting in an improved AUPRC of 0.7449±0.0253. AF demonstrated
commendable predictive performance independently, registering an AUPRC of 0.7672±0.0286. Assessing positive predictive
value (PPV) and negative predictive value (NPV) metrics, both Stroke/TIA (PPV of 0.9861±0.0143 and NPV of 0.8844±0.0078)
and AF (PPV of 0.7704±0.0137 and NPV of 0.7871±0.0155) yielded balanced outcomes, with the former exhibiting superior
performance. This highlights the pivotal role of integrating EHR data in augmenting the predictive capacity for Stroke/TIA;
meanwhile, AF maintains robust predictive capabiliy.

C. Significant predictors of outcomes

Significant predictors for the individual classifiers were elucidated (Figure 2). In predicting future stroke events, the baseline
stroke/TIA emerged as the most significant feature, followed by Charlson’s comorbidity index (CCI). Notably, ECG features,
such as max-min ST duration, SD duration, and ST slope, held their positions in the hierarchy of importance, although their
contributions were less than a quarter of that to baseline stroke/TIA. Moreover, calcium channel blockers ranked fourth in
importance, elucidating the enhancement observed in model performance when non-ECG information was incorporated.

Regarding AF, history of prior AF retained its significance as the foremost predictor for recurrence. The second most
influential predictor for AF occurrence was ’P Front Axis.’ Subsequently, ECG features assumed pivotal roles, with the SD of
the PR segment, atrial rate, and coefficient of variation (CV) of the ST duration emerging as consequential contributors.
Additionally, the administration of anticoagulants and the level of lactate dehydrogenase were also identified as critical
determinants influencing the risk of AF. This identification of predictive factors not only reaffirmed the importance of historical
AF data.
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Fig. 1: Procedures of constructing training and testing dataset for comparing the various models- ECG-only, multimodal and
corresponding multilabel models.

Atrial Fibrillation
XGB simple XGB multilabel TabNet simple XGB multimodal+label XGB multimodal

Accuracy 0.7172±0.0184 0.7198±0.0124 0.6271 0.7823±0.0084 0.7814±0.0138
AUROC 0.7381±0.0206 0.7459±0.0078 0.6946 0.8119±0.0077 0.8190±0.0206
AUPRC 0.6728±0.0300 0.6680±0.0139 0.6352 0.7542±0.0102 0.7672±0.0286
PPV 0.6824±0.0265 0.7002±0.0269 0.5323 0.7835±0.0205 0.7704±0.0137
NPV 0.7340±0.0159 0.7292±0.0153 0.6994 0.7820±0.0109 0.7871±0.0155

Stroke/TIA
XGB simple XGB multilabel TabNet simple XGB multimodal+label XGB multimodal

Accuracy 0.7453±0.0105 0.7629±0.0069 0.7735 0.9030±0.0059 0.8981±0.0079
AUROC 0.5329±0.0207 0.5380±0.0126 0.5168 0.8038±0.0108 0.8028±0.0237
AUPRC 0.2606±0.0196 0.2604±0.0128 0.2630 0.7534±0.0121 0.7449±0.0253
PPV 0.2785±0.0975 0.2192±0.1467 1.0000 0.9856±0.0163 0.9861±0.0143
NPV 0.7685±0.0047 0.7669±0.0065 0.7719 0.8895±0.0065 0.8844±0.0078

CVD Mortality
XGB simple XGB multilabel TabNet simple XGB multimodal+label XGB multimodal

Accuracy 0.7744±0.0061 0.7860±0.0065 0.7631 0.7790±0.0081 0.7774±0.0063
AUROC 0.5911±0.0261 0.5952±0.0132 0.6026 0.5891±0.0169 0.5952±0.0369
AUPRC 0.2770±0.0264 0.2713±0.0121 0.2705 0.2693±0.0155 0.2861±0.0301
PPV 0.3342±0.0619 0.3526±0.2641 0.2308 0.2946±0.0948 0.3682±0.0616
NPV 0.7949±0.0031 0.7893±0.0058 0.7883 0.7912±0.0060 0.7963±0.0026

All-Cause Mortality
XGB simple XGB multilabel TabNet simple XGB multimodal+label XGB multimodal

Accuracy 0.7202±0.0152 0.7238±0.0081 0.7275 0.7664±0.0099 0.7669±0.0160
AUROC 0.6358±0.0222 0.6388±0.0119 0.5983 0.7638±0.0158 0.7663±0.0239
AUPRC 0.8025±0.0147 0.8107±0.0110 0.7813 0.8841±0.0105 0.8871±0.0120
PPV 0.7543±0.0087 0.7392±0.0111 0.7439 0.7950±0.0099 0.8021±0.0103
NPV 0.4754±0.0647 0.4985±0.0703 0.5000 0.6246±0.0354 0.6115±0.0466

TABLE I: The multimodal model discussed in this report (right-most column), is compared to other XGBoost models- the
combination of multimodal and ECG-only (simple) data as well as individual and multilabel classifiers. All models were
trained/tested on the same samples in each iteration. Stroke/TIA outcome had the biggest increase in performance with the use
of multimodal data, instead of ECG-only data.
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New onset stroke/TIA

Cardiovascular mortality

All-cause mortality

New onset AF

Relative importance

Relative importance

Relative importance

Relative importance

Fig. 2: Top 10 important feature rankings to predict new onset AF, new onset stroke/TIA, cardiovascular mortality, and all-cause
mortality in patients with heart failure. (The relative importance of each variable in each prediction model was obtained by
averaging over 10 iterations.)
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Regarding cardiovascular-associated mortality, a predominant share of predictors originated from ECG data, (Figure 2).
Conversely, regarding all-cause mortality, age emerged as the most influential factor, underscoring its intrinsic association with
mortality. Additionally, CCI was a significant predictor. Sequentially, the use of diuretics or a diagnosis of heart failure also
predicted mortality, preceding the SD of the PR interval. This not only reaffirmed the role of ECG-derived metrics in predicting
cardiovascular-associated mortality. It also emphasizes the multifactorial nature of all-cause mortality, wherein age, comorbidity
indices, and medications play a significant roles in prognostication.

D. Model performance evaluation

The evaluation of model performance across diverse patient subgroups is presented in Table VII. Notably, the results
underscored the model’s robustness, demonstrating satisfactory performance irrespective of sex, baseline age, and CCI. It
is important to note that the subgroup with the least optimal performance manifested in individuals with a CCI of 0-1, with
a PPV of 0.5000±0.0024 and a NPV of 0.9203±0.0121. This deviation was attributed to the constraint of a relatively small
sample size, encompassing 116 patients within this subgroup. Furthermore, the model exhibited consistent performance for
both primary and secondary outcomes across various durations of follow-up, as evidenced by the time-dependent area under
the receiver-operating characteristic curve (AUROC) and Harrell’s C-index (Figure 3 and 11).

Figure 5 elucidates the enhancement in model performance as additional features are incorporated. Notably, for the prediction
of AF, cardiovascular-associated mortality, and all-cause mortality, a surge in performance was observed with the integration of
approximately 10 features. Subsequently, the performance levels reached a plateau, signifying a saturation point in the model’s
benefit from additional features. In contrast, the prediction of stroke displayed a distinctive pattern, maintaining a consistent
level of performance across all features. This was attributed to the overwhelming significance of ’baseline stroke/TIA’ as the
preeminent predictor of future stroke events (Figure 2). To discern the specific impact of non-electrocardiogram (non-ECG)
features on model performance, four classifiers were trained exclusively on non-ECG data (Table ??). Intriguingly, AF prediction
exhibited the least improvement with the incorporation of multi-modal data compared to non-ECG-only data, whereas all-cause
mortality demonstrated the most substantial enhancement. This analysis not only highlighted the optimum feature threshold
for different outcomes.

III. METHODS

A. Data and setting

This study was approved by The Joint Chinese University of Hong Kong - New Territories East Cluster Clinical Research
Ethics Committee. This was a retrospective, territory-wide cohort study of hospitalized patients with ECG measurements
between 1st January 2000 and 31st December 2019 from a single tertiary centre in Hong Kong, China. The patients were
identified from the Clinical Data Analysis and Reporting System (CDARS) [21]–[23], a territory-wide database that centralizes
patient information.

The baseline characteristics of patients were succinctly summarized utilizing descriptive statistics. Continuous variables were
expressed as median [95% confidence interval (CI)/interquartile range] or mean [standard deviation (SD)], while categorical
variables were presented as total numbers and percentages. To discern differences between continuous variables, the two-tailed
Mann–Whitney U test was employed, and for 2×2 contingency data, the two-tailed χ2 test with Yates’ correction was applied.
A P value < 0.05 was indicated of statistical significance. This methodology ensures a comprehensive and reliable exploration
of patient characteristics in the study cohort. All statistical analyses were performed with RStudio (Version: 1.1.456) and
Python (Version: 3.6).

The dataset employed in this study encompasses a comprehensive set of information, comprising 250 features derived from
a 12-lead electrocardiogram ECG recording, as illustrated in Figure 4. Additionally, EHR data, comprising 93 features, encom-
passes crucial patient details such as gender, age, medical history, medications, and laboratory test results. The investigation
focuses on four distinct outcomes: all-cause mortality, cardiovascular mortality, AF, and stroke/TIA. To contextualize these
outcomes, the time elapsed from the ECG recording date was meticulously calculated. This comprehensive dataset amalgamation
facilitates a nuanced exploration of the multifaceted relationships between ECG features, EHR information, and diverse clinical
outcomes.

B. Data pre-processing

It was found that over 50 features had more than 30% of values missing. So the decision was made to eliminate these features
entirely reducing the size of the feature vector to 2868x242. Data was then normalised. For this, within each combination,
features were scaled using StandardScaler’s ’fit transform’ (for training data) and ’transform’ (for test data) to avoid the model
learning the test data, and keeping it unseen.
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Fig. 3: Time-dependent AUROC and Harrell’s C-index of machine learning-based in-silico markers to predict new onset AF
and new onset stroke/TIA in HF patients. AUC: Area under the receiver operating characteristic curve. AF: Atrial fibrillation.
TIA: transient ischemic attack. a-b. AUC with 95% confidence interval to predict AF and Stroke/TIA in HF patients with the
developed in-silico marker by XGB multimodal+label model. c-d. Prediction performance measure by AUC to predict new
onset AF and new onset stroke/TIA in HF patients with different follow-up duration since admission. e-f. Time-dependent
C-index of the developed in-silico marker to predict new onset AF and new onset stroke/TIA in HF patients with different
follow-up duration since admission.
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C. Prediction task approach

In constructing the multimodal model, four distinct classifiers were developed, each tailored to a specific outcome. The
initial step involved partitioning the data into 80% training and 20% testing sets, ensuring a stratified division for each outcome
category. Subsequently, a Bayesian parameter search was conducted on the training data to pinpoint the optimal parameters,
with a primary focus on maximizing the Area Under the Receiver Operating Characteristic (AUROC) curve. The selected
parameters for the multimodal model are delineated in Appendix A. The AUROC metric was deliberately chosen due to the
balanced nature of the training samples, ensuring an unbiased assessment of model performance. The parameter search was
executed through a meticulous three-fold validation process encompassing 20,000 iterations, contributing to the robustness and
reliability of the parameter selection. The parameters to be optimised were:

• min child weight: The minimum sum of weights of all observations required in a child (derived) node.
• gamma: The minimum loss reduction required for a node to be split. (I.e. splitting will result in this reduction in loss)
• subsample: The fraction of observations to be selected for each tree. Selection is done by random sampling.
• colsample bytree: Similar to max features. Number of columns to be random samples for each tree.
• max depth: The max depth of the tree, to avoid overfitting. If set to default, the algorithm would aim to continue till all

leaf nodes are pure.
• max delta step: The max step of the update. Positive values ensure a more conservative update- used for imbalanced

classes.
Following the identification of optimal parameters through Bayesian parameter search, an XGBoost classifier was trained using
the designated parameters on the training dataset. Subsequently, the classifier’s performance was rigorously assessed on the
unseen test set, providing a comprehensive evaluation of its generalization capabilities to new and previously unencountered
data. This pivotal step ensures a robust understanding of the model’s effectiveness beyond the training context, gauging its
potential for real-world applications.

D. Class-balancing techniques

In addressing the issue of class imbalance, we strategically employed the ’sample weight’ and ’scale pos weight’ parameters
within the XGBoost framework, focusing their application solely on the training data. This deliberate choice aimed to rectify
disparities among classes, enhancing the classifier’s ability to effectively learn from the training set. The ’sample weight’
parameter assigns varying weights to individual samples, enabling the model to place greater emphasis on underrepresented
classes. Simultaneously, the ’scale pos weight’ parameter adjusts the balance between positive and negative class weights,
fostering a more nuanced and accurate learning process.

By implementing these parameters exclusively during training, we sought to ensure that the classifier acquired the necessary
sensitivity to diverse class distributions without compromising the authenticity of the test data. This approach is crucial for
producing a model that not only performs well in a controlled training environment but also generalizes effectively to real-world
scenarios. The careful calibration of these parameters contributes to a more robust and adaptive classifier, capable of handling
imbalanced class distributions while maintaining relevance to the broader context of diverse outcomes.

To balance classes, the ’sample weight’ and ’scale pos weight’ parameters in XGBoost were used on training data only.
This ensured that classes were not too imbalanced and could be used to train the classifier, while also keeping the test data
realistic, and symbolic of a real-world distribution of outcomes.

E. Assessment of performance

The assessment of binary classification performance in this study employed the area under the precision-recall curve
(AUPRC), chosen for its resilience to imbalanced test data. Additional metrics, including the AUROC, accuracy, PPV, and
NPV, were also considered for a comprehensive evaluation of model prediction performance.

IV. DISCUSSION

In this investigation, our model demonstrated a significant efficacy in predicting the occurrence of stroke and AF among
hospitalized heart failure HF patients. Furthermore, we identified the key predictors contributing significantly to these adverse
outcomes. The precision of our predictive model underscores its potential as a valuable tool in clinical settings for risk
assessment and prognostication among HF patients. The discernment of influential predictors enhances our understanding of
the complex interplay of factors contributing to stroke and AF in this patient cohort, offering valuable insights for tailored
intervention strategies and patient management.
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A. Comparison with the previous studies

While the medical treatment for HF has continued to advance, HF remained a major cause of morbidity and mortality
worldwide [24]. It was suggested that AF might occur in up to 57% of the patients with HF, and contributed to most of the
stroke cases [25]. Furthermore, AF was associated with mortality amongst patients with HF [26]. Meanwhile, HF is a predictor
of ischaemic stroke regardless the patients have AF or not. As such, the coexistence of HF and AF further complicated the
picture with their potential synergistic effects on stroke development [25].

Machine learning has been used extensively in studying AF, stroke/TIA, or HF. Previously, AI-ECG technology was employed
to detect paroxysmal AF during sinus rhythm in patients with cryptogenic stroke [27]. Furthermore, another model integrated
carotid ultrasound images and conventional risk factors to stratify the risk of stroke [28]. The multi-modality ML-based models
allowed the identification of high stroke-risk patients amongst hospitalised HF patients with an AUROC of 0.8028. A previous
literature using UK-Biobank devised six machine learning models to predict ischaemic stroke amongst current AF patients. The
best AUROC achieved by the XGBoost model was 0.631, which was reported to have performed better than the CHA2DS2-
VASc score based on DeLong’s test (AUROC: 0.611) [29]. Meanwhile, in a study involving 503,842 Chinese adults, the
gradient-boosted trees provided the best performance with an AUROC of 0.83. For instance, in a study involving 3,435,224
United States patients, it was reported that the ML-based algorithms outperformed the existing clinical risk scores, and that
using the ML models would be more useful than the ’treat all’ strategy [30]. However, no existing literature has incorporated
ECG data to identify patients at risk of stroke/TIA amongst hospitalised HF patients.

Regarding AF, a study developed 5 machine learning models for the prediction of new-onset AF amongst ischaemic stroke
patients. Their best model, the deep neural network model, had a C index of 0.77 [31]. This was significantly superior to the
CHA2DS2-VASc score, Framingham risk score and C2HEST score. In our study, the C index (0.76; Confidence interval: 0.71-
0.29) of the XGBoost multi-modality model was comparable to their deep neural network model, although the targeted groups
of patients were different. Meanwhile, another study previously used the component-wise gradient boosting method to identify
the extra risk factors for incident AF amongst post-stroke patients using the German health claims data [32]. The AUROC of
our study (AUROC: 0.8190) was comparable with that study, which reported an AUROC of 0.829. Furthermore, a study using
random survival forests to predict new-onset AF amongst patients with existing cardiovascular disease with cardiovascular
magnetic resonance data reported an AUROC of 0.80. The above results demonstrated machine learning approaches were able
to identify AF with much higher performance compared to predictions with the conventional AF risk factors.

The multi-modality machine learning-based prediction models allowed the identification of the predictors of stroke. Baseline
stroke/TIA was identified to be the most significant predictor. This aligned with the existing literature, in which the risk of
stroke recurrence after the first stroke was substantial [33]. Besides, the literature suggested that the ECG features predicting
stroke/TIA included QT prolongation, T wave and ST segment abnormalities, atrioventricular block, and prominent U wave
[34]. In our model, the ECG features such as max-min ST duration and ST slope, corresponding to the changes of the ST
segment reported, predicted the occurrence of stroke. The ST segment slope has been proposed as a predictor of transient
myocardial ischaemia or coronary artery disease [35]. While the link between ST slope with ischaemic stroke has been less
well reported, we postulated that it might be explained by atherosclerotic changes. Therefore, identifying the subtle changes
in automated ECG as such might allow us to predict the risks of stroke/TIA amongst hospitalised HF patients.

For the predictors of AF, the P wave (frontal) axis indicated the anatomical features such as the positioning of the atria and
the relative size of the atria. It also reflects the abnormal atrial electrical wavefront propagation in a diseased myocardium. In
a retrospective cohort study of US veterans, the P-wave axis was shown to be a significant predictor of AF [5], supporting the
findings of the ML model. Meanwhile, atrial high rate episodes, which were defined as an atrial rate limit of ¿175, was reported
to be in up to 70% of the AD patients [36]. It was suggested that the atrial high rate episodes were associated with increased
risk of AF, increased thromboembolic risk, as well as ischaemic stroke [37]. Those findings provided evidence regarding the
robustness of the model in predicting adverse outcomes. For predicting cardiovascular mortality, ECG features remained the
most important predictors. This explained the lack of vast improvement in model performance when multi-modal data was
used as opposed to ECG-only data. This would also explain the poorer performance in predicting this outcome.

B. Clinical implications

The integration of diverse data modalities provides a comprehensive perspective, allowing for a more complete understanding
of the relationships between these cardiovascular conditions. This approach not only contributes to the advancement of predictive
modeling in cardiovascular medicine, but also offers a novel avenue for exploring the interconnected dynamics of HF, AF, and
stroke within a single analytical framework. The availability of automated ECG data allows the identification of subtle ECG
changes that were not identified in manual extraction. The multi-modality machine learning-based prediction models allow
better risk stratification of AF and stroke/TIA of hospitalised HF patients. For example, identifying a patient with a high risk
of AF allows justification for using Holter to further monitor the patients to prevent AF-related cardiovascular events [38].
This enables better-personalised survival estimation and timely intervention and management for the patient.
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C. Future work

Future research could look into the time-varying effects of the data after upon baseline event, and use this to make more
accurate predictions. This includes the effects of interventions between baseline and adverse events. This might help improve
results in predicting AF and stroke/TIA occurrence. Furthermore, the model could be extended, using the ’time-to’ data to
predict new onset events after some follow-up duration in a patient. This may improve the care provided to a patient, allowing
healthcare professionals to intervene sooner to prevent such events and reduce overall mortality rates. Further, it is of interest
to predict MACE recurrence in patients with HF.

D. Limitations

There were several limitations that should be appreciated in this study. Firstly, given its observational nature, there might
be under-coding, coding errors, and missing data resulting in information bias. For instance, baseline tests and information
are used to predict mortality without considering time-varying effects in the living period before death and the effects of any
interventions. This limits the realistic value of the results.

Secondly, the data was only based on a single locality (Hong Kong), which that the models may require validation in other
localities for generalizability. Furthermore, important risk factors for cardiovascular events, such as smoking, alcohol use, and
BMI were not readily coded in CDARS. However, we have included multiple comorbidities and laboratory parameters that
were closely associated with those missing risk factors. Last but not least, the lack of the echocardiogram data and the NYHA
functional class did not allow classification and severity stratification of HF patients. However, as the AUROC and overall
accuracy of the outcomes were high, the prediction models still allowed accurate predictions of the adverse outcomes.

V. CONCLUSION

The application of multimodal machine learning models, integrating electronic health records and automated ECG data,
facilitated the prediction of AF and stroke/TIA among hospitalized HF patients. Notably, the model’s capability to discern
subtle ECG changes proved instrumental in identifying HF patients at risks of AF or stroke/TIA. This approach might contribute
to more personalized patient care in HF management.
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Fig. 4: Illustration of 12-lead ECG features. [39]

APPENDIX

TABLE II: Hyperparameters for simple multilabel and multimodal+multilabel models- values are for best iteration out of 10.

Multilabel Multilabel+Mutlimodal
max_depth 3 4
learning_rate 0.0285 0.1192
subsample 0.5216 0.5938
colsample_bytree 0.5220 0.7011
min_child_weight 8.7625 8.5115

Performance of the ML models in the subsets.

TABLE III: Number of cases of each outcome in the dataset.

Outcome Number of patients Percentage
All-cause mortality 2084 72.66%
CVD mortality 604 21.06%
Atrial fibrillation 1150 40.10%
Stroke/TIA 668 23.29%
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TABLE IV: Summary of baseline and clinical characteristics in heart failure patients with new onset AF and stroke/TIA
(transient ischemic attack) in patients.

Characteristics All (N=2868) Atrial fibrillation (N=1150) Stroke/TIA (N=668)
Median (IQR);N or Count(%) Median (IQR);N or Count(%) Median (IQR);N or Count(%)

Male gender 1373(47.87%) 489(42.52%) 297(44.46%)
Female gender 1495(52.12%) 661(57.47%) 371(55.53%)
Baseline age, years 77.38(66.92-84.51);n=2868 77.88(68.37-84.47);n=1150 78.86(70.61-86.01);n=668
Charlson’s comorbidity index 5.0(4.0-6.0);n=2868 5.0(4.0-6.0);n=1150 6.0(4.0-8.0);n=668
Diabetes without chronic complication 833(29.04%) 315(27.39%) 252(37.72%)
Diabetes with chronic complication 272(9.48%) 65(5.65%) 81(12.12%)
Renal diseases 369(12.86%) 110(9.56%) 94(14.07%)
Hypertension 1334(46.51%) 493(42.86%) 387(57.93%)
Chronic renal failure 78(2.71%) 22(1.91%) 20(2.99%)
Liver diseases 18(0.62%) 3(0.26%) 4(0.59%)
Ventricular tachycardia/fibrillation 139(4.84%) 34(2.95%) 23(3.44%)
Dementia and Alzheimer 17(0.59%) 6(0.52%) 9(1.34%)
Acute myocardial infarction 319(11.12%) 100(8.69%) 68(10.17%)
Chronic obstructive pulmonary disease 409(14.26%) 155(13.47%) 93(13.92%)
Ischemic heart disease 1068(37.23%) 384(33.39%) 255(38.17%)
Peripheral vascular disease 71(2.47%) 27(2.34%) 26(3.89%)
Gastrointestinal bleeding 359(12.51%) 164(14.26%) 94(14.07%)
Cancer 169(5.89%) 58(5.04%) 39(5.83%)
Obesity 47(1.63%) 16(1.39%) 7(1.04%)
Baseline acute myocardial infarction 63.0(2.19%) 28.0(2.43%) 24.0(3.59%)
Baseline VT/VF/SCD 13.0(0.45%) 4.0(0.34%) 5.0(0.74%)
Baseline myocardial infarction 371(12.93%) 120(10.43%) 87(13.02%)
Baseline atrial fibrillation 825(28.76%) 675(58.69%) 246(36.82%)
Baseline stroke/TIA 401(13.98%) 186(16.17%) 401(60.02%)
ACEI/ARB 1517(52.89%) 620(53.91%) 373(55.83%)
Anti-diabetic drugs 1297(45.22%) 490(42.60%) 335(50.14%)
Calcium channel blockers 1300(45.32%) 528(45.91%) 359(53.74%)
Beta blockers 1406(49.02%) 597(51.91%) 368(55.08%)
Beta-blockers for heart failure 1113(38.80%) 479(41.65%) 292(43.71%)
Diuretics for hypertension 335(11.68%) 130(11.30%) 86(12.87%)
Diuretics for heart failure 1173(40.89%) 525(45.65%) 281(42.06%)
Nitrates 801(27.92%) 318(27.65%) 200(29.94%)
Antihypertensive drugs 535(18.65%) 204(17.73%) 161(24.10%)
Statins and fibrates 866(30.19%) 294(25.56%) 254(38.02%)
Lipid-lowering drugs 680(23.70%) 230(20.00%) 210(31.43%)
Anticoagulants 556(19.38%) 370(32.17%) 152(22.75%)
Antiplatelets 1188(41.42%) 487(42.34%) 355(53.14%)
Anti-rheumatic drugs 1172(40.86%) 477(41.47%) 349(52.24%)
Non-steroidal anti-inflammatory drugs 1172(40.86%) 477(41.47%) 349(52.24%)
Acid oxidation inhibitors 37(1.29%) 16(1.39%) 14(2.09%)
Class I antiarrhythmics 9(0.31%) 6(0.52%) 2(0.29%)
Class III antiarrhythmics 121(4.21%) 81(7.04%) 36(5.38%)
Class IV antiarrhythmics 276(9.62%) 153(13.30%) 69(10.32%)
Digoxin 360(12.55%) 272(23.65%) 81(12.12%)
Neutrophil-to-lymphocyte ratio 4.15(2.59-7.5);n=1211 4.08(2.67-7.4);n=565 4.42(2.78-7.83);n=287
Monocyte-to-lymphocyte ratio 0.44(0.3-0.71);n=1211 0.46(0.32-0.71);n=565 0.45(0.32-0.68);n=287
Platelet-to-lymphocyte ratio 160.0(110.15-239.05);n=1211 154.74(106.43-233.33);n=565 157.78(113.47-239.37);n=287
Albumin-to-alkaline phosphatase ratio 0.51(0.37-0.64);n=1544 0.5(0.37-0.63);n=689 0.5(0.35-0.63);n=347
Albumin-to-creatinine ratio 0.36(0.24-0.48);n=1540 0.37(0.26-0.47);n=689 0.33(0.2-0.44);n=345
Aspartate transaminase-to 1.06(0.79-1.84);n=80 1.25(0.91-2.0);n=33 1.05(0.95-3.55);n=13
-alanine transaminase ratio
Creatinine-to-urea ratio 14.08(11.35-17.6);n=1667 13.64(11.24-17.08);n=749 14.41(11.49-18.0);n=378
High-density lipoprotein-to- 0.56(0.41-0.72);n=1017 0.55(0.4-0.75);n=409 0.57(0.42-0.73);n=219
low-density lipoprotein ratio
Triglyceride-to-high-density 0.95(0.61-1.59);n=1025 0.94(0.58-1.52);n=410 1.01(0.64-1.67);n=222
lipoprotein ratio
Mean corpuscular volume, fL 92.4(87.85-95.9);n=1394 92.7(88.3-96.4);n=629 91.9(87.1-96.1);n=325
Basophil, ×109/L 0.0(0.0-0.03);n=266 0.0(0.0-0.02);n=120 0.0(0.0-0.02);n=63
Eosinophil, ×109/L 0.1(0.09-0.2);n=1207 0.1(0.04-0.2);n=565 0.1(0.09-0.2);n=286
Lymphocyte, ×109/L 1.2(0.8-1.7);n=1211 1.2(0.8-1.6);n=565 1.2(0.8-1.7);n=287
Monocyte, ×109/L 0.5(0.4-0.7);n=1211 0.55(0.4-0.7);n=565 0.6(0.4-0.8);n=287
Neutrophil, ×109/L 5.0(3.8-7.0);n=1211 4.89(3.7-6.8);n=565 5.4(4.2-7.43);n=287
White cell count, ×109/L 7.2(5.8-9.0);n=1394 7.0(5.5-8.6);n=629 7.5(6.2-9.4);n=325
Mean cell haemoglobin, pg 31.4(29.6-32.9);n=1394 31.5(29.7-32.9);n=629 31.5(29.4-33.0);n=325
Platelet, ×109/L 195.0(153.0-239.0);n=1393 181.0(144.0-228.0);n=628 196.0(158.0-241.0);n=325
Red blood count, ×1012/L 3.9(3.38-4.4);n=1394 3.97(3.43-4.43);n=629 3.92(3.41-4.43);n=325
K/Potassium, mmol/L 4.2(3.8-4.54);n=1666 4.1(3.8-4.5);n=748 4.2(3.8-4.5);n=377
Urate, mmol/L 0.46(0.38-0.56);n=473 0.47(0.37-0.57);n=209 0.43(0.34-0.57);n=116
Albumin, g/L 39.65(35.9-42.7);n=1544 39.7(36.3-42.6);n=689 38.9(35.0-41.9);n=347
Na/Sodium, mmol/L 140.4(138.2-142.4);n=1667 140.7(138.3-142.5);n=749 140.25(137.9-142.5);n=378

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.15.23298562doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.15.23298562
http://creativecommons.org/licenses/by-nc/4.0/


14

Urea, mmol/L 7.8(5.8-11.98);n=1667 7.54(5.9-10.86);n=749 8.1(6.12-12.38);n=378
Protein, g/L 72.5(68.0-76.4);n=1528 72.9(68.54-76.65);n=682 71.75(67.8-75.9);n=342
Creatinine, umol/L 108.0(84.0-152.0);n=1667 107.0(84.0-140.0);n=749 115.0(88.0-164.5);n=378
Alkaline phosphatase, U/L 77.0(62.0-99.0);n=1544 79.0(64.0-100.0);n=689 77.0(63.5-103.0);n=347
Aspartate transaminase, U/L 26.0(20.0-37.0);n=81 27.5(22.5-37.5);n=34 24.0(21.0-39.0);n=13
Alanine transaminase, U/L 19.0(14.0-28.0);n=1465 19.0(14.0-26.5);n=660 19.0(14.0-26.5);n=328
Bilirubin, umol/L 10.7(7.75-15.0);n=1539 12.4(9.0-17.5);n=687 10.2(7.1-15.0);n=345
Triglyceride, mmol/L 1.19(0.88-1.73);n=1049 1.11(0.84-1.69);n=424 1.23(0.89-1.78);n=226
Low-density lipoprotein, mmol/L 2.29(1.8-2.9);n=1017 2.26(1.73-2.89);n=409 2.2(1.73-2.82);n=219
High-density lipoprotein, mmol/L 1.25(1.0-1.54);n=1025 1.24(1.0-1.5);n=410 1.21(0.98-1.46);n=222
Cholesterol, mmol/L 4.3(3.6-5.0);n=1049 4.2(3.5-4.9);n=424 4.16(3.4-4.86);n=226
HbA1c, g/dL 11.8(10.4-13.4);n=1394 12.0(10.7-13.5);n=629 11.8(10.4-13.2);n=325
Glucose, mmol/L 6.3(5.4-8.22);n=1340 6.37(5.43-8.14);n=587 6.7(5.6-9.07);n=313
D-dimer, ng/mL 1317.78(753.25-2676.99);n=322 1265.76(686.02-2608.61);n=154 1151.96(741.71-2615.81);n=67
High sensitive troponin-I, ng/L 0.03(0.02-0.07);n=1935 0.03(0.02-0.06);n=884 0.03(0.02-0.07);n=464
Lactate dehydrogenase, U/L 238.0(195.0-304.0);n=2453 241.0(198.0-312.0);n=1049 239.0(193.0-303.0);n=577
APTT, second 33.5(29.9-39.9);n=1046 36.5(31.5-42.2);n=563 33.4(29.9-39.7);n=245
Prothrombin time/INR, second 12.5(10.9-20.3);n=1005 16.5(11.7-23.35);n=542 12.15(10.9-19.75);n=238
Mean vent rate 77.0(66.5-90.0);n=2867 79.0(68.0-93.0);n=1150 76.0(66.0-88.5);n=668
Mean print 176.0(158.0-200.0);n=2867 180.0(160.0-204.0);n=1150 178.0(159.5-200.5);n=668
Mean prseg 79.0(64.0-100.0);n=2867 85.0(69.0-104.0);n=1150 81.0(65.5-101.0);n=668
Mean qrsdur 91.0(83.0-109.0);n=2867 91.0(83.0-108.0);n=1150 90.0(82.0-105.0);n=668
Mean qtint 393.0(360.0-428.0);n=2867 388.0(352.0-426.0);n=1150 396.0(362.0-428.0);n=668
Mean qtc 444.0(420.0-472.0);n=2867 446.0(423.0-473.0);n=1150 446.0(422.0-472.0);n=668
QT intdispersion 0.0(0.0-72.0);n=2867 0.0(0.0-76.0);n=1150 0.0(0.0-84.0);n=668
Mean pamp 0.04(0.01-0.06);n=2867 0.02(-0.0-0.05);n=1150 0.03(0.01-0.06);n=668
Mean pdur 78.5(67.0-87.62);n=2848 75.0(62.67-85.46);n=1140 78.5(66.88-88.08);n=664
Mean parea 0.41(0.12-0.62);n=2848 0.23(-0.02-0.52);n=1140 0.34(0.04-0.59);n=664
Mean ppamp -0.01(-0.01–0.0);n=2157 -0.01(-0.01–0.0);n=752 -0.01(-0.01–0.0);n=489
Mean ppdur 9.5(5.5-15.67);n=2137 10.0(6.0-16.17);n=741 10.0(5.67-16.08);n=484
Mean pdur+ppdur 87.83(74.5-98.67);n=2848 83.5(67.75-96.29);n=1140 88.33(73.79-99.5);n=664
Mean pparea -0.04(-0.08–0.01);n=2135 -0.03(-0.08-0.0);n=739 -0.04(-0.09–0.01);n=484
Mean qamp -0.09(-0.14–0.06);n=2846 -0.09(-0.14–0.06);n=1142 -0.09(-0.14–0.06);n=664
Mean ramp 0.7(0.48-0.93);n=2864 0.7(0.48-0.96);n=1149 0.71(0.51-0.97);n=667
Mean rdur 43.0(37.67-48.83);n=2864 42.83(37.67-48.67);n=1149 43.25(37.67-48.75);n=667
Mean sdur 25.5(19.17-33.67);n=2856 25.67(19.33-34.0);n=1147 24.67(19.0-32.29);n=666
Mean rpdur 3.79(2.04-7.25);n=1136 4.0(2.33-7.62);n=462 3.67(2.0-6.67);n=279
Mean spamp -0.02(-0.04–0.01);n=354 -0.02(-0.04–0.01);n=146 -0.02(-0.03–0.01);n=95
Mean vat 33.67(28.92-40.0);n=2864 33.42(28.67-39.92);n=1149 34.08(29.0-40.0);n=667
Mean qrsdur 81.0(73.0-94.38);n=2866 81.08(73.25-94.46);n=1150 80.25(73.0-92.54);n=667
Mean ston 0.0(-0.01-0.02);n=2858 -0.0(-0.02-0.01);n=1147 -0.0(-0.02-0.02);n=667
Mean st80 0.02(-0.0-0.04);n=2858 0.01(-0.01-0.04);n=1147 0.02(-0.01-0.04);n=667
Mean stend 0.03(0.0-0.06);n=2858 0.02(-0.01-0.05);n=1147 0.03(-0.0-0.06);n=667
Mean stdur 115.58(96.0-133.67);n=2858 112.67(94.0-130.33);n=1147 115.42(95.67-132.0);n=667
Mean stslope 26.17(6.92-30.83);n=2858 25.25(6.5-30.46);n=1147 24.25(5.33-30.25);n=667
Mean tamp 0.09(0.02-0.17);n=2859 0.07(-0.0-0.15);n=1148 0.07(0.01-0.15);n=667
Mean tdur 149.0(128.92-173.46);n=2859 145.5(126.25-170.17);n=1148 152.08(130.42-175.0);n=667
Mean tarea 2.28(0.37-4.39);n=2859 1.7(-0.08-3.78);n=1148 1.9(0.17-4.05);n=667
Mean tpamp 0.0(-0.01-0.01);n=1588 0.0(-0.01-0.01);n=685 0.0(-0.01-0.01);n=373
Mean tpdur 15.71(9.33-27.88);n=1588 16.17(9.67-28.0);n=685 15.33(9.67-26.92);n=373
Mean tparea 0.03(-0.11-0.16);n=1585 0.04(-0.1-0.18);n=685 0.02(-0.12-0.15);n=372
Mean print 161.33(142.33-181.92);n=2848 159.71(137.75-179.58);n=1140 162.29(142.83-182.42);n=664
Mean prseg 72.17(58.5-88.67);n=2848 74.71(60.0-89.96);n=1140 73.67(59.29-91.0);n=664
Mean qtint 371.67(335.54-406.38);n=2859 366.21(325.54-402.0);n=1148 373.0(335.92-407.08);n=667
pnotchflag 1066(37.16%) 470(40.86%) 264(39.52%)
QRS delta flag 17(0.59%) 9(0.78%) 2(0.29%)
Positive qrsnotchflag 608(21.19%) 246(21.39%) 149(22.30%)
Negative qrsnotchflag 425(14.81%) 175(15.21%) 83(12.42%)
Convex stshape 139(4.84%) 60(5.21%) 32(4.79%)
Concave stshape 141(4.91%) 58(5.04%) 43(6.43%)
Tnotch flag 802(27.96%) 411(35.73%) 211(31.58%)
IQR: Interquartile range; VT: Ventricular tachycardia; VF: Ventricular fibrillation; SCD: Sudden cardiac death; ACEIs: Angiotensin-converting enzyme inhibitors;
ARBs: Angiotensin receptor blockers.
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TABLE V: Summary of person-year calculations and annualized incidence ratio of new onset AF, new onset stroke/TIA, and
mortality risk events in patients with heart failure.

New onset atrial fibrillation
Cohort, year Number of person-years Number of events Incidence rate per 1000 patients Lower bound Upper bound

0-1 2506.8 205 81.8 71.3 93.8
1-2 2141.3 122 57 47.7 68
2-3 1834.2 124 67.6 56.7 80.6
3-4 1573.5 118 75 62.6 89.8
4-5 1352.9 109 80.6 66.8 97.2
5-6 1157 88 76.1 61.7 93.7
6-7 983.2 78 79.3 63.5 99
7-8 822.1 75 91.2 72.8 114.4
8-9 662.8 68 102.6 80.9 130.1
>9 500.6 163 325.6 279.3 379.6

Total 13534.5 1150 85 80.2 90
New onset stroke/TIA

Cohort, year Number of person-years Number of events Incidence rate per 1000 patients Lower bound Upper bound
0-1 2506.8 188 75 65 86.5
1-2 2133.5 95 44.5 36.4 54.4
2-3 1836.7 75 40.8 32.6 51.2
3-4 1582.7 69 43.6 34.4 55.2
4-5 1370.5 51 37.2 28.3 49
5-6 1187.1 33 27.8 19.8 39.1
6-7 1026.6 30 29.2 20.4 41.8
7-8 882 28 31.7 21.9 46
8-9 740.2 38 51.3 37.4 70.6
>9 571.1 61 106.8 83.1 137.3

Total 13837 668 48.3 44.8 52.1
Cardiovascular mortality

Cohort, year Number of person-years Number of events Incidence rate per 1000 patients Lower bound Upper bound
0-1 2538.3 168 66.2 56.9 77
1-2 2203.6 83 37.7 30.4 46.7
2-3 1916.8 77 40.2 32.1 50.2
3-4 1668.5 59 35.4 27.4 45.6
4-5 1454.1 66 45.4 35.7 57.8
5-6 1264 31 24.5 17.2 34.9
6-7 1101.3 29 26.3 18.3 37.9
7-8 944.6 25 26.5 17.9 39.2
8-9 797.1 22 27.6 18.2 41.9
>9 619.2 44 71.1 52.9 95.5

Total 14507.7 604 41.6 38.4 45.1
All-cause mortality

Cohort, year Number of person-years Number of events Incidence rate per 1000 patients Lower bound Upper bound
0-1 2538.3 513 202.1 185.3 220.4
1-2 2203.6 280 127.1 113 142.9
2-3 1916.8 269 140.3 124.5 158.2
3-4 1668.5 193 115.7 100.5 133.2
4-5 1454.1 201 138.2 120.4 158.7
5-6 1264 146 115.5 98.2 135.8
6-7 1101.3 142 128.9 109.4 152
7-8 944.6 105 111.2 91.8 134.6
8-9 797.1 77 96.6 77.3 120.8
>9 619.2 158 255.1 218.3 298.2

Total 14507.7 2084 143.6 137.6 149.9

TABLE VI: Hyperparameters for simple (ECG-only) and multimodal models- values are for best iteration out of 10.

Simple Multimodal
All-cause CVD AF Stroke/TIA All-cause CVD AF Stroke

max_depth 2.0000 6.0860 3.1011 4.1678 9.0494 7.3671 10.8917 7.1051
gamma 3.6418 6.1986 6.8234 7.6980 7.3750 5.9211 7.3989 9.3467
min_child_weight 7.2266 16.5424 5.2645 14.6886 15.8779 19.2871 16.9076 17.5608
max_delta_step 8.4494 3.7125 9.8757 9.6197 4.6500 8.8195 9.0832 2.5936
subsample 0.6546 0.5463 0.5796 0.6198 0.8709 0.9454 0.9112 0.4508
colsample_bytree 0.7818 0.5250 0.7837 0.5102 0.8474 0.4000 0.8894 0.6515

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.
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TABLE VII: Model prediction performance on different subgroups of patients.

Gender Age Charlson’s Comorbidity Index
Male Female <65 yrs ≥ 65 yrs 0-1 2-3 4+

No. patients 1373 1495 625 2243 116 525 2227
Atrial Fibrillation

Accuracy 0.7818±0.0206 0.7632±0.0187 0.7616±0.0292 0.7773±0.0118 0.7250±0.0837 0.7133±0.0414 0.7832±0.0199
AUROC 0.8073±0.0188 0.8177±0.0230 0.7827±0.0330 0.8287±0.0210 0.6647±0.1489 0.7680±0.0375 0.8257±0.0216
AUPRC 0.7082±0.0330 0.7841±0.0393 0.6981±0.0499 0.7874±0.0279 0.5257±0.1416 0.7195±0.0495 0.7707±0.0328
PPV 0.7364±0.0430 0.7609±0.0269 0.7015±0.0600 0.7771±0.0220 0.5333±0.2176 0.6942±0.0651 0.7720±0.0292
NPV 0.8023±0.0191 0.7655±0.0177 0.7855±0.0284 0.7780±0.0112 0.7761±0.0609 0.7268±0.0364 0.7899±0.0207

Stroke/TIA
Accuracy 0.9040±0.0060 0.9030±0.0148 0.9008±0.0176 0.9013±0.0128 0.9167±0.0186 0.8771±0.0090 0.9070±0.0133
AUROC 0.7676±0.0223 0.8339±0.0263 0.6846±0.0580 0.8231±0.0347 0.6682±0.1855 0.5900±0.1013 0.8291±0.0365
AUPRC 0.7128±0.0184 0.7958±0.0337 0.5896±0.0730 0.7791±0.0383 0.3826±0.1875 0.3072±0.1015 0.8033±0.0389
PPV 0.9852±0.0126 0.9642±0.0364 0.9678±0.0700 0.9799±0.0135 0.5000±0.0024 0.7600±0.2268 0.9870±0.0097
NPV 0.8928±0.0060 0.8916±0.0144 0.8948±0.0140 0.8871±0.0133 0.9203±0.0121 0.8818±0.0070 0.8903±0.0142

CAD Mortality
Accuracy 0.7807±0.0098 0.7528±0.0096 0.8216±0.0119 0.7639±0.0096 0.7958±0.0224 0.8067±0.0181 0.7574±0.0138
AUROC 0.5609±0.0326 0.6073±0.0469 0.6531±0.0487 0.5908±0.0305 0.6032±0.1168 0.6741±0.0479 0.5765±0.0241
AUPRC 0.2224±0.0253 0.2923±0.0353 0.2934±0.0698 0.2884±0.0297 0.3500±0.1278 0.3202±0.0383 0.2653±0.0240
PPV 0.1806±0.1109 0.3088±0.0749 0.4025±0.1337 0.3406±0.0794 0.5278±0.0213 0.3976±0.1482 0.2850±0.0989
NPV 0.8068±0.0043 0.7819±0.0054 0.8442±0.0069 0.7855±0.0044 0.8119±0.0250 0.8315±0.0090 0.7833±0.0056

All-cause Mortality
Accuracy 0.7498±0.0197 0.7732±0.0152 0.7248±0.0370 0.8096±0.0131 0.7417±0.0764 0.6876±0.0392 0.8139±0.0144
AUROC 0.7454±0.0327 0.7806±0.0242 0.8048±0.0356 0.7288±0.0362 0.7882±0.0691 0.7485±0.0283 0.7023±0.0285
AUPRC 0.8700±0.0249 0.9005±0.0165 0.7846±0.0503 0.9053±0.0151 0.6160±0.1322 0.7097±0.0373 0.9004±0.0126
PPV 0.7875±0.0129 0.8046±0.0120 0.7105±0.0347 0.8284±0.0081 0.6030±0.2833 0.6655±0.0506 0.8319±0.0094
NPV 0.5895±0.0544 0.6157±0.0480 0.7396±0.0445 0.5720±0.0962 0.7800±0.0479 0.7082±0.0421 0.5217±0.1192

TABLE VIII: Performance results of prediction model using non-ECG data.

Measure Atrial Fibrillation Stroke/TIA CAD Mortality All-cause Mortality
Accuracy 0.7547 ± 0.0171 0.8868 ± 0.0092 0.7476 ± 0.0101 0.7490 ± 0.0163
AUROC 0.7900 ± 0.0179 0.8128 ± 0.0220 0.5318 ± 0.0266 0.7370 ± 0.0208
AUPRC 0.7281 ± 0.0209 0.7543 ± 0.0253 0.2346 ± 0.0188 0.8707 ± 0.0126
PPV 0.7253 ± 0.0242 0.8997 ± 0.0274 0.2459 ± 0.0525 0.7942 ± 0.0102
NPV 0.7703 ± 0.0149 0.8846 ± 0.0080 0.7923 ± 0.0046 0.5599 ± 0.0440
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Fig. 5: Model performance (AUROC) for each outcome with addition of more features. AUROC values plotted of every 5
features added.
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Fig. 6: Cumulative incidence curves for primary and secondary outcomes, stratified by sex.
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Fig. 7: Cumulative incidence curves for primary and secondary outcomes, stratified by age at admission.
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Fig. 8: Cumulative incidence curves for primary and secondary outcomes, stratified by prior MACE.
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Fig. 9: Conditional margin effects analysis of age at admission to predict primary and secondary outcomes in patients with
heart failure.
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Fig. 10: Conditional margin effects analysis of Charlson’s standard comorbidity index to predict primary and secondary outcomes
in patients with heart failure.
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Fig. 11: Time-dependent AUROC and Harrell’s C-index of machine learning-based in-silico markers to predict mortality risks
in heart failure patients. AUROC: Area under the receiver operating characteristic curve. a-b. AUROC with 95% confidence
interval to predict cardiovascular mortality and all-cause mortality in heart failure patients with the developed in-silico marker
by XGB multimodal+label model. c-d. Prediction performance measured by AUROC to predict cardiovascular mortality and
all-cause mortality in heart failure patients with different follow-up duration since admission. e-f. Time dependent C-index of
the developed in-silico marker to predict cardiovascular mortality and all-cause mortality in heart failure patients with different
follow-up duration since admission.
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