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Problem Statement: Pain has a crucial function in the human body acting as an early 
warning signal to protect against tissue damage. However, both assessment of pain 
experience and its clinical diagnosis rely on highly subjective methods. Objective evaluation 
of the presence of pain under analgesic drug administrations becomes even more 
complicated.  

Objectives: The aim of this study was to propose a transfer learning (TL) based deep 
learning (DL) methodology for accurate detection and objective classification of the neural 
processing of painful and non-painful stimuli that were presented under different levels of 
analgesia.  

Method: A publicly available fNIRS dataset of 14 participants was obtained during an 
experimental protocol that involved painful and non-painful events. Separate fNIRS scans 
were taken under the same nociceptive protocol before analgesic drug (Morphine and 
Placebo) administration and at three different times (30,60 and 90 min) post-administration. 
By utilizing data from pre-drug fNIRS scans,  a DL architecture for classifying painful and 
non-painful stimuli was constructed as a base model. Knowledge generated in pre-drug base 
model was transferred to 6 distinct post-drug conditions by adapting a TL approach. The 
DeepSHAP method was utilized to unveil the contribution weights of nine R 
OIs for each of the pre-drug and post-drug models.  

Results: Mean performance of pre-drug base model was above 95% for accuracy, sensitivity, 
specificity and AUC metrics. Each of the post-drug models had mean accuracy, sensitivity, 
specificity and AUC performance above 90%. No statistically significant difference across 
post-drug models were found for classification performance of any of the performance 
metrics. Post-placebo models had higher decoding accuracy than post-morphine models.  

Conclusion: Knowledge obtained from a pre-drug base model could be successfully utilized 
to build pain decoding models for six distinct brain states that were altered with either 
analgesic or placebo intervention. Contribution of different cortical regions to classification 
performance varied across the post-drug models.  

Importance: The proposed methodology may remove the necessity to build new DL models 
for data collected at clinical or daily life conditions for which obtaining training data is not 
practical or building a new decoding model will have a computational cost. Unveiling the 
explanation power of different cortical regions may aid the design of more computationally 
efficient fNIRS based BCI system designs that target other application areas. 
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1. Introduction 

Pain is a vital function of the human body which serves as an early warning signal to protect 
tissue damage. The extent to which an individual experiences pain still remains a complex 
and subjective phenomenon, and is considered to depend on a variety of intrinsic and 
extrinsic factors that include the efficiency of communication between the nociceptors and 
their subcortical and cortical projections (De Felice & Ossipov, 2016) besides genetics, past 
experiences and cultural influences. While the current common methodology for assessing 
perception of pain and its intensity level relies on self-reports in clinical practice, there may 
be conditions where patients are unable to provide verbal self-reports such as a surgical 
procedure performed under anesthesia or in situations where the patient is unconscious due to 
a variety of conditions such as critical cerebral tissue damage. Patients with severe cognitive 
impairments or patients who preserve their mental abilities but who are unable to 
communicate with their external environment may also be unable to provide objective and 
accurate self-reports of their pain experience. 

Pain has few biomarkers that can be used in clinical practice (Woo et al., 2017). Some 
biomarkers are intended to track pain intensity and complement self-reports as a way of 
assessing the incidence or intensity of pain, while others are intended to reveal underlying 
pathobiological conditions (Woo et al., 2017). However, in the above mentioned situations, 
there is a lack of an objective biomarker of pain that can aid precise evaluation and 
management of treatment procedures. Objective evaluation of pain perception would have 
numerous clinical advantages, including the ability to continuously monitor and assess neural 
correlates of perceived pain intensity during surgery and quantitative evaluation of  the 
progress and efficacy of a treatment strategy. Such an objective evaluation marker could 
assist execution of operational procedures under optimal conditions through adjustment of the 
analgesic regime when required. 

Previous functional neuroimaging studies conducted with positron emission tomography 
(PET), functional magnetic resonance imaging (fMRI) and functional near infrared 
spectroscopy (fNIRS) demonstrated consistent pain related localized hemodynamic responses 
in the human brain (Morton et al., 2016; Paquette et al., 2018; Yucel et al., 2015). Moreover, 
these studies also demonstrated spatial and temporal differences in the neural processing of 
low and high intensity painful stimuli (Bornhovd et al., 2002; Morton et al., 2016; Paquette et 
al., 2018; Yucel et al., 2015). Pain induced deactivation in the medial prefrontal cortex 
(mPFC) regions during both acute and chronic conditions has also been consistently observed 
across different neuroimaging studies conducted with different modalities (Karunakaran et 
al., 2021; Ong et al., 2019; Ozturk et al., 2021). Moreover, morphine induced  attenuation of 
the deactivation in the MPFC during painful stimuli processing was also reported in the study 
of Peng et al (2018).  Overall, these studies have provided valuable insights into the neural 
mechanisms underlying pain processing in the human brain. Besides, they also addressed the 
promise of exploring robust biomarkers of pain processing under analgesic or different drug 
administrations. 
 
Among these modalities,  fNIRS has shown a great potential for extracting objective 
biomarkers of pain in the clinical or operative environments due to its numerous advantages 
such as ability to collect hemodynamic data noninvasively with wearable ergonomic probes 
that can be placed at the surface of the scalp. Previous studies using fNIRS have consistently 
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demonstrated significant changes in oxygenated hemoglobin (HbO) concentration in the 
prefrontal cortex (PFC) in response to painful stimuli, including cutaneous (Green et al., 
2022), dental (Racek et al., 2015) and visceral pain (Becerra et al., 2016). These observations 
are supported by findings from fMRI studies reporting deactivations in anterior PFC blood 
oxygenation level-dependent (BOLD) signals following painful stimuli (Gundel et al., 2008; 
Kong et al., 2010; Lui et al., 2008; Tseng et al., 2010). Under analgesic state, Beccera et al 
(2016) obtained hemodynamic recordings from the PFC during a colonoscopy procedure 
(Becerra et al., 2016). Analysis of fNIRS data revealed a specific, reproducible PFC activity 
corresponding to the time intervals when patients grimaced. The pattern of activation was 
similar to that obtained in previous studies in awake healthy individuals while they were 
exposed to nociceptive stimuli. Similar hemodynamic activation patterns obtained during  
painful events under both awake and sedative conditions suggest that unsuccessful inhibition 
of the neuronal processing of a nociceptive stimulus due to insufficient levels of analgesia 
can be objectively quantified with fNIRS derived biomarkers. Karunakaran et al (2023) also 
showed that the use of fNIRS during knee surgery can provide objective measures of pain-
related brain activity (Karunakaran et al., 2023). After analysing fNIRS data obtained during 
pre, intra and postoperative stages, they found a decrease in resting-state functional 
connectivity (FC) within the mPFC during the postoperative state when compared to the 
preoperative awake state. Also, they observed that negative intraoperative FC between the 
mPFC and somatosensory cortex (S1) was associated with higher reported postoperative pain 
levels. As a conclusion from this study, it can be inferred that neurophysiological information 
obtained from fNIRS recordings during surgery can provide objective measures of pain-
related brain activity. In a study by Kussman et al. (2016) involving patients undergoing 
catheter ablation of arrhythmias, somatosensory and frontal cortical hemodynamic activations 
were measured with fNIRS (Kussman et al., 2016). The results showed that the frontal 
cortical signals were suitable for analysis and a decrease in HbO concentration in response to 
the ablative lesions was observed. These cortical signals mirrored the responses seen in 
awake, healthy volunteers and findings from other studies involving nociceptive stimulation. 
These studies highlight the feasibility and potential utility of fNIRS as an objective measure 
of cortical activation during nociceptive procedures under general anesthesia. 

Despite the promising results, there are challenges in using fNIRS-derived neural markers for 
accurate detection of pain. One issue is the presence of habituation effect which results in a 
decrease in the amplitude of hemodynamic responses to repeated painful stimuli over time 
(Yucel et al., 2015). In addition, the shape of the hemodynamic response function (HRF) 
obtained during painful stimuli present intra and inter subject variability which has also been 
shown to be dependent on cortical regions and stimuli types (Yucel et al., 2015). One major 
limitation for deriving robust pain biomarkers from both fNIRS or fMRI signals via mass uni-
variate statistical approaches relies on the low spatial and functional sensitivity of these 
techniques since the achieved spatial resolution spans millions of neurons with diverse 
functional properties and distributed connections across different layers.  Another issue that 
has been noted in the use of fNIRS for detection of pain is the effect of analgesics, 
specifically opioids such as morphine, on the hemodynamic response. Peng et. al. (2018) 
found that morphine administration was associated with an attenuated HbO signal in the 
medial portion of the anterior prefrontal cortex (Brodmann Area 10) in response to painful 
stimuli (Peng, Yucel, et al., 2018).    
 
Evaluation of hemodynamic and behavioral correlates of different levels of pain intensity is 
performed by use of conventional statistical approaches which provides an insight at the 
population level and does not allow inferences to be made at the single subject or single 
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stimulus level. Due to these limitations, accurate detection and objective identification of 
perceived pain intensity under different pharmacological conditions and how this perception 
evolves over time is a challenging problem. Within this context, deep learning (DL) 
techniques may provide a more effective approach to the problem of decoding intensity level 
of perceived pain from neural processing information of a nociceptive stimulus obtained with 
functional neuroimaging modalities. DL methodologies provide several benefits such as 
integration of all available biological data into a single 'best prediction' about the output of 
the algorithm besides their ability to capture information across multiple spatial scales.  
 
Several studies implemented DL methods to fMRI and fNIRS signals to search for 
"fingerprints" specific to acute pain processing. Rojas et al (2021) aimed to develop an 
objective tool for assessing pain in non-verbal patients using DL models and fNIRS data 
(Rojas et al., 2021). The authors explored the utility of different DL models and compared 
their performance in accurate identification of pain. The study found that combination of 
forward and backward information in the Bidirectional Long Short-Term Memory (Bi-
LSTM) model achieved a 90.6% accuracy in two class classification of pain intensity level. 
The use of DL models eliminated the need for complex feature extraction procedures and 
reduced subjectivity in designing hand-crafted features when compared to supervised 
machine learning models. These findings represented a step forward in the development of a 
physiologically-based diagnosis of perceived pain intensity and can assist clinicians in 
objective assessment of pain in non-verbal patients. 
 
In order to overcome the above mentioned challenges associated with decoding the presence 
of neural processing of nociceptive stimuli and improve the sensitivity of fNIRS recordings 
to identification of the presence of nociceptive stimuli processing at the single stimulus level 
while the subject is under different analgesic conditions, the aim of this study is to propose a 
transfer learning (TL) based DL methodology for accurate detection and objective 
classification of painful and non-painful stimuli that are presented under different levels of 
analgesia. TL is a specific supervised learning method which involves transfer of knowledge 
(i.e., feature weights) from a pre-trained base model to a new model that is utilized to make 
inferences about a similar population data after addition of a few computationally efficient 
fine-tuning steps (Wu et al., 2022). Within the context of proposed work, the TL approach 
was utilized to transfer knowledge (i.e., weights) of the constructed DL model from pre-drug 
fNIRS scans and the base neural network knowledge of the pre-drug DL model was adapted 
to the problem of two class classification of the neural processing of two levels of painful 
stimuli collected under two different pharmacological interventions and at three time points 
post-intervention (i.e., 30 min, 60 min, 90 min)(Peng, Yucel, et al., 2018). 

To date, there have been no studies that have shown the efficiency of TL for single trial 
classification of the presence of painful stimuli processing under different pharmacological 
conditions. This approach might be prominent for two potential applications: 1) we 
demonstrate the potential of training DL models for specific classification problems where a 
baseline fNIRS data is available and 2) a model trained with this baseline data can be adapted 
to data collected at different clinical or daily life conditions where obtaining training data is 
not feasible/practical to build novel ML or DL models.  

The presented work addresses two main research questions. Our first question aimed to assess 
the feasibility of implementing a TL methodology to decode the neural processing of two 
levels of nociceptive stimuli obtained under two distinct pharmacological interventions and at 
different times post-intervention. Our hypothesis was to test whether we can decode the 
neural processing of low and high-level painful stimuli states by utilizing hemodynamic 
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responses obtained before and after a morphine or a placebo drug administration with well 
defined performance parameters such as area under the curve (AUC) being greater than 0.9 
which is accepted as an excellent classification performance (0.9-1) according to previous 
clinical studies (Han, 2022; Mandrekar, 2010; Metz, 1978). Our second research question 
aimed to assess the contribution of features obtained from different cortical regions to the 
classification performance of the proposed DL model and how this contribution changes as 
hemodynamic activity is modified with morphine or placebo intervention. For this purpose, 
an explainable artificial intelligence (xAI) method named DeepSHAP which combines 
Shapley values obtained from Shapley Additive Explaination Method  (Lundberg & Lee, 
2017) with the DeepLIFT algorithm (Shrikumar et al., 2017) was utilized. Unveiling the 
explanation power of different regions of interest is prominent as it may aid the design of 
more computationally efficient brain computer interface (BCI) system designs that target pain 
detection and such an approach may provide more precisely localized physiological markers 
of pain. 
 
2. Materials and Methods 

2.1. Dataset 

 
An fNIRS dataset that was previously published in (Peng, Yucel, et al., 2018) was utilized in 
the presented work. In this study, 14 male volunteers who had no recent history of pain or 
opioid abuse were recruited. Each subject had two site visits where he was administered with 
either an oral morphine or a placebo pill. At each site visit,  fNIRS scans were taken during a 
nociceptive stimuli protocol a) before and b) after administration of an oral morphine or a 
placebo pill. The pills looked identical and the order of placebo or morphine administration 
was randomized.   
 
At each site visit, the subject had an fNIRS scan prior to drug administration during a 
nociceptive stimuli protocol which consisted of 6 painful and 6 non-painful stimuli that were 
delivered to the left thumb with an electrical stimulator. Criteria for determining the electrical 
threshold for low level pain and high level pain conditions were explained extensively in the 
study carried out by Peng and colleagues (Peng, Yucel, et al., 2018). Each nociceptive 
stimulus lasted for 5 seconds followed by a 25 second rest period. The same nociceptive 
stimuli paradigm was applied to participants at separate fNIRS sessions that took place after 
30 min (Post-Morphine-30 (PM-30)), 60 min (Post-Morphine-60 (PM-60)), and 90 min 
(Post-Morphine-90 (PM-90)) of morphine administration and after 30 min (Post-Placebo-30 
(PP-30)), 60 min (Post-Placebo-60 (PP-60)) and 90 min (Post-Placebo-90 (PP-90)) of placebo 
administration. fNIRS recordings were collected from the medial portion of the frontopolar 
cortex (FP, medial Brodmann Area 10), the right primary S1 and a portion of the  left lateral 
PFC.  
  
2.2. Regional Information 
 
The publicly available fNIRS dataset included real head coordinates of source and detector 
positions for each subject and scan. These real head coordinates were converted to MNI 
coordinates through the Colin 27 atlas (Holmes et al., 1998) by use of NIRS-SPM toolbox 
(Ye et al., 2009) to reveal the corresponding cortical region. The head coordinates of 
individual optodes and channels were extracted for each drug administration scan of each 
subject. After estimation of the MNI coordinates from real head coordinates, the MNI 
coordinates of pre-scan session of morphine and placebo administration of 14 subjects were 
averaged for each optode position. Table 1 demonstrates the mean MNI coordinates of each 
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channel and the relevant standard deviation across subjects averaged across all scans 
(Okamoto et al., 2004). After spatial registration of optode coordinates to the MNI space, 10 
cortical regions were determined which included the right primary motor cortex (R MI), right 
somatosensory cortex (R SI), right and left pre motor cortices (R & L PMC), left inferior 
frontal gyrus (L IFG), right and left frontopolar area (R & L FPA), right and left dorsolateral 
prefrontal cortices (R & L DLPFC) and right supramarginal gyrus (R SMG). For morphine 
administration scans, the 10 cortical regions of interest were determined as R MI, R SI, R & 
L PMC, L IFG, R & L FPA, R & L DLPFC and R SMG. For placebo session, real 
coordinates corresponded to 9 cortical regions of interest that included R SI, L the IFG, R & 
L PMC, R & L FPA, R & L DLPFC and R SMG.  
 

--- Add Table 1 Here --- 
 
2.3. Dataset Preparation 
2.3.1. Data Preprocessing and Trial Extraction 
 
fNIRS data preprocessing was performed with HomER3 toolbox (Huppert et al., 2009). Light 
intensity data were first converted to optical density (OD) by use of the Beer-Lambert law 

formula �� � ��� � �

��
	  where 
� represents the intensity of incident light that is emitted 

through a light source placed at the surface of the scalp tissue and 
 represents the intensity of 
light collected at the channel forming detector at each time point. Motion artifacts were 
removed from OD data by a hybrid approach where Wavelet transform (Molavi & Dumont, 
2012) and PCA (Zhang et al., 2005) were applied consecutively in order to preserve as many 
trials as possible unlike the process followed in the original study. After motion artifact 
removal, a Butterworth band-pass filter with high and low cut-off frequencies of 0.01 and 0.1 
Hz were applied to remove heart beat (>1 Hz), respiration (0.15-0.4 Hz) (Fekete et al., 2011) 
and Mayer waves (~0.1 Hz) (Yucel et al., 2016). Oxyhemoglobin concentration changes 
(���) and deoxyhemoglobin concentration changes (��) were estimated by using the 
Modified Beer-Lambert law (Cope et al., 1988). For each channel ��� data, a general 
linear model (GLM) based short-channel regression was applied to remove the global 
systemic noise where the global systemic noise was modeled with the preprocessed ��� 
signal of the closest short channel. Let � and � represent the time series ��� data at short 
and long channels consequently. To perform the regression of systemic noise from long 
channels, the beta coefficients of short channels (������) were estimated by using the 
equation below; 
 

������ � ����		
�� 

 
The scaling coefficient ������ was used to linearly regress out the systemic noise recorded by 
short-channels by using equation below; 
 

�� � � � ������ � � 

 
For each trial, a pre-stimulus period of 1 second and a 30 second period after onset of each 
stimulus (i.e., 5 seconds of electrical stimulus application and 25 seconds of resting period) 
were truncated. Each trial block was down sampled to 1 Hz in order to reduce the 
computational complexity during model training.  For each subject, this data were organized 
in a matrix form with dimensions set as number of trials (N)x number of time points (T) x 
number of channels (C) for “Painful” or “Non-painful” stimuli classes.  
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For each experimental session, the time series data represented as D were reorganized as 
� � ���
 , �
	, ��� , ��	, , … … . . , �� , �	� where Xi is a 3 dimensional matrix with dimensions 
of number of trials x number of time points x number of channels  for each subject i and � 
represents the corresponding stimulus intensity (i.e., painful or non-painful � � ��1,1�) for 
each element of Xi. Since 2 pre drug sessions existed for each subject, 336 labelled trials (i.e., 
2 sessions x 14 subjects x 6 trials x 2 intensity levels) were obtained from the pre drug 
sessions and 168 labelled trials (i.e.,14 subjects x 6 trials x 2 intensity levels) were obtained 
from each post drug session (i.e., PM-30, PM-60, PM-90, PP-30, PP-60 and PP-90). Hence, 
the feature matrix had dimensions of 336 x 31 x 24 for pre-drug session and  168 x 31 x 24  
for each post-drug session. 
 
2.4. Deep Learning Steps 

 
After preprocessing and reorganization of the fNIRS time series data, the DL model training 
steps included i) data augmentation, ii) implementation of the deep neural network (DNN) 
architecture design and iii) adapting the TL approach to post-drug datasets. During DNN 
training, only ��� data were utilized due to higher SNR compared to �� (Montero-
Hernandez et al., 2018). Tensorflow toolkit (version 2.8.0) (Abadi et al., 2016) was utilized to 
construct and design the DNN architecture and for further application of the TL approach to 
each of the six post-drug data set. This procedure was repeated 30 times by randomizing the 
data augmentation step (the details of this step is explained at section 2.4.1) and averaging all 
loss and accuracy results. Pipeline depicting the order of analysis steps is shown in Figure 1. 
 

--- Add Figure 1 Here --- 
 
2.4.1. Data Augmentation 
 
The pre-drug dataset for constructing the baseline model was split into %60 training, %20 
test and %20 validation sets. The “train_test_split()” function of scikit-learn toolkit 
(Pedregosa et al., 2011) was utilized to perform this operation. At each run, training, test and 
validation data sets were randomized. Data augmentation was  performed due to relatively 
small sample size of the available fNIRS data when compared to other application areas of 
deep learning (e.g., automation, finance). This step was applied only to the training data set. 
For the data augmentation procedure, time-domain approaches were applied to each truncated 
��� trial time series which involved either addition of a linear trend or Gaussian noise 
(Wen et al., 2021). The linear trend addition procedure involved addition of linear trends 
whose slope values were randomly chosen as 0.01, 0.05 or 0.1. These slope values were 
randomly selected and added to truncated ��� time series of each trial of each channel. 
The second approach involved addition of Gaussian noise with zero mean and randomly 
selected variance (0.01, 0.05 and 0.1) to each trial time series data of each channel. After 
pooling single trial ��� data from all channels and subjects (i.e, 336 trial data (2 
session*14 subjects*6 trial *2 stimulus intensity levels) x 31 time points x 24 channels), the 
training portion of this data set was augmented 25 times with randomized application of 
either of the above mentioned time-domain procedures. 
 
2.4.2. Proposed DNN Architecture  
 
A DNN based on one-dimensional (1-D) convolutional layers was developed. In this 
network, three 1-D convolutional layers existed whose filter counts were 32, 64 and 128 with 
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a convolution length of 2. Rectified linear unit (ReLU) layers were added as the activation 
function to the output of these layers. 1-D max-pooling layers with a length of 2 were added 
to the output of these ReLU layers. A dropout layer with a rate of 0.4 was added after every 
max pooling layer to avoid overfitting. After the third dropout layer, a flatten  layer was 
added to convert the output of the final dropout layer as a single dimensional vector rather 
than a two dimensional one. The flattening layer was followed by addition of a dense layer 
with 256 units, a ReLU activation function and an additional dropout layer with a rate of 0.4. 
The final output layer consisted of the classification layer with a sigmoid function. Graphical 
representation of the designed network and its summary from Tensorflow are shown in 
Figure 2. 
 
 

--Add Figure 2 Here--- 
 
 
Training the pre-drug model (PDM) involved use of Adam optimizer with a learning rate of 
� � 10	�.  During each training session, a dynamic learning strategy was applied where the 
learning rate was reduced with a factor of 0.01 if validation loss did not change during 10 
consecutive epochs and this strategy continued till the minimum � became 10	�. The batch 
size was 16 and the number of epochs was 100. For the post drug models (i.e., PM and PP 
models), training of added layers was carried out by using Adam optimizer with a  learning 
rate of  � � 10	� and similar to the PDM training, the learning rate was reduced with a factor 
of 0.01 if validation loss did change during 10 consecutive epochs and/or till a minimum � of 
10	� was obtained. Batch size for post drug models was also 16 and the number of epochs 
was 100. 
 
2.4.3. Fine-Tuned Transfer Learning (TL) Approach 
 
TL is a relatively new approach for developing neural decoding models (Peterson et al., 
2021) especially for BCI applications (Azab et al., 2018). TL is based on the premise that 
knowledge generated from a pre-trained base model can be used to solve another similar 
classification problem on a novel data set (Wu et al., 2022). The PDM was constructed with 
fNIRS HbO data recorded during pre-drug sessions. Our purpose was to transfer knowledge 
generated from this pre-model to construct post-drug models obtained under two different 
pharmacological conditions (i.e., PM, PP) and at three time points post-intervention (30 min, 
60 min, 90 min). Similar to the PDM, the post drug models took fNIRS signals collected 
during the same nociceptive paradigm as input. The rationale behind utilizing a TL approach 
relies on the assumption that such an adaptive training methodology would be able to capture 
the common neural signature of a nociceptive stimulation task obtained during dynamic brain 
states which were altered by a pharmacological intervention and this alteration would be 
expected to change with respect to time. 
 
After training the PDM,  the attained weights (i.e., knowledge) obtained in between the pre-
trained layers that begun from the first convolutional layer to the last max-pooling layer were 
transferred to construct post drug models. For fine-tuning purposes, an additional flatten 
layer, a dense layer with 256 units, a dropout layer with a rate of 0.4 and a final classification 
layer with a sigmoid activation function were adjusted for each of the post-drug decoding 
networks separately. The final feature information was utilized to predict the label of stimuli 
(painful/non-painful) obtained during post morphine and post-placebo fNIRS scans of 30, 60 
and 90 min post-drug administration sessions. The accuracy, sensitivity and specificity results 
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are reported as an average of 30 runs. The painful events were labelled as positive (+) class 
and non-painful events were labelled as negative (-) class. 
 
2.5. DeepSHAP Explanation 
 
The DeepSHAP (Deep SHapley Additive exPlanations) method (Lundberg & Lee, 2017) was 
adapted to each model  in order to evaluate the contribution of different cortical regions to 
model specific decoding performance. The SHAP approach is based on estimating a 
parameter named Shapley Value. Originally coming from cooperative game theory (Shapley, 
1953), this value basically estimates the relative contribution of a feature to an output when 
compared to all possible other feature combinations. The DeepSHAP approach is defined as 
integration of SHAP method to the DeepLIFT algorithm in order to understand the feature 
specific contribution to the final classification decision (Shrikumar et al., 2017). The output 
of a neural network is decomposed to each input by performing backpropagation of neuronal 
contributions to every feature and SHAP values are estimated based on independence 
assumption of input features and linearity of the model.  
 
For estimating Shapley values, attribution ����	 for a feature � is obtained with the below 
formula:   
 
 
 

����	 � � |�|! �" � |�| � 1	!
"! #$�� % ���	 � $��	&

�� �/���

  
 
where ' is the feature set that contains " number of features, ( is the vector of feature values, 
� represents the subset of features, $ is the value function that takes � as input and $��	 is the 

prediction of the total contribution of the feature set �.  
|�|!��	|�|	
�!

�!
 is the normalization term 

for subset � and $�� % ���	 � $��	 corresponds to feature �’s marginal contribution with 
respect to subset of features � and is averaged for � )  '/���. If function +, is considered as a 
model prediction function, -��� is the probability of feature values that are not in the subset � 
and . �+,��	 is the average predicted value,  $��	 can be computed by using the below 
formula; 
 

$��	 � / +,�(
, … . . , (�	 "-��� � . �+,��		 

 
Total contribution of  ��	 has to satisfy four properties; 
 

• Efficiency: Contributions of all features should be added up to difference #$�� %
���	 � $��	&) : ∑ ����	 � $��	.�!  

 
• Symmetry: If $�� % ���	 � $�� % �1�	 for all � )  '/��, 1�, then ����	 � ���1	 

 
• Dummy: If $�� % ���	 � $��	 for all � )  ', then all ����	 � 0, which means the 

feature  does not have any contribution to output. 
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• Additivity: If there are two outcomes for a single case, $
 and $�, Shapley values have 
an additivity feature which can be represented as  ���

��	 2 ���
��	 � ���"��

��	. 
 

 
Within the context of the proposed work, contribution of each input feature (feature set: # of 
channels * # of time points per trial) to the final decision of the network was computed for 
every run and the contribution of features extracted from all channels within each defined 
ROI (Table 1) was defined as the Shapley contribution of the relevant ROI. Therefore, a 
Shapley value matrix with dimensions of number of runs*number of ROIs was computed for 
each of the PDM and post drug models. After every model training, Shapley values were 
estimated by using DeepSHAP. For DeepSHAP explainer of PDM, test data had a size of 67 
(# of trials) x 31 (# of time points) x 24 (# of channels). At each run, 67 test samples included 
data from both classes. Shapley values across all channels within each ROI were averaged in 
order to interpret the independent contribution of each ROI to classification performance. For 
post-drug sessions, the corresponding test data for estimating Shapley values had a size of 31 
(# of trials) x 31 (# of time points) x 24 (# of channels).  
 
2.6. Statistical Analysis 
 
The accuracy, sensitivity and specificity performances of PDM and post-drug models were 
compared based on values obtained from 30 runs. For each performance metric, normality of 
performance results from all models were tested by using Shapiro-Wilk test. Because the 
distribution of values belonging to each of the performance metrics violated the normality 
assumption,  the statistical comparison between PDM and post-drug model performances 
were carried out by using the Kruskal-Wallis test for accuracy, sensitivity and specificity 
metrics. Post-hoc comparisons were conducted with Bonferroni. 
 
The classification performance of post-drug models were compared by using a 2 x 3 
([Morphine, Placebo] x [30 min, 60 min, 90 min]) repeated measures analysis of variance 
(ANOVA) after performing a box-cox transformation on all results due to non-normal 
distribution of data samples belonging to each of the performance metric. 
 
3. Results 
 
3.1. Deep Transfer Learning Model Performances 
 
Training and validation accuracy curves of PDM are shown in Figure 3. The  final training 
and validation accuracy scores of 30 runs reached to 0.99 3 0.003 and 0.97 3 0.02 for  
PDM. Training and validation accuracy curves of post drug models are shown in Figure 4. 
The training accuracy values reached to 1.0 after 10 to 15 epochs for the post drug models. 
For PP models, validation accuracies of PP-30, PP-60 and PP-90 reached to 0.91 3 0.05, 0.90 
3 0.05 and 0.92 3 0.05 respectively. For PM models, validation accuracies of PM-30, PM-60 
and PM-90 reached to 0.92 3 0.06, 0.90 3 0.06 and 0.92 3 0.06 respectively.  
 
Test performances of PDM and all post-drug models in terms of their accuracy, sensitivity 
and specificity results are given in Table 2. For PDM,  decoding accuracy, sensitivity and 
specificity performances  reached 0.97 3 0.03, 0.97 3 0.04, 0.97 3 0.04 respectively.  
 

---Add Figure 3 Here--- 
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---Add Table 2 Here-- 

 
 
Among post-drug morphine models, PM-30 model achieved accuracy, sensitivity and 
specificity as 0.91 0.05, 0.90 0.08, 0.91 0.07 respectively. For PM-60 model, accuracy, 
sensitivity and specificity were found as 0.90 0.07, 0.88 0.11, 0.91 0.11 respectively. For PM-
90 model, accuracy, sensitivity and specificity were found as 0.91 0.05, 0.89 0.08, 0.92 0.08. 
respectively.  Among post-drug placebo models, accuracy, sensitivity and specificity of PP-
30 model were found as 0.92 3 0.06, 0.92 3 0.08, 0.91 3 0.08 respectively. For PP-60 
model, accuracy, sensitivity and specificity scores were found as 0.92 3 0.05, 0.91 3 0.08, 
0.92 3 0.07 and PP-90 showed accuracy, sensitivity and specificity performance as 0.91 3 
0.07, 0.91 3 0.08, 0.92 3 0.10 respectively. Figure 5-7 presents violin plots of accuracy, 
sensitivity and specificity performances of all models respectively.  
 

--- Add Figure 4 Here --- 
 
ROC curves of all models are shown in Figure 8. For PDM, AUC was found as 0.97 3 0.03. 
For PM models, AUC of PM-30, PM-60 and PM-90 were found as 0.91 3 0.05, 0.89 3 0.08 
and 0.90 3 0.06. For PP models, AUC of PP-30, PP-60 and PP-90 were found as 0.92 3 
0.05, 0.92 3 0.05 and 0.92 3 0.06. 
 
3.2. Statistical Comparison of Model Performances 
3.2.1. Pre Drug Model vs Post Drug Models 
 
Kruskal-Wallis test results showed that there is a significant difference between accuracy 
scores of PDM and post morphine models (χ2(3) = 35.41, p < 0.001). Multiple comparison 
test using Bonferroni correction showed that PDM accuracy results were significantly higher 
than PM-30 (mean= 41.55, p<0.001), PM-60 (mean= 45.66, p<0.001) and PM-90 
(mean=42.91, p=0.000). No statisticaly significant difference in accuracy performance were 
found across post-morphine models. Comparison of sensitivity scores between models 
revealed that there is a significant difference between PDM and PM (χ2(3) = 20.04, p < 
0.001). Multiple comparison test using Bonferroni correction showed that PDM sensitivity 
results were significantly higher than PM-30 (mean= 27.30, p=0.010), PM-60 (mean= 34.05, 
p<0.001) and PM-90 (mean=33.45, p=0.000). Comparison of specificity scores between 
PDM and PM revealed that there is a significant difference between models  (χ2(3) = 15.68, 
p<0.001). Multiple comparison test using Bonferroni correction showed that PDM specificity 
results were significantly higher than PM-30 (mean= 27.30, p=0.006) and PM-60 (mean= 
34.05, p=0.002) models but not PM-90 (mean=21.83, p=0.06). No significant difference were 
found across post-morphine models for any of the performance metrics. 
 
Performance comparison between PDM and post-placebo models revealed that there is a 
statistically significant difference between accuracy results (χ2(3) = 27.24, p < 0.001). 
Multiple comparison test using Bonferroni correction showed that PDM accuracy results 
were significantly higher than PP-30 (mean= 37.06, p=0.00), PP-60 (mean= 38.07, p=0.00) 
and PP-90 (mean= 38.05, p=0.00). Comparison of sensitivity scores between  
PDM and post placebo models revealed that there is a significant difference between models  
(χ2(3) = 15.13, p = 0.001). PDM sensitivity results were significantly higher than post-
placebo models (PDM vs PP-30 (mean= 24.23, p=0.028), PDM vs PP-60 (mean= 24.53, 
p=0.026), PDM vs PP-90 (mean=31.90, p=0.001). Comparison of specificity scores between 
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models revealed that there is a significant difference between PDM and post-placebo models  
(χ2(3) = 11.44, p = 0.009). PDM specificity results were significantly higher than PP-30 
(mean=26.10, p=0.014) and PP-60 (mean= 22.93, p=0.041) models but not PP-90 
(mean=22.30, p=0.051). No significant difference were found across post-placebo models for 
any of the performance metrics. 
 
 

--- Add Figure 5 Here --- 
 
 
 

--- Add Figure 6 Here--- 
 
 
 
3.2.2. Classification Performance Comparison of Post Drug Models 
 
2 x 3 repeated measures ANOVA for accuracy scores revealed a significant main effect of 
drug type (F(1,179)=9.98, p=0.002). Statistical significance for neither the main effect of 
time condition (F(2,179)=0.1, p=0.901) nor the interaction between drug and time conditions 
(F(2,179)=0.65, p=0.525) were found. Multiple comparisons for the main effect of drug type 
revealed that placebo condition showed significantly higher accuracy performance than 
morphine condition (mean diff. : -0.0198, p = 0.002). 2 x 3 repeated measures ANOVA for 
sensitivity scores revealed no significance for the main effect of drug type (F(1,179)=3.22, 
p=0.070), time (F(1,179)=0.62, p=0.540), or a drug and time interaction (F(1,179)=0.08, 
p=0.922). For specificity results, similarly no  significant main effect for drug type 
(F(1,179)=0.03, p=0.859), time (F(1,179)=0.1, p=0.901) or a drug and time interaction 
(F(1,179)=0.23, p=0.791) were found. 
 

--- Add Figure 7 Here --- 
 
 
3.2.3. Shapley Interpretation 

 
Average Shapley values contributed to pre-drug and all post-drug models are shown for every 
region in Figure 9 and Shapley maps are shown in Figure 10. Positive and negative Shapley 
values of a region are indicative of positively or negatively contribution of that region to the 
general decoding performance of the neural processing of two pain levels. Our results showed 
that, for pre-model R PMC, R DLPFC, L FPA and R MI contributed to decoding pain before 
drug administration. For PP models, regions that positively contributed  to decode pain were; 
for PP-30 model, L PMC, R PMC, L DLPFC, R FPA and L IFG, for PP-60 model, L PMC, R 
PMC, R DLPFC, L DLPFC, L FPA R FPA for PP-90 model, L PMC, L DLPFC, L FPA, L 
IFG, R SMG and R SI.  
 
For PM models, regions that positively contributed to decode pain were; for PM-30 model, L 
PMC, L DLPFC, R DLPFC, L FPA, L IFG, R SMG, and R MI, for PM-60 model, R PMC, R 
FPA, R SI and R MI and for PM-90 model, R FPA and R SMG.  
 

--- Add Figure 8 Here --- 
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4.Discussion 

4.1.General Comments and Novelty Emphasis 

The aim of this study was to propose a TL based DL methodology for accurate detection and 
objective classification of the neural processing of painful and non-painful stimuli that were 
presented under different levels of analgesia. As a relatively new approach for developing 
neural decoding models (Peterson et al., 2021) for BCI applications (Azab et al., 2018), TL is 
based on the premise that knowledge generated from a pre-trained base model can be utilized 
to solve another similar classification problem on a novel data set. Within the context of 
proposed work, the TL approach was utilized to transfer knowledge (i.e., weights) of the 
constructed DL model from pre-drug fNIRS scans and the base neural network knowledge of 
the pre-drug DL model was adapted to the problem of two class classification of the neural 
processing of two levels of nociceptive stimuli (Peng, Yucel, et al., 2018). The motivation 
behind utilizing a TL approach relied on the assumption that such an adaptive training 
methodology would demonstrate a high performance while being computationally efficient 
and would remove the necessity to build new DL models for data collected at different 
clinical or daily life conditions for which obtaining  training data is not practical and building 
a new model will have a computational cost. The feasibility of TL approach was 
demonstrated by its efficacy in predicting the class of two levels of nociceptive stimuli from 
noninvasive fNIRS recordings obtained under two different pharmacological conditions and 
at three time points post-intervention. Each of the post-drug models had mean accuracy, 
sensitivity, specificity and AUC performance above 90%  when the weights obtained from 
the base model were transferred and no statistically significant difference in classification 
performance were found across the post-drug models for any of the performance metrics. 
These results demonstrated that knowledge obtained from a pre-drug base model could be 
successfully utilized to build novel models for predicting the perceived pain intensity level 
from neurally induced hemodynamic signals obtained at 6 distinct dynamic brain states that 
were altered with either analgesic or a placebo intervention and at 3 different times post-drug 
administration. 

The presented work includes several novelties. First, to the best of our knowledge, this is the 
first fNIRS based pain decoding approach in healthy subjects before and after medication. To 
date, there have been no studies that have demonstrated the efficacy of TL methodology for 
single trial classification of the presence of painful stimuli processing under different 
pharmacological conditions that included analgesics. Second, this is the first study that have 
tested the feasibility of integrating TL methodology with neurophysiological data obtained 
from a noninvasive, mobile and wearable fNIRS system for the purpose of predicting the 
perceived pain intensity level under different drug administrations in healthy male adults. 
This approach was quite remarkable because it provides a proof of concept preliminary 
analysis that demonstrates the practicality of adapting a pre-drug base decoding model to 
different clinical conditions where collecting training data is not possible. This is the first 
study that explains the behavior of a pain decoding model both at pre-drug and post-drug 
conditions by utilizing an explainable AI approach where the motivation was to understand 
which cortical regions contributed to the output of model at most for every session.  

4.2. Comparison of the Classification Performances of PDM and Post Drug Models 

Test performances of PDM and all post-drug models achieved mean accuracy, specificity, 
sensitivity and AUC scores above 90%. Mean performance of PDM was above 95% for 
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accuracy, sensitivity, specificity and AUC metrics. PDM had a statistically significantly 
higher 2 class classification performance than all PM models for all performance metrics 
while PM models did not demonstrate a significant difference among each other for any of 
the metrics. Similarly, PDM had a statistically significantly higher 2 class classification 
performance than all PP models for all metrics while PP models did not demonstrate a 
significant difference among each other for any of the metrics. 

Although the base model has a higher performance that post drug models, the fact that all 
models have a general classification performance above 90 % in all performance metrics 
demonstrate that knowledge obtained from a pre-drug base model could be successfully 
utilized to build novel models for predicting the pain intensity level from neurally induced 
hemodynamic signals. Performance of PM models were relatively lower than that of PDM 
and PP models. This result is expected as morphine alters hemodynamic response patterns in 
several cortical regions including MPFC as shown in the previous work of Peng et al (2018) 
from whom the dataset was obtained.  
 

--- Add Figure 9 Here ---- 
 
Neurophysiological and behavioral consequences of pharmacological interventions during 
acute (Barkin & Barkin, 2001; Eland, 1988; Jeha et al., 2021) and chronic pain (Coles et al., 
2022; Kuijpers et al., 2011; Park & Moon, 2010) conditions have been thoroughly examined 
in the last few decades. Recently, neural correlates of various drug interventions have been 
investigated by using fMRI (Hansen et al., 2015; Tinnermann et al., 2022; Wager et al., 2013) 
and fNIRS (Peng et al., 2021; Peng, Yucel, et al., 2018). Peng and colleagues conducted an 
fNIRS study that focused on the effect of placebo and morphine intervention on neural 
correlates of acute pain and they reported that morphine attenuates hemodynamic response 
activity in the medial frontopolar area (Peng, Yucel, et al., 2018). In addition, Hansen and 
colleagues conducted an fMRI study that examined the neural effects of analgesic drugs 
(morphine / placebo) under acute painful stimulation and while morphine-based attenuation 
was observed in the right insula, anterior cingulate cortex and inferior parietal cortex, no 
difference in brain activation between pre and post placebo administration conditions was 
observed (Hansen et al., 2015). These studies highlighted the fact that morphine 
administration alters cortical hemodynamic activity induced by neural processing of 
nociceptive stimuli. One potential reason for the relatively lower classification performance 
of PM models may be due to the alterations of hemodynamic responses obtained during both 
pain and non-pain conditions in several brain regions with morphine administration with 
respect to the neural activity obtained during drug-free condition. Wager and colleagues 
conducted a study that focused on extracting a pain signature. They combined fMRI measures 
with a machine learning method  (least absolute shrinkage and selection operator regularized 
principal components regression – LASSO PCR) to classify the neural processing of painful 
and non-painful stimuli under remifentanil administration. Their proposed methodology 
achieved 90% sensitivity and 81 % specificity before drug administration and 86 % 
sensitivity and 62% specificity were achieved after drug treatment (Wager et al., 2013). The 
study whose dataset was utilized in the presented work also found that morphine reduced the 
pain induced hemodynamic responses in MPFC however; it did not change the responses 
induced by non-painful stimuli. Meanwhile, placebo drug affected the spatiotemporal patterns 
of neither painful nor non-painful induced hemodynamic responses (Peng, Yucel, et al., 
2018). 
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On the other hand, 2 way ANOVA results demonstrated that the accuracy of PP models were 
significantly greater than the decoding accuracy of PM models. Chen (2021) provides an 
excellent review on the performance of different supervised and unsupervised classification 
algorithms in correct identification of acute and chronic pain conditions by use of data 
obtained from different functional imaging modalities. In our work, the accuracy, sensitivity, 
specificity performances of post drug models were not statistically significantly different 
from each other per intervention type while they remained in the high-performance spectrum 
among the performance metrics reported in previous studies which targeted two class 
classification of pain intensity by use of functional neuroimaging measures  (Chen, 2021). 
 

---- Add Figure 10 Here --- 

4.3 Interpretation of Regional Shapley Contributions 

4.3.1 Pre-Drug Condition 

In the pre-drug stage, R PMC, R DLPFC, L FPA and R MI positively contributed to the 
highly accurate (%97) decoding performance of PDM. Among these regions, MI is a widely-
known and key region in pain processing which has a notable role on integrating sensory and 
motor aspects of pain (Brown et al., 2011; Leknes & Tracey, 2008; Martucci & Mackey, 
2018). DLPFC is involved in several cognitive processes such as attention (Bidet-Caulet et 
al., 2015; Vossel et al., 2014; Voytek et al., 2010) and working memory (Barbey et al., 2013) 
as well as neural processing of acute and chronic pain (Seminowicz & Moayedi, 2017). 
Previous acute pain studies revealed that bilateral DLPFC activity has a negative correlation 
with the extent of unpleasantness of thermal pain (Lorenz et al., 2003) and pain 
catastrophizing scores (Seminowicz & Davis, 2006). On the other hand, R DLPFC was found 
to be strongly associated with control of perceived pain intensity (Wiech et al., 2006). The 
positive contribution of DLPFC to PDM classification performance may be due to its 
involvement in the above-mentioned cognitive aspects of pain experience. 

R PMC (BA 6) was also found to be a positive contributor to the classification performance 
of PDM. BA6 is a large cortical area  located at the anterior side of MI and this region is 
primarily responsible for motor acts such as writing and speech besides sensory guidance of 
movement (Tanji, 1996; Wise, 1985). A previous arterial spin labeling-MRI (ASL-MRI) 
study revealed that acute cold and heat pain resulted in an increase in cerebral blood flow 
(CBF) (Frolich et al., 2012) which could serve as a potential biomarker of acute pain. In a 
PET based CBF study, PMC showed significant responses to both heat and cold pain in both 
genders (Casey, 1999). However, how PMC is effective in pain processing still remains 
unclear. Previous studies claimed that activity increase in PMC might be related to 
anticipation of movements to avoid painful stimuli (Hsieh et al., 1994). Contribution of R 
PMC to classification performance of our PDM model might be related to its role in 
regulating avoidance behavior for painful and non-painful stimuli. 

L FPA (BA 10), a region located at the anterior portion of the PFC, was previously found to 
be a critical region in pain processing in previous fMRI (Cauda et al., 2010; Hautvast et al., 
1997; Kucyi et al., 2014; Lobanov et al., 2013; Porro et al., 1998; Svensson et al., 1997) and 
fNIRS (Aasted et al., 2016; Peng, Yucel, et al., 2018) studies. Previous reports suggest that 
FPA might be involved in collation, integration and high-level processing of pain (Peng, 
Steele, et al., 2018). In the study from which the dataset was generated, statistically 
significant difference in hemodynamic responses to painful and non-painful stimuli was 
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found in medial BA 10 of the pre-scan datasets of morphine and placebo visits of all subjects 
(Peng, Yucel, et al., 2018). The significant difference in hemodynamic responses to painful 
and non-painful stimuli might be the reason for positive contribution of L FPA to the highly 
accurate PDM decoding performance. The role of BA 10 in pain perception still remains 
unclear. However, anatomical connections exist between BA 10 and several cortical and 
subcortical regions such as thalamus, insula (Burman et al., 2011; Petrides & Pandya, 2007) 
and anterior cingulate cortex (ACC)  (Bushnell et al., 2013; Coghill et al., 2003; Derbyshire 
et al., 1994) which play important roles in sensory-discrimination and pain perception (Peng, 
Steele, et al., 2018).  

4.3.2 Post-Drug Condition 

Among PP models, L PMC, R PMC, L DLPFC, R FPA and L IFG positively contributed to 
the classification performance of PP-30. L PMC, R PMC, R DLPFC, L DLPFC, L FPA, R 
FPA regions positively contributed to the classification performance of PP-60 and L PMC, L 
DLPFC, L FPA, L IFG, R SMG and R SI positively contributed to the classification 
performance of PP-90 model. Regions that contributed both to PDM and PP models were R 
PMC and R DLPFC for PP-30, R PMC and L FPA for PP-60 and L FPA for PP-90.  

Common positively contributing regions to the classification performance of PDM and PM 
models were R PMC for PM-30, R PMC, R DLPFC, L FPA for PM-60 and L FPA for PM-
90. Despite these positive contributor regions common to both PDM and PM models, 
additional regions also contributed to the output of the PM models. This observation may 
suggest that transferring knowledge from a pre-drug base model might be useful to decode 
the presence of a painful response, however information from additional cortical regions may 
also be needed for a high decoding performance in post-drug models because of the intra and 
intersubject variability introduced to fNIRS signals by efficacy duration of analgesic drug.  

A recent fMRI meta-analysis on placebo analgesia revealed that placebo administration 
causes small and widespread activity reductions during painful stimuli processing in several 
brain regions that are related to both painful stimulus and decision-making processes 
(Zunhammer et al., 2021). DLPFC and PMC were found to be the common contributor 
regions across all developed models for PP models. Among these regions, PMC and SMA 
were previously reported as critical regions which might reflect placebo effect on pain-
induced hemodynamic response (Frolich et al., 2012). PMC activation was reported during 
painful stimulation under high level of placebo administration (J. C. Choi et al., 2011). In the 
same study, a positive correlation was found between PMC and ACC activities and ACC 
activity is strongly related to placebo and opioid analgesia (Bingel et al., 2006; Petrovic et al., 
2002). Changes in the hemodynamic activity in PMC might be associated with the 
hemodynamic activity in ACC which cannot be measured by using fNIRS. On the other hand, 
DLPFC plays a role in pain suppression by attention-based pain regulation (Graff-Guerrero et 
al., 2005; Krummenacher et al., 2010; Lorenz et al., 2003; Peyron et al., 2000) and it was 
particularly involved in placebo analgesia (Pariente et al., 2005; Wager et al., 2004). Previous 
studies also reported that there was a correlation between DLPFC connectivity and placebo 
analgesia (Tetreault et al., 2016; Vachon-Presseau et al., 2018). We think that DLPFC 
positively contributed to pain decoding during placebo analgesia due to its pain regulatory 
role. 

Similarly, FPA (BA 10) was also found to be another region that positively contributed to 
decoding performance of PP models. Previous evidence suggests that FPA plays a role in 
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pain anticipation under placebo analgesia (Amanzio et al., 2013; Petrovic et al., 2010; 
Watson et al., 2009) and increased activation in FPA during pain expectation might be related 
to placebo analgesia and emotional regulation (Amanzio et al., 2013). Compared to Amanzio 
et al (2013), L IFG presented a placebo-induced activation increase in another meta-analysis 
(Atlas & Wager, 2014) and is considered as a critical anticipatory predictor of placebo 
analgesia (Wager et al., 2011). We think that both these regions contributed to decoding 
performance due to their regulation and anticipation roles during placebo analgesia condition. 
Previous evidence related to behavior of SI showed that pain-induced activity decreased after 
placebo analgesia (Bingel et al., 2006; Eippert et al., 2009; Lui et al., 2010). However, in the 
previous study of this dataset, no significant difference was reported in SI between painful 
and non-painful stimuli when compared to pre-drug status (Peng, Yucel, et al., 2018). In that 
study, due to not having any comparison between painful and non-painful stimuli for each 
drug condition, it is hard to make a direct interpretation related to the reason of contribution 
of SI. Statistical similarity does not fully guarantee a low accurate discrimination of two 
classes by using ML approaches (Arbabshirani et al., 2017). On the other hand, SMG is 
located at the inferior parietal lobule (IPL) which is involved in pain relief (Jae Chan Choi et 
al., 2022; Zunhammer et al., 2021). Wager and colleagues found that SMG is a positive 
predictor of decoding painful vs. non-painful stimulus (Wager et al., 2013).  

For PM models, regions that positively contributed to decoding performance were; L PMC, L 
DLPFC, R DLPFC, L FPA, L IFG, R SMG and R MI positively contributed to the model 
after 30 min of administration. R PMC, R FPA, R SI and R MI positively contributed to the 
model after 60 min of administration and  R FPA and R SMG positively contributed to the 
model after 90 min of administration. Effects of opioids like morphine and its derivatives 
such as remifentanil on painful stimulus have previously been investigated in several fMRI 
(Becerra et al., 2006; Gear et al., 2013; Hansen et al., 2015; Wager et al., 2013; Wanigasekera 
et al., 2012) and fNIRS (Peng, Yucel, et al., 2018) studies. Morphine induced activation 
reduction was observed in DLPFC (Becerra et al., 2006), inferior parietal lobe which covers 
SMG (Becerra et al., 2006; Hansen et al., 2015) and FPA (Peng, Yucel, et al., 2018). Among 
these regions, a previous MR-spectroscopy study revealed that frontal region is an opioid rich 
region (Hansen et al., 2016) which is possibly effective in reducing perceived  pain intensity. 
On the other hand, while pain-induced hemodynamic activity reduction in SI was observed 
after morphine administration (Gear et al., 2013; Peng, Yucel, et al., 2018), no difference was 
found between pre-morphine and post-morphine non-painful stimuli induced hemodynamic 
activity in SI (Becerra et al., 2006; Peng, Yucel, et al., 2018).  

4.3. Potential of the Proposed Methodologies  

The presented work demonstrated that knowledge obtained from a pre-drug base model could 
be successfully transferred to build novel models for predicting the perceived pain intensity 
level from neurally induced hemodynamic signals obtained at 6 distinct dynamic brain states 
which were altered with either analgesic or a placebo intervention and at 3 different times 
post-drug administration. We provide a proof of concept preliminary analysis that 
demonstrates the practicality of adapting a pre-drug base decoding model to different clinical 
conditions where collecting training data is not possible. The low computational cost and 
high classification performance of TL approach makes it feasible for specific classification 
problems where a baseline data is available and a model trained with this baseline data can be 
adapted to data collected at different clinical or daily life conditions where obtaining training 
data is not feasible/practical to build novel ML or DL models.  
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Unveiling the explanation power of features obtained from different cortical  regions of 
interest is prominent as it may aid the design of more computationally efficient BCI system 
designs that target pain detection and such an approach may provide more precisely localized 
physiological markers of pain. In the presented work, Shapley values presented no consistent 
localization of positive contribution across all models. Nonetheless, the proposed 
combination of TL based DL methodology with an xAI method and their application to 
fNIRS data demonstrate a potential for unveiling the explanation power of different ROIs and 
this analytical procedure may aid the design of more computationally efficient BCI system 
designs for other application areas. 
 
4.4. Limitations of the Study and Recommendations for Future Work 

Pain is a multisensory experience and test retest reliability is always questionable in human 
functional neuroimaging studies that target cognitive and emotional aspects. We should not 
ignore the fact that pain responsive cortical areas do not solely process pain induced neural 
information. Both morphine and placebo interventions result in different cognitive and 
anticipation effects and decoding the intensity of a painful stimulus and its saliency 
dimension cannot be differentially performed (Lee et al. 2020).  Due to these constraints, we 
should take into account the fact that the relative contribution of morphine and placebo 
modulated regions may show variability within and across participants and across different 
pharmacological conditions. Painful and non-painful stimuli may have different 
hemodynamic activation strengths at each post drug session which may be not only due to the 
differential effect of the type of drug administration but also due to the varying cognitive 
state at each session including habituation effects.  

Although the number of subjects in our study was comparable to the sample sizes reported in 
previous pain decoding studies, low number of subjects was another critical limitation in our 
study. DL algorithms require high amounts of data for training (Szucs & Ioannidis, 2020). 
However, obtaining comparably high numbers of labeled data in medicine field is difficult 
due to factors such as acquisition cost and labor. Hence, clinical studies are conducted with 
relatively limited amount of data when compared to other areas of DL applications. To 
overcome this limitation, we applied a data augmentation procedure during model training by 
utilizing well accepted data augmentation approaches (Wen et al., 2021). Nonetheless, while 
synthetic data are expected to capture the diversity and variability available in real-world 
data, its creation is still a biased approach. For best case scenarios, training DL algorithms 
with more real world data from more participants will increase the reliability of validation 
and reproducibility of our results. Besides, although DL methodologies remove the necessity 
of feature engineering and domain knowledge requirements, it should not be neglected that 
they still have many unknown parameters and require vast amounts of labelled samples for 
training.  

5. Conclusion 

 
The presented work addressed two main research questions. Our first question aimed to 
assess the feasibility of implementing a TL methodology to decode the neural processing of 
of painful and non-painful stimuli obtained under two distinct pharmacological interventions 
and at different post-intervention times. Our results demonstrated that the neural processing 
of painful and non-painful stimuli states could be successfully distinguished by utilizing 
hemodynamic information obtained before and after a morphine or a placebo drug 
administration. The performance of the TL approach in accurate classification of pain 
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intensity level was tested on 6 distinct post models which were fine-tuned for fNIRS data 
recorded during noxious and innocious stimuli under different pharmacological conditions. 
Our results demonstrated the potential of training models with a baseline fNIRS data and 
adapting these baseline models to data collected at different clinical or daily life conditions 
where obtaining training data is not feasible/practical to build novel ML or DL models. Our 
second aim was to assess the contribution of features obtained from different cortical regions 
to the classification performance of the proposed DL model and how this contribution 
changes as hemodynamic activity is modified with morphine or placebo intervention. Our 
findings demonstrate the potential of proposed methodology for unveiling the explanation 
power of different ROIs and how this approach may aid the design of more computationally 
efficient fNIRS based BCI system designs for other daily-life and clinical application areas. 
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Figure Captions 
 
Figure 1: Pipeline of the analysis steps. P: Pain, NP: Non-pain. 
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Figure 2: Graphical representation of the proposed DNN structure. Summary of the model 
architecture post TL procedure is given at the bottom left section. Numbers given on every 
layer indicate Filter size of layer @ Output size of layer.  
 
Figure 3: Training and validation accuracy of PDM. 
 
Figure 4: Training and validation accuracy curves of post drug models.  
 
Figure 5: Violin plot of accuracy results of PDM, PP and PM models. 
 
Figure 6: Violin plot of sensitivity results of PDM, PP and PM models. 
 
Figure 7: Violin plot of specificity results of all PDM, PP and PM models. 
 
Figure 8: ROC curves and corresponding AUC values of all models. 
 
Figure 9: Bar plot of average Shapley values of regional contributions to all models. Pre: 
Pre-model, PM30 : Post-morphine 30 min, PM60: Post-morphine 60 min, PM90 : Post-
morphine 90 min, PP30: Post-Placebo 30 min, PP60: Post-Placebo 60 min, PP90: Post-
Placebo 90 min. L: Left, R: Right, PMC: Pre-motor cortex, DLPFC: Dorsolateral Pre Frontal 
Cortex, FPA: Frontopolar area, IFG: Inferior Frontal Gyrus. SMG: Supramarginal Gyrus, SI: 
Somatosensory cortex, MI: Motor Cortex 
 
Figure 10: Shapley contributions of regions to corresponding models over the cortex from 
three axes. 
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