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Abstract

Streptococcus pneumoniae (the pneumococcus) is a globally dis-
tributed, human obligate opportunistic bacterial pathogen which, al-
though often carried commensally, is also a significant cause of inva-
sive disease. Apart from multi-drug resistant and virulent clones, the
rate and direction of pneumococcal dissemination between different
countries remains largely unknown. The ability for the pneumococ-
cus to take a foothold in a country depends on existing population
configuration, the extent of vaccine implementation, as well as hu-
man mobility since it is a human obligate bacterium. To shed light
on its international movement, we used extensive genome data from
the Global Pneumococcal Sequencing (GPS) project and estimated
migration parameters between multiple countries in Africa. Data on
allele frequencies of polymorphisms at housekeeping-like loci for mul-
tiple different lineages circulating in the populations of South Africa,
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Malawi, Kenya, and The Gambia were used to calculate the fixation
index (Fst) between countries. We then further used these summaries
to fit migration coalescent models with the likelihood-free inference
algorithms available in the ELFI software package. Synthetic data
were additionally used to validate the inference approach. Our re-
sults demonstrate country-pair specific migration patterns and het-
erogeneity in the extent of migration between different lineages. Our
approach demonstrates that coalescent models can be effectively used
for inferring migration rates for bacterial species and lineages provided
sufficiently granular population genomics surveillance data. Further it
can demonstrate the connectivity of respiratory disease agents between
countries to inform intervention policy in the longer term.

1 Introduction

Inferring migration events in natural bacterial populations between geo-
graphically separated regions is generally challenging since bacteria cannot
be tagged in the same way as, for example, animals. For bacteria which
colonize humans the rate of migration will be a complicated function of
the host mobility and ecological factors influencing the success of onward
transmission, such as the level of hygiene, use of antibiotics and vaccina-
tion campaigns in the host populations. Progress identifying large-scale
migration patterns among bacteria has been primarily made for species or
strains more likely causing acute infections and serious illnesses, such as
cholera Domman et al. [2017], Okoro et al. [2012], Comas et al. [2013], Las-
salle et al. [2023]. However, genetic epidemiology has also been used to
elucidate the spread of multi-drug resistant (MDR) strains of Streptococcus
pneumoniae (the pneumococcus) across different global regions. For such
commonly asymptomatic bacteria these studies are highly reliant on com-
prehensive sampling van Tonder et al. [2015], Quintero Moreno and Araque
[2018], Croucher et al. [2014]. Overarchingly, variable sampling strategies
between countries, poor approximation of between country mobility, and the
large time scales of between country pathogen spread can hinder definitive
estimates of the weight and direction of between-country spread.

Global genomic sampling as part of the Global Pneumococcal Sequenc-
ing (GPS) Project demonstrates that some lineages and serotypes of this
bacterium circulate locally, while others are spread globally. With the excep-
tion of the aforementioned MDR strains, the time scales of this spread and
the frequency, or direction of migration between specific countries leading
to the extant lineage distributions remains unclear Gladstone et al. [2019].
While we can use time resolved phylogenies to infer that genome pairs from
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countries in South Africa and countries elsewhere in Africa become increas-
ingly similar with increasing divergence times, this is still, overall, much less
likely than pair similarity within country Belman et al. [2023]. Informing
coalescent models with true case count data can reduce the impact of ge-
ographic sampling bias, but for an endemic, often asymptomatic pathogen
this remains difficult Layan et al. [2023]. Our previous work used human
mobility data from Meta Maas [2019] to build a model inferring bacterial
movement Belman et al. [2023], but could provide limited information about
the direction of spread. Further, reliable between country human mobility
data is scarce for continents such as Africa, so similar approaches have lim-
ited use in this context Deutschmann et al. [2022], Gabrielli et al. [2019].

In this work we quantify between-country pneumococcal migration among
four African countries. Due to the lack of direct observations of between-
country migration we are unable to use typical Bayesian techniques. How-
ever, population genomics based surveillance data from multiple countries
provides an opportunity to consider quantification of migration rates via co-
alescent models and likelihood-free inference (LFI) Aeschbacher et al. [2013],
Wegmann et al. [2009]. In particular we use Approximate Bayesian Com-
putation (ABC), which is a type of LFI in which we compare population
summary statistics between simulated and real genomic data to determine
(in this case) patterns of pneumococcal migration.

We can explore the impact of different evolutionary parameters on pop-
ulation samples using software packages which simulate coalescing popula-
tions Kelleher and Lohse [2020], Kern and Schrider [2016], Ewing and Her-
misson [2010]. msprime is an adaptation to the classical neutral ms simulator
which includes demographic parameters such as population size and migra-
tion Hudson [2002]. Such a simulation-based inference framework Sisson
et al. [2018] enables inference of the unknown migration parameters without
access to a closed form expression for the data under any particular set of
parameters assumed to govern the migration process. Given the generality
of the problem of migration quantification for microbes, our approach is of
wider interest beyond the pneumococcal case considered in detail here.

2 Materials and methods

2.1 Population Divergence Summary Statistics

Rather than comparing the entire nucleotide diversity of genes and genomes
within and between populations one can summarize the diversity using rel-
evant statistics derived from population genetics theory under neutrality.
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The fixation index (Fst) was first developed by Sewall Wright Wright [1949]
in 1949 to describe randomly drawn alleles in one population as compared
to the total sampled population. There have been many adaptations to this
but the Weir & Cockerham (WC) Fst Weir and Cockerham [1984] is the
most commonly used today and describes the total population as the most
recent ancestral population. The WC Fst is a parameter describing the evo-
lutionary process of drift rather than a statistic of observed samples and
assumes equal drift across populations. When the Fst for each population is
different the WC estimator becomes a function of the ratio of sample sizes
between them rather than true divergence. Further WC Fst suffers from the
‘star phylogeny’ assumption in that all populations independently descended
from the same ancestor. Weir & Hill adapted the WC Fst to estimate pop-
ulation specific values and Hudson et al. adapted this to estimate the Fst

between populations in 1992 Hudson et al. [1992], Selander and Hudson
[1976], Holsinger and Weir [2009]. Hudsons Fst is more robust to variable
sample sizes and variable Fst values across populations Bhatia et al. [2013].
Simply Hudsons Fst can be described by Weir & Hills single population Fst

estimate.

E[psi |psanc] = psanc

V ar(psi |psanc) = F i
ST · psanc(1− psanc)

(1)

where psi is the allele frequency in population i at SNP s, and psanc is the
frequency of the same allele at that SNP s in the ancestral population and F i

st

is the population-specific Fst for population i. Hudsons estimate combines
these to estimate the Fst for a pair of populations to be

Fst =
F 1
st + F 2

st

2
(2)

where F 1
st is population 1 and F 2

st is population 2.

2.2 Inference Strategy Overview

2.2.1 Simulator

We used msprimeKelleher and Lohse [2020], Nelson et al. [2020], Baumdicker
et al. [2022] as the simulator in this framework. msprime is a software pack-
age which simulates the coalescent process for thousands of genomes. It
can incorporate recombination, mutation, and migration between demes. It
outputs phylogenetic trees representing the population, onto which muta-
tions can be imputed and summary statistics calculated. These summary
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statistics are then compared to summary statistics from the real data. The
coalescent simulation requires specific parameters. For the two deme model
we included geographic demes A and B and initial population size for each
deme (PA, PB). The sample sizes drawn from each population (sampA,
sampB) are included as parameters and crucially, we include the inferrable
parameters for the migration rates asymmetrically from deme A to deme
B(migA,B), and the inverse (migB,A). We also include a mutation rate (θ).
We specified these parameters scaling the mutation rate to the length of
genome we input and down-sampled the true population sizes from each
country for computational efficiency. We included the infinite sites model
in this framework which rather than allowing only a finite number of mu-
tations per-site allows an infinite number across continuous space whereby
no site mutates twice Kimura [1969], Ma et al. [2008] (Table 1). We employ
replicates, both for the simulator and the real-data, to reduce variability
around the summary statistic estimate (Table 1).

2.2.2 Parameter Inference Algorithm

LFI methods such as ABC were originally developed to do statistical infer-
ence with a very large number of synthetic observations from the simulator,
rejecting non-conforming observations and keeping only observations close
the observed data Sisson et al. [2018]. However, with a complex process
involving multiple unknown parameters millions of simulations are often
necessary to infer the required parameter using the basic rejection algo-
rithm. A state-of-the-art ABC method such as the Bayesian Optimization
for Likelihood-Inference (BOLFI) algorithm employs active learning to re-
duce the required computer simulation multiple fold by focusing only on the
relevant parts of the parameter space. This can be done using a probabilistic
model such as a Gaussian Process to model the relationship of parameters
and the discrepancy between the observed data and synthetic data, and
seeking to minimize this Gutmann et al. [2016]. BOLFI provides us with
a surrogate likelihood function that we use in a Bayesian framework along
with the parameter prior distribution to obtain the posterior distribution.
In practice, a sample is drawn from the posterior using e.g. MCMC sampling
to calculate posterior means and other summarizing estimates.

2.2.3 Model Validation: Recapturing Simulated Data

Two Deme Model To validate this inference framework we first con-
ducted prior predictive analysis to determine the sensitivity of the sum-
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Table 1: Parameter summary for inference validation. Estimates
of true parameter values for the deme population size, mutation rate in
sites/per-year, whether there is a discrete genome, and sequence length for
left) truth and right) within inference validation msprime simulation frame-
work.
Parameters Truth Simulated Input

Deme Population Sizes

South Africa 60.04 M South Africa 6000
Malawi 19.65 M Malawi 2000
Kenya 54.99 M Kenya 5000
The Gambia 2.487 M The Gambia 1000

Mutation Rate (θ) 1.57E − 06 2.50E − 05
Discrete Genome True (finite sites model) False (infinite sites model)
Sequence Length 2 Mbp 500

Migration Rate ?
migab = 0.6
migba = 0.1

mary statistic, Fst, to a range of migration parameters. We maintained
initial populations sizes for A and B of 6000 and 2000 with 600 sampled
from each. Other parameters include a sequence length of 500, θ set to
2e−5, and 500 replicates. We divided the migration parameter by 5000 for
scaling (Figure 1A). We also evaluated the sensitivity of the Fst to other
parameters in the simulator framework including the initial and sampled
population sizes, and the mutation rate (Figure S1A-C). We input specific
asymmetric migration parameters (migA,B and migB,A) between two demes
(A and B) and attempted to recapture them using simulated data. For
our validation we again set the mutation rate to 2.5 · 10−5 , set the num-
ber of replicates to 500, sequence length of 500, sampA=600, sampB=600,
PA=6000, PB=2000, corresponding to the population sizes of each coun-
try as estimated from LandScan Rose et al. [2020](Table 1). We use the
infinite sites model by setting discrete genome to FALSE thus including
infinite possible SNP sites. We calculate the Fst for each simulation and use
9 quantiles at 0.1 increments across replicates for the summary statistic. We
use uniform priors migA,B ∼ Unif[L,U ] and migB,A ∼ Unif[L,U ] to calcu-
late the posterior distributions where L represents the lower bounds and U
represents the upper bounds. We input 0.6 and 0.1 for migA,B and migB,A

respectively(Figure 1B-C; red line, Figure S2) The estimated parameters for
migA,B and migB,A respectively were 0.207 [95% Confidence Intervals (CIs)
0.011-0.422] and 0.477 (95% CIs 0.164-0.721) (Figure 1B-C ; blue dashed
line, Figure S2).

We repeated this validation varying the initial population size of each
deme relative the true population size of each country(Table 1, Figure S2).
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There is co-linearity between the asymmetric parameters. The model is able
to resolve this and recapture the correct peak for each parameter.

Four Deme Model We validate a symmetric four deme model in which
the weight, not the direction of migration, is estimated between all four deme
pairs within one model. We conducted prior predictive analysis to determine
appropriate bounds for the uniform prior (Figure S3) and the impact of each
parameter on all other parameters. We found that the parameters were not
independent of each other and altering one migration parameter impacted
the Fst of another (Figure S3) implying that migration between two countries
may impact the migration estimates in a third or fourth additional country.
This relationship is expected due to the migration across all demes included
in the simulation which is inherent to our framework.

To validate the four deme model we input 6 migration parameters (migab =
2.5,migac = 2.5,migad = 2.5,migbc = 1.5,migbd = 1.5,migcd = 0.5) and
were able to recapture them within the symmetric model. The true mi-
gration parameter is indicated by the red vertical line while the estimated
median parameter is indicated by the blue-dashed vertical line. The input
population sizes for each of the demes scale to the true population size and
are indicated in Figure S4. All other parameters are consistent with those
described in Section ’Two Deme Model’ however only a single migration
parameter is input for each deme pair.

2.3 Application to a Pneumococcal Dataset

2.3.1 Isolate Culture and Sequencing

We included pneumococcal genomes from four Sub-Saharan African coun-
tries including South Africa (N=6919), The Gambia (N=3090), Malawi
(N=1612), and Kenya (N=961) from the GPS Project in our initial dataset
GPS et al. [2022](Figure 2A, Table 5). The isolates were collected between
1990 and 2014 (Figure 2B), comprised 360 GPSCs and 83 different serotypes,
and were randomly selected for sequencing (Figure 2C). ‘Country’ will be
used interchangeably with ‘Deme’ throughout this manuscript. We will also
interchangeably use ‘GPSC’ and ‘lineage’.

We calculated the relative risk of GPSC similarity by country as per the
method described in Belman et al. 2023 Belman et al. [2023]. To determine
whether there are distinct GPSCs circulating in each country we calculated
the risk that a pair of isolates sampled from the same country would be the
same GPSC as compared to a pair of isolates selected from each country
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Figure 1: Recapturing input migration parameters with a 2 Deme
model. A) Prior predictive analysis testing the sensitivity of our summary
statistic, the fixation index, to our parameter estimates for each parameter in
an asymmetric model. Initial populations sizes for A and B of 6000 and 2000
with 600 sampled from each. Other parameters include a sequence length of
500, θ set to 2e-5, and 500 replicates. The migration parameter is divided by
5000 for scaling. B) The overlapping posterior density migration parameter
estimates for migration parameter ‘migab’ — from a population A (initial
population size 6000) to population B (initial population size 2000) and
‘migba’ from population B to population A. The ‘true’ input parameters were
migab=0.1 andmigba=0.6. C) The posterior densities visualized individually
for each parameter (grey), the true input parameter is indicated by the red
vertical line while the median posterior estimate is indicated by the blue
dashed line.
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and another country (Figure 2D). There was a 2.02 (95%CIs 1.23-2.23) fold
increased risk of a pair being the same GPSC when from the same country
as compared to pairs from different countries indicating that there were
distinct GPSCs circulating in each.

These pneumococcal isolates were selectively cultured on BD Trypticase
Soy Agar II with 5% sheep blood (Beckton Dickinson, Heidelberg, Germany)
and incubated overnight at 37°C in 5% CO2. Genomic DNA was then
extracted manually using a modified QIAamp DNA Mini Kit (QIAGEN,
Inc., Valencia, CA) protocol. As part of GPS, pneumococcal isolates were
whole-genome sequenced on the Illumina HiSeq platform to produce paired-
end reads with an average of 100-125 bases in length and data were deposited
in the European Nucleotide Database. Whole genome sequence data was
processed as previously described Gladstone et al. [2019].

To control for population structure, and be sure the parameters we were
estimating were not just due to lineage diversity in each country, we included
only GPSCs which are at greater than 2% prevalence overall in the popula-
tion (11 GPSCs), we then limited to only those with isolates present in each
of the four countries (7 GPSCs), and finally we restricted based on those
GPSCs which comprised >1% of the remaining number of isolates in each
country. Ultimately we included 6 ‘Dominant GPSCs’ (GPSC2, GPSC5,
GPSC8, GPSC10, GPSC22, and GPSC26) which included a total of 2746
genomes.

2.3.2 Neutral Gene Selection

We selected genes which are less impacted by evolutionary selection pro-
cesses due to their less than 0.1 median IgG binding affinity, and ‘non-
antibody binding’ status in Croucher et al. 2017 Croucher et al. [2017]. The
selected genes are present with at least a 99% frequency across our dataset.
Across the whole dataset we included two groups of ‘neutral’ genes: 1) a
subset of 341 genes which were non-ABT, and 2) 84 genes which had <0.1
median IgG binding affinity and were non-ABT. For the by-GPSC anal-
ysis we selected 81 and 355 ‘neutral’ genes which were core across all six
Dominant GPSCs and fit the same criteria as above.

2.3.3 Pairwise Distances Between Genes

We built genome alignments for the previously described sets of genes utiliz-
ing a combination of Panaroo Tonkin-Hill et al. [2020] and BioPython Chap-
man and Chang [2000]. We calculated pairwise distances from every genomes
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to every other genomes using both Hamming (Figure S5A) Hamming [1950]
and Jaccard distances (Figure S5B) Murphy [1996], Jaccard [1912] grouping
the genomes by isolation country. If there were distinct, qualitative differ-
ences between countries one would expect clear divergent blocks of similarity
(lighter color) along the diagonal of the pairwise distance plots. We used
scikit-allel Miles et al. [2021] for all pairwise distance calculations.

At the population level (N=12582) the homogenous color across both
Jaccard, and Hamming distance plots is representative of mixed populations
across the countries. Despite the 2-times higher probability of a pair being
the same GPSC when from the same country as compared to pairs from
different countries there are still many similar GPSCs between them (Figure
S5).

2.3.4 Controlling Population Structure

GPSC Level To control for population structure we interrogated each
Dominant GPSC (N=2746), for the pairwise distances between genes across
countries. We only included genes which were present in all four countries
and across the Dominant GPSCs (N=81: non-ABT & <0.1 IgG Binding;
N=355: non-ABT). The 81 selected genes had a median gene length of 555
bp (95% CIs 207-1809)(Figure S6).
We grouped the alignments by country to see if there were qualitatively dis-
tinguishable differences within versus between country. Again we calculated
Hamming distances for 81 and 355 (Figure S7) genes. We repeated this us-
ing Jaccard distances for both gene sets (Figure S8). Jaccard and Hamming
distances resulted in similar patterns.

Linked SNP Sites Co-selected sites may exacerbate the signal within
countries due to recombination, and thus mask the migration signal between
countries. To exclude co-selected sites we calculated the mutual informa-
tion score (MI) across the concatenated neutral genes both overall and for
each GPSC. We visualized these using SpydrPick Pensar et al. [2019] to
understand the relationship across all 81 genes bi-allelic SNP sites (Table 2,
Figure S9). The majority of sites with high, direct MI scores were within
1kb of each other. GPSC2 and GPSC8 have high linkage across many nu-
cleotide distances which span selected genes. These are invasive lineages
and undergo less recombination than other lineages. This is demonstrated
by each only comprising a single PCV13-type serotype, serotypes 1 and 5
respectively. You can explore each lineage phylogeny at the Microreact web
server (Table 4).
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Given the distribution of gene length when the distance between SNP
sites exceeds approximately 1.8kb the sites are separated by more than one
gene length (Figure S6) resulting in ultimately fewer genes being included.

We controlled for co-selection between SNPs with a strict correlation
threshold minimum of 0.05 r2 and a more flexible minimum correlation of 0.5
r2. We used bcftools +prune to remove all SNPs with an r2 greater than
the threshold within a 1kb upstream window and repeated our two deme
migration analysis for each GPSC between South Africa and Malawi (Table
2). A 1kb window encompasses the entire length of the majority of genes
included (Figure S6). We proceeded with the 0.5 relatedness threshold as
it excluded fewer SNP sites but maintained similar estimates as the stricter
threshold(Figure S10).

Table 2: Biallelic SNP count for each GPSC. Including total number of
biallelic SNPs, total excluding all within a 1kb window upstream with an
r2 > 0.5, and total excluding all within a 1kb window upstream with an
r2 > 0.05.

GPSC Total SNPs Excluding 0.5 Threshold Excluding 0.05 Threshold

2 968 214 171
5 1745 336 161
8 580 78 62
10 1221 176 104
22 1469 294 132
26 543 92 60

2.3.5 Fixation Index

To quantify the divergence between each location we then calculated Fst

overall and by GPSC using tskit Baumdicker et al. [2022], Kelleher and
Lohse [2020], Nelson et al. [2020]. We compared the SNP Fst between Weir-
Cockerham and Hudsons Fst using tskit within the coalescent simulation
software msprime Kelleher et al. [2016], Nelson et al. [2020], Baumdicker
et al. [2022]. The Hudson’s Fst is calculated in tskit:

Fst =
1− 2 · (d(X) + d(Y ))

(2 · d(X,Y ) + d(X) + d(Y ))
(3)

where X and Y and d(X) and d(Y ) are the populations and diversity of
those populations respectively and d(X,Y ) is the shared diversity of both
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populations. A higher Fst corresponds to a more divergent, separate pop-
ulation, while a lower Fst corresponds to a more highly mixing population,
also known as panmictic.

We compare the Fst estimates from Weir & Cockerham and Hudson and
find them to be largely linear with some over-estimates by WC. Due to
the uneven sample sizes of our populations we proceed with the Hudson’s
estimate (Figure S11).

We calculate the Fst across all genomes between each of the four demes
for each GPSC. We repeat this including 81 neutral genes, 355 neutral genes,
and the pbp genes as a control for selection (Figure S12). We find variable
estimates both across GPSCs and between countries. Notably GPSC2 and
GPSC8 have higher estimates overall than the rest of the GPSCs in both
the 81 and 355 gene comparisons (Figure S12A-B). We included the pbp
genes as these genes confer resistance to β-lactams and are under significant
selective pressure. Given variable selective pressures across countries they
would be expected to have different cross-country diversity patterns than
our ’neutral’ selected genes. We do see differences between the pbp gene
divergence as compared to the divergence patterns we see when including
the ’neutral’ genes. This is reassuring as we expect a different pattern as a
result of AMR selection. The Fst for the 355 genes was less informative with
regards to the different populations. Hereafter we only include the 81 gene
analysis by GPSC. All analyses and visualizations was conducted in Python
v3.9.13 and R v3.6.1.

2.4 Overall Between-Country Migration Risk

While the above framework identifies migration parameters when migration
occurs, it does not account for the actual probability of movement between
countries as compared to movement within a country. To address this we
applied a simple relative risk framework incorporating divergence time be-
tween genome pairs. We included those most prevalent GPSCs across the
dataset GPSC2 (N=904), GPSC5 (N=473), GPSC10 (N=306). We created
reference genomes for each GPSC using ABACAS to order the contiguous
sequences (contigs) from a representative of each GPSC mapped to Strep-
tococcus pneumoniae (strain ATCC 700669/Spain 23F-1) [EMBL accession:
FM211187]. Any contigs which did not align were concatenated to the end.
We multiply mapped all genomes from each GPSC against these references
respectively using a custom mapping, variant calling, and local realignment
around indels pipeline using bwa-MEM Li and Durbin [2009] and samtools

mpileup Li et al. [2009]. We built trees masking recombination regions using
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Gubbins Croucher et al. [2015] with RAxML Stamatakis [2014] and a general
time reversible (GTR) evolutionary model. We converted branch length to
time using BactDating with a mixed gamma, relaxed clock model Didelot
et al. [2018].

We compare the location (loc) and label (G) (genetic similarity) of pairs
of sequences (i,j ) that were collected around the same time (t). This ap-
proach has been shown to be robust to substantial biases in timing and
location of isolate collection. To determine at what divergence time it be-
came equally likely that a pair of genomes were within the same country as
between different countries, for each country, we constructed pairwise matri-
ces comparing every isolate to every other isolate (N Pairs=1683). We then
determined the proportion of genomes at each divergence time across rolling
10-year time windows within a country as between countries. Dividing the
proportion which are within the same country by the proportion between
countries gives the relative risk.

In this case the numerator contains the ratio of pairs which are at each
divergence time, collected within 10 years of each other t, from the same
country loc, over the total number of pairs collected within 10 years of each
other t ≤ 10years from the same country. The denominator is the ratio of
pairs which are within each divergence time G, collected within 10 years of
each other, from different countries (Lref ) over the total number of pairs
collected within 10 years of each other from different countries. Geographic
distances were calculated based on the centroid coordinates of each province
(Equation 4).

RRloc(g1, g2) =

n∑
i=1

n∑
j ̸=i

(loci=locj∩tij≤1 year∩Gi=Gj)
(loci=locj∩tij≤1 year)

I(Lrefn=Lrefn∩tn≤1 year∩Gi=Gj)
I(Lrefn=Lrefn∩tn≤1 year)

(4)

To quantify uncertainty, we used a bootstrapping approach where in
each bootstrap iteration we randomly sampled with replacement the isolates
before recalculating the statistic. We report the 2.5 and 97.5 percentiles from
the resulting distribution.

3 Results

3.1 Inference Strategy

In brief, to estimate between country migration parameters we developed a
framework which uses summary statistics to characterize a sampled pathogen
population and compares them to corresponding statistics from a simulated
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pathogen population under a given coalescent model. We use the Hudsons
fixation index (Fst) as the summary statistic in this model. We employ
several key pieces of software including msprime to simulate a coalescing
population, and the Engine for Likelihood-free Inference (ELFI) Lintusaari
et al. [2018] to compare the simulated populations with the observed pop-
ulation data. Broadly, our strategy falls under the Approximate Bayesian
Computation (ABC) paradigm Sisson et al. [2018].

Using this framework we develop two models for quantifying migration.
The two-deme model compares pairs of countries and determines the asym-
metric migration parameters between them (the amount of migration from
country A to country B and the reverse). The other model is a four-deme
model quantifying symmetric migration parameters between four countries,
encapsulated in six rate parameters.

3.2 Application to a Pneumococcal Dataset

We implement both of these models using genomes from the GPS project
(Figure 2A, Table 5) GPS et al. [2022]. We included GPSCs (also referred
to as lineages throughout this paper) representing pneumococcal between-
country variation in neutral genes and approximately un-linked SNP sites.
We included 12582 genomes for initial exploration but ultimately reduced
this to 6 ’Dominant GPSCs’(GPSC2, GPSC5, GPSC8, GPSC10, GPSC22,
and GPSC26) (N=2746 genomes) from South Africa, The Gambia, Malawi
and Kenya for the migration models.

Table 3: The number of genomes for each country and GPSC. In-
cluding only GPSCs which were >2% prevalence overall, present in all four
countries, and present at >1% prevalence in each country.

GPSC10 GPSC2 GPSC22 GPSC26 GPSC5 GPSC8 Total

South Africa 232 506 173 73 309 82 1376
Malawi 41 136 43 44 82 112 458

The Gambia 13 224 96 112 102 112 659
Kenya 32 82 55 25 51 9 254

The isolates were collected between 1990 and 2014 (Figure 2B), com-
prised 360 GPSCs and 83 different serotypes, and were randomly selected
for sequencing (Figure 2C). ‘Country’ will be used interchangeably with
‘Deme’ throughout this manuscript. We will also interchangeably use ‘GPSC’
and ‘lineage’ (Figure 2B-C, Table 3, Table 4).
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Table 4: Interactive phylogenetic trees for each GPSC presented in the web
server Microreact
GPSC Interactive phylogeny and metadata hosted on Microreact

2 https://microreact.org/project/tLVohqBZtahFoAAMrsWB4A-gpsc24deme

5 https://microreact.org/project/uVLaVuUCRPW8fLKr1S61dF-gpsc54deme

8 https://microreact.org/project/2b2xNTESVdmQusugCsa9jY-gpsc84deme

10 https://microreact.org/project/9eymwUcD9crgcBYzJx6Jr2-gpsc104deme

22 https://microreact.org/project/5yMWhhE7U196wLKaoikn2A-gpsc224deme

26 https://microreact.org/project/wRk3G3eopBrHoepur7RBMr-gpsc264deme

We included 81 ’neutral’ non-antibody binding type genes selected from
the pangenome wide immunological screen conducted by Croucher et al.
2017 Croucher et al. [2017]. These genes were core (minimum 99% preva-
lence) across each of the Dominant GPSCs. Further, we excluded linked
SNP sites with a greater than 0.5 r2 relatedness threshold. We explored the
Jaccard and Hamming distances between genomes for both the 81 and 355
genes and found clear boundaries between the country clusters with Ham-
ming distances ranging from 0-0.5. Some GPSCs had clear distinguishable
divergence between specific countries while other country pairs were very
similar by Hamming distance (Figure S7, Figure S8).
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Figure 2: Population composition of four demes. A) Map of isolation
location of pneumococcal genomes including South Africa (pink), Kenya
(green), The Gambia (purple), and Malawi (yellow). B) Bottom) The iso-
lates were collected from 1990-2014 and the total dataset included N=12582
isolates Top) subsetting by the ’Dominant GPSCs’ those spanning all four
demes and comprising >1% of the GPSCs in each country included six to-
tal GPSCs highlighted in C) which shows the proportion of total GPSCs
each GPSC comprised in each country. The dominant six are outlined in
a grey box. D) The relative risk of similarity within country as compared
to between countries at the lineage level for each country and the overall
risk of being the same GPSC from the same country compared to different
countries.
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3.3 Estimating the Weight and Direction of Migration for
Country Pairs

To determine the symmetry of migration across all four demes included in
this model (South Africa, The Gambia, Kenya, and Malawi) we considered
6 separate models, one for each GPSC, estimating the migration parameters
between deme pairs. We used a uniform prior with bounds corresponding to
the sensitivity of the simulation demonstrated in the Fst sensitivity analysis
(Figure 1A).

We implemented the two deme model to estimate migration parame-
ters between each pair of demes asymmetrically given the 81 concatenated
neutral genes with linked sites removed. We fit the model using BOLFI ap-
proximation and drew a posterior sample from it. We ran 3 independent
implementations. We successfully estimated 10 of the 12 asymmetric migra-
tion parameters for all deme pairs by GPSC (Figure S13, Figure S14, Table
S1). Parameter estimates for GPSC10 and GPSC26 between South Africa
and Kenya did not settle on a single migration parameter in either migration
direction due to the bimodal distribution of the posteriors and a co-linear
relationship between the parameters. A migration weight which was higher
from South Africa to Kenya than from Kenya to South Africa resulted in a
similar model as the reverse; as such the model was unable to resolve these
parameters (Figure S14). Resolving the peak which is ‘best’ is likely futile
in that both peaks are equally likely to be true (Figure S14).

To summarize and compare migration between demes across GPSCs We
divided the median posterior value by the maximum bound to find the prob-
ability of migration for each parameter. We then found the distribution of
migration probabilities for each deme where the confidence intervals repre-
sent the distribution of values across GPSCs (Figure 3A). The difference
between the estimates for each deme pair is the relative probability of mi-
gration. For example, the pneumococcal populations of South Africa and
Malawi are consistently better explained by 50% more migration from South
Africa to Malawi than the reverse, while the distribution between Malawi
and The Gambia is explained differently across GPSCs with on average more
migration from Malawi to The Gambia. The exception to this deme pair is
in GPSC2 where the reverse is true (more migration from The Gambia to
Malawi) (Figure 3B, Table S1).
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Figure 3: Migration parameters summary estimatesA)The scaled dis-
tribution of migration probabilities for each deme across GPSCs grouped by
deme pair and colored according to country of origin and shaped according
to destination. B) Migration parameters directional probability estimates
between each deme pair. Colored by the probability of migration between
each deme pair. where red is >50% migration probability and blue is <50%
migration probability.

3.3.1 Weight

To normalize the migration parameter estimates for each GPSC We found
the mean parameter estimate across all posterior samples for each GPSC
(miggpsc). We then calculated the relative migration parameter estimate
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by dividing each parameter by the GPSC specific parameter ( migab
miggpsc

). We
first group these by deme to determine if there are consistent deme-wise pat-
terns(Figure S15A) and then group them by GPSC to identify the differences
across demes (Figure S15B, Table S1).

3.3.2 Direction

We estimated the probability of directional migration for each GPSC and
deme pair by identifying the percentage of posterior migration parameter
estimates for migab which were greater than those for migba. We then
grouped these into high (≥ 0.6), medium (0.4 − 0.6), or low (≤ 0.4) mi-
gration probability. There were two migration patterns. Pattern one is
seen in GPSC26, GPSC22, GPSC10, and GPSC8 in which there was only
symmetric migration between Kenya and South Africa and asymmetric be-
tween all other deme pairs. (Figure 3B). Pattern two applied to GPSC5
and GPSC2 and included symmetric migration between Kenya and South
Africa as well as between Malawi and The Gambia, where all other pairs
had asymmetric migration patterns (Figure 3B). Across all GPSCs there
was a higher migration probability from Kenya to Malawi and Kenya to
The Gambia than from either of those to Kenya; and a higher migration
probability from South Africa to Malawi and South Africa to The Gambia
than from either of those to South Africa. Considering South Africa and
Kenya have the highest population sizes (60.04 Million and 54.99 Million
respectively in 2019) this implies that the higher the population size, its
relative contribution to between pair migration is likely to be higher (Table
1). For those GPSCs with migration pattern one we estimated a higher
migration probability from Malawi to The Gambia, again in line with this
hypothesis (Table S1). The consistent directional patterns between GPSCs
from independent models is reassuring and helps to validate our framework.

3.3.3 Demographic Contribution to Migration

Using the raw parameter estimates from all two-deme asymmetric models
we interrogated whether the origin population size (α), the destination pop-
ulation size (β), or the distance between deme pairs at the centroid (km) (γ),
had a larger contribution to the migration parameter estimates (θ). We fit-
ted four logistic models, one for each parameter, and one model including all
three parameters (Equation 5, Equation 6, Equation 7, Equation 8). In the
model encompassing all three parameters a greater destination population
size was significantly associated with the parameter estimate (p = 1.07e−06),
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while the origin population size (p = 0.606), and distance (p = 0.877) were
not associated (AIC=150.13)(Equation 5).

glm(θ ∼ α+ β + γ) (5)

In both the overall model (Equation 5) and the individual model (Equa-
tion 7) a greater destination population size was again significantly as-
sociated with a smaller migration parameter (Overall: Coefficient -0.021,
p = 1.07e−06, AIC=150.13; Individual: Coefficient=-0.021,p = 1.02e−08,
AIC=146.66). The distance between countries was marginally associated
(Coefficient 1.014e-04, p = 0.0354; AIC=176.05), but surprisingly in that
a larger distance resulted in a higher migration parameter. This is largely
driven by GPSC26 where the highest migration parameters are associated
with The Gambia which is the most distant country from Kenya, Malawi,
and South Africa. Due to the low sample size and limited distances ex-
plored the association between migration and distance is not robust or gen-
eralisable. In none of the models was the population size of the origin
significantly associated with the migration parameter estimate (p = 0.232;
AIC=179.16)(Figure S18). To be clear this applies specifically to these four
countries and is an oversimplification of reality due to the discrete number
of distances between the four countries explored in these migration models.
However, in summary, the raw migration parameter estimates are negatively
correlated with an increasing destination population size. This is sensible
when placed alongside directional probability estimates whereby the higher
population size is more likely to be the source of migration. Taken together
for these GPSCs migrating between South Africa, Malawi, The Gambia, and
Kenya this implies that the most migration is from large origin population
sizes to smaller destinations.

glm(θ ∼ α) (6)

glm(θ ∼ β) (7)

glm(θ ∼ γ) (8)

3.4 Estimating the Weight of Migration Across Four Coun-
tries

3.4.1 Overview

We estimated symmetric migration parameters between four demes (6 mi-
gration parameters)(Figure S16). We expanded our prior to estimate pa-
rameters between the bound of 0 and 5 in line with the prior predictive
analysis (Figure S3).
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Figure 4: Migration parameter estimates for each GPSC. Migration
paths weighted by the relative migration rate for each deme pair within each
GPSC. The nodes are colored as follows: South Africa is represented in pink,
Malawi in yellow, Kenya in Green, and The Gambia in purple.

3.4.2 Weights

To normalize the migration parameter estimates within each GPSCs we
repeated the same method described in Section ’Weight’. For GPSC2 and
GPSC5 migration between The Gambia and Malawi exceeded all other deme
pairs in line with what was seen in the 2 deme model. For GPSC8 the same
pattern extended however migration between South Africa and Kenya fol-
lowed closely behind. For GPSC26 migration between Kenya and South
Africa was dominant with migration between The Gambia and Malawi be-
ing second highest. For GPSC10 migration between South Africa and the
Gambia exceeded all other pairs and for GPSC22 migration between Kenya
and The Gambia, and South Africa and The Gambia were lowest while all
other deme pairs were similar (Figure 4, Table S2). In a generalized linear
model there is no association between the distance between demes (Equa-
tion 8). However, when comparing the relative population size between deme
pairs to the migration parameter estimates there is a significant association
(Coefficient=-0.027, p = 0.00324; AIC=101.13) in that as the relative pop-
ulation size increases between demes there is less migration between them.
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3.5 Between-country migration probability

While here we are able to identify migration parameters when migration
occurs we do not account for how often migration may occur but within the
same country, or not occur at all. To address this we used a risk ratio frame-
work to investigate the risk of similarity across geographic distance Belman
et al. [2023], Salje et al. [2017], Lefrancq et al. [2022]. We found that after 43
years of spread pairs are equally likely to be in Kenya as between Kenya and
another country with an RR of 2.55 (95%CIs 0.42-8.19), for South Africa
this is 55 years with a RR=1.55 (95% CIs 0.75-6.63), for The Gambia it is
after 53 years of spread; RR=1.82 (95% CIs 0.82-3.36), and for Malawi this
is after 55 years of spread; RR=2.20 (95%CIs 0.35-4.92)(Figure 5).

Table 5: Country summary for between-deme migration analysis.
Description of the four countries between which we estimated migration in-
cluding number from each country, years of vaccine introduction and dosing
schedule, the proportion of the dataset for each country which comprised
NVTs and the percent of isolates from each country which were from chil-
dren <5.
Country N Vaccine Dosing %NVT %Children

Introduction Schedule <5

South Africa 6919
PCV7: 2009
PCV13: 2011

2+1 31.91 65.2

The Gambia 3090
PCV7: 2009
PCV13: 2011

3+0 56.70 46.4

Malawi 1612 PCV13: 2011 3+0 42.68 49.6
Kenya 961 PCV10: 2011 3+0 53.28 80.3

3.6 Discussion

Our modeling framework utilizes genomic data and population summary
statistics to infer migration parameters between demes that can best repli-
cate the extant population distribution. We were able to successfully val-
idate the method using simulated data both estimating the direction of
migration between demes in the two-deme model, as well as the weight of
migration across four demes. Interestingly, we detected some heterogeneity
in migration rates across different lineages. The baseline expectation is that
considerable variation would not exist between GPSCs. The similarity in
migration between invasive and non-invasive lineages may imply, as found
in Tonkin-Hill et al. Tonkin-Hill et al. [2022] that although the invasive
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Figure 5: Out-of-country migration probability. The risk of pairs
within divergence times across rolling 10-year time windows of being found
within the same country as between each country and every other country
for Kenya (green), South Africa (pink), The Gambia (purple), and Malawi
(yellow). A dashed red line indicates a relative risk=1 while a vertical dashed
line for each plot denotes the tMRCA at which the relative risk crosses 1.
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lineages are not frequently found in carriage, they may persist at low popu-
lation frequencies allowing them to be transmitted across borders in similar
patterns (Figure S17).

We also find country-pair specific migration patterns which are in line
with the source country usually being that with the greater population size
when inferring directionality. However, when determining the demographic
factor (population size of origin or destination and distance between them)
with the greatest contribution to migration we found that the destination
population size was more important.

Some limitations to this method include our inability to include the
true carriage population sizes and true genome length within the simulation
framework. As such, it is impossible to contextualize the migration parame-
ters within the context of time, however, their relative relationship remains
useful nevertheless. Further, as we use the population sizes for each deme
in accordance with the true population sizes of those countries, some bias
may be introduced since the pneumococcal carriage rate is known to vary by
both country and human population. The age structure of each deme may
consequently influence the true carriage rate in that a deme with a larger
child population relative to the adult population may have more carriage
overall, while simultaneously, a population with more children is unlikely
to be as mobile as an adult population. Resolving this would require more
demographic interrogation of pneumococcal carriage and human mobility
in these regions. Our framework could also be applied on a smaller spatial
scale where more granular data exists about the underlying carriage rates,
and migration between regions, provinces, or states could consequently be
inferred with better precision. Additionally, the ability for the migrating
bacteria to take hold in a country depends on previous pathogen spread as
well as vaccine campaign implementation.

Future implementations of our models could for example include param-
eter estimates for the population size of each deme, and incorporation of
vaccine coverage and future immunity. Alternatively, the migration param-
eters could be incorporated into independent migration simulation frame-
works which account for population immunity and other covariates. Human
mobility data could in theory be used but currently (September 2023) repre-
sentative between country human-mobility data remains sparse. Meta pro-
vides travel data between-countries but these are dominated by high income
countries. Of the four demes included in our framework only South Africa
is present within the Meta datasets from 01/2021-04/2023. Interrogating
openflights (https://openflights.org/data.html) between-country data
for these four countries only provides sparse data for Kenya and Malawi,
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and no data for The Gambia. The majority of flights within Africa are
not taken directly, they often include many stopovers which would further
complicate the use of such data. Further, flight data would only represent a
small subset of possible movements and in low-income countries it is largely
reflecting tourism, while not accounting for the movement of the majority of
the population Gössling and Humpe [2020], Findlater and Bogoch [2018].

Estimates of migration rates such as those produced as part of this study
could be informative for vaccine implementation policy. If there is more mi-
gration from deme A to B, implementing the vaccine first in deme A may
have spillover effects into deme B, allowing such interventions to have an
effect beyond country borders. Some possibilities for further development
of our framework include incorporating additional countries, and inferring
correlation between GPSC-specific migration patterns and classes of mobil-
ity such as flights compared to roads; or adults compared to children. This
will help us to understand what types of mobility best explain the estimated
migration parameters. Provided rich data from genomics-based surveillance
systems, the current approach would also be applicable to multiple other
species of bacteria.

4 Data availability

The code and data associated with this paper are available at https://

github.com/sophbel/LFI_between_country_migration/tree/main.
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A Supplementary Figures

Figure S1: Sensitivity of the Fst value to simulation parameters
fixed at a sequence length of 100. A) Initial population size fixing the
alternate population size at 500 and the migration parameter at 2, sam-
pling 100 from each. B) Sampled population size with a fixed migration
parameter of 2, the sample size for the alternate population fixed at 500 and
initial population parameters for A and B at 600 and 200 respectively. C)
θ parameter (mutation rate) with a fixed migration parameter of 2, initial
population sizes of A and B 600 and 200 respectively, sampling 100.
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Figure S2: Recapturing input migration parameters with a 2 Deme
model. A) The overlapping posterior density migration parameter esti-
mates for migration parameter 1 — from a population [a− d] to population
[a−d] B) and the inverse. The ’true’ input parameters were miga−d=0.1 and
miga−d=0.6. The posterior densities were estimated with a uniform prior
and are visualized independently for each parameter (light blue), the true
input parameter is indicated by the red vertical line while the median pos-
terior estimate is indicated by the blue dashed line. Deme A=South Africa,
initial population size 6000; Deme B=Malawi, initial population size 2000;
Deme C=Kenya, initial population size 500; and Deme D=The Gambia,
initial population size 1000.
*Used no-uturn (nuts) sampling rather than metropolis sampling for migbc
and migcb due to difficulty converging.36
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Figure S3: The response of the fixation index to varied migration
parameters. Each plot indicates which migration parameter We varied
and the Fst between the countries for each of those migration parameters is
indicated by the colored lines.
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Figure S4: Recapturing migration parameters in the 4 deme model.
The True Migration parameter is indicated by the red vertical line while the
estimated median parameter is indicated by the blue-dashed vertical line.
The posterior distribution density is represented by the blue histograms for
each deme pair indicated by the title where a=South Africa, b=Malawi,
c=Kenya, and d=The Gambia. The input population sizes for each of these
scale to the true population size and are indicated in the figure.
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Figure S5: Pairwise distance estimates for between-country
genomes across all 12,582 genome pairs from South Africa, Malawi, Kenya,
and The Gambia, clustered in that order by A) Hamming distance and B)
Jaccard Distance.
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Figure S6: Histogram of gene length for each of the 81 neutral
genes.
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Figure S7: Pairwise Hamming distances across all genomes from
each of the four demes (organized in the order of South Africa,
Malawi, The Gambia, Kenya) for each GPSC in turn.These only include
biallelic SNP sites. A) Includes 81 ‘neutral’ genes. B)Includes 355 ‘neutral’
genes.
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Figure S8: Pairwise Jaccard distances across all genomes from each
of the four demes (organized in the order of South Africa, Malawi,
The Gambia, Kenya) for each GPSC in turn. A) includes 81 ‘neutral’
genes, B) includes 355 ‘neutral’ genes. These only include biallelic SNP
sites.
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Figure S9: Mutual Information Scores between SNP pairs across 81 ’neutral’
gene alignments for each of the GPSCs. The vertical dashed line indicates
the 1kb cutoff under which removed correlated sites. The horizontal dashed
line indicates the 0.2 mutual information score cutoff which has been used
previously for the pneumococcus.

Figure S10: Estimated migration parameters removing correlated
sites, including migab on the left and migba on the right. Excluding all
within a 1kb window upstream with an r2 > 0.5 (triangle), excluding all
within a 1kb window upstream with an r2 > 0.05 (square), and retaining all
sites (circle). The error bars indicate 95% CIs and each GPSC is along the
x-axis. Initial population sizes were for South Africa (deme A) and Malawi
(deme B).
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Figure S11: Pairwise comparison between the Hudson and Weir-
Cockerham Fst values across all four demes. In total this includes six
comparisons, one between each deme and every other deme.
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Figure S12: Hudsons Fst across all genomes between each of the four
demes for each GPSC. A) calculated from 81 genes, B) from 355 genes,
and C) only including the PBP genes (which are likely under selection in
each place due to their interaction with penicillin-resistance acquisition). A
higher Fst is a more divergent, separate population, while a lower Fst is a
more highly mixing population, also known as panmictic.
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Figure S13: Convergence of asymmetric 2 deme parameter models.
A) The effective sample size (ESS) across all parameters estimated. ESS
<100 is indicated in red. B) The posterior density of parameter estimates
between South Africa and Kenya for GPSC10. These were unable to con-
verge due to the high co-linearity between them.
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Figure S14: The posterior parameter distributions across 3 independent runs
of 4 chains each across the 6 dominant GPSCs (columns) and 12 parameter
estimates (rows).
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Figure S15: Relative migration parameters asymmetrically between
two deme pairs. Relative migration for each deme pair within each GPSC
independently. The x-axis indicated the deme and they are grouped by
GPSC. The origin location of South Africa is represented in pink, Malawi
in yellow, Kenya in Green, and The Gambia in purple.
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Figure S16: Posterior distributions for 6 parameter estimates for each GPSC,
colored by parameter.
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Figure S17: Summary of each GPSC migration parameters A) The
directional probability from the 2 deme model for each GPSC whereby red=
>0.6, blue = 0.4-0.6, and grey = 0.1-0.4 probability of migration asymmet-
rically for each deme pair. The Node colors are described in the legend. B)
The weighted migration from the 4 deme model between all 4 demes. The
node colors are the same as A. C) The relative migration probability for
each GPSC across all demes. The Origin country is colored the same as A
and B and the Destination country is indicated in the legend.
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Figure S18: The population sizes and distance between countries
versus migration parameter estimates. All plots include the migration
parameter estimates (y-axis) against either distance between countries or the
population size of the countries (x-axis). The left plot includes the distance
between migration parameter demes (grey, triangles) and the right plot in-
cludes the population size of the origin (blue) or the destination (green).
The models associated with each figure are included in lines of the same
color.

B Supplementary Tables
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Table S1: Parameter estimates across all pairs within the two deme model.
Values within the square brackets denote the 95% confidence intervals. The ’Parameter’ is
the raw migration parameter estimate while the ’Relative Parameter’ is relative to all other
deme pairs within each GPSC. The ’Directional Migration Probability’ is the probability
of migration asymmetrically for each GPSC and each deme pair (ie for sa−mal, GPSC10
there is 0.667 probability of migration while for mal − sa there is (1− 0.667) probability
of migration.)

Deme GPSC Parameter Relative Parameter Directional Mi-
gration Proba-
bility

ESS

sa mal 10 1.542[1.365-1.747] 1.451[1.285-1.644] 0.667 13594.51
sa mal 2 1.352[1.184-1.549] 1.843[1.614-2.111] 0.667 10837.93
sa mal 22 0.923[0.787-1.084] 2.215[1.888-2.602] 0.666 12514.85
sa mal 26 1.033[0.9-1.195] 1.683[1.467-1.947] 0.667 15763.81
sa mal 5 1.851[1.655-2.075] 2.286[2.044-2.562] 0.667 11029.98
sa mal 8 0.927[0.8-1.082] 2.492[2.151-2.908] 0.667 21707.4
sa ken 10 1.211[0.007-1.472] 1.14[0.007-1.385] 0.507 50.63545
sa ken 2 0.462[0.004-0.599] 0.629[0.006-0.816] 0.411 982.8784
sa ken 22 0.659[0.006-0.829] 1.581[0.015-1.99] 0.496 145.9672
sa ken 26 0.507[0.005-0.657] 0.827[0.008-1.07] 0.479 80.22054
sa ken 5 0.902[0.016-1.075] 1.114[0.02-1.328] 0.577 113.1349
sa ken 8 0.286[0.002-0.372] 0.77[0.005-1.001] 0.424 247.5898
sa gam 10 0.547[0.399-0.665] 0.515[0.375-0.626] 0.627 6574.967
sa gam 2 1.142[0.993-1.315] 1.557[1.354-1.792] 0.667 24110.21
sa gam 22 0.807[0.684-0.951] 1.938[1.642-2.283] 0.665 23602.96
sa gam 26 2.953[2.808-2.998] 4.814[4.578-4.887] 0.64 10354.19
sa gam 5 1.292[1.146-1.464] 1.595[1.415-1.808] 0.667 21663.93
sa gam 8 0.807[0.684-0.953] 2.17[1.839-2.561] 0.664 18415.62
mal ken 10 0.066[0.003-0.294] 0.062[0.002-0.276] 0 12223.04
mal ken 2 0.064[0.002-0.308] 0.088[0.003-0.42] 0 10179.53
mal ken 22 0.068[0.002-0.686] 0.162[0.005-1.647] 0.024 615.344
mal ken 26 0.08[0.003-0.75] 0.131[0.005-1.222] 0.021 1909.27
mal ken 5 0.063[0.002-0.285] 0.077[0.003-0.352] 0 11555.99
mal ken 8 0.069[0.003-0.624] 0.185[0.007-1.679] 0.097 826.4831
mal gam 10 1.144[0.139-1.384] 1.077[0.131-1.302] 0.638 514.1442
mal gam 2 2.878[2.51-2.995] 3.921[3.419-4.081] 0.454 6888.511
mal gam 22 1.53[1.296-1.807] 3.672[3.111-4.338] 0.666 5317.546
mal gam 26 2.518[2.184-2.907] 4.105[3.559-4.738] 0.667 6652.609
mal gam 5 2.846[2.21-2.994] 3.515[2.729-3.698] 0.529 1395.229
mal gam 8 2.224[1.943-2.565] 5.978[5.223-6.896] 0.667 9834.932
gam ken 10 0.146[0.006-0.785] 0.137[0.005-0.739] 0.047 6380.046
gam ken 2 0.103[0.004-0.506] 0.14[0.005-0.689] 0.002 9089.028
gam ken 22 0.101[0.004-0.609] 0.241[0.009-1.461] 0.048 5777.879
gam ken 26 0.109[0.004-0.526] 0.178[0.007-0.857] 0.011 8371.036
gam ken 5 0.099[0.004-0.426] 0.123[0.005-0.526] 0 12688.59
gam ken 8 0.096[0.003-0.559] 0.259[0.009-1.503] 0.005 5378.5
mal sa 10 0.127[0.004-1.702] 0.119[0.004-1.602] 0.333 13594.51
mal sa 2 0.131[0.004-1.483] 0.178[0.006-2.02] 0.333 10837.93
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Table S1 – continued from previous page

Deme GPSC Parameter Relative Parameter Directional Mi-
gration Proba-
bility

ESS

mal sa 22 0.127[0.004-1.044] 0.305[0.009-2.507] 0.334 12514.85
mal sa 26 0.131[0.004-1.141] 0.213[0.007-1.861] 0.333 15763.81
mal sa 5 0.13[0.004-2.032] 0.161[0.005-2.509] 0.333 11029.98
mal sa 8 0.121[0.004-1.049] 0.324[0.01-2.82] 0.333 21707.4
ken sa 10 0.133[0.004-1.505] 0.125[0.003-1.416] 0.493 50.63545
ken sa 2 0.397[0.002-0.616] 0.541[0.003-0.839] 0.589 982.8784
ken sa 22 0.115[0.003-0.846] 0.275[0.006-2.03] 0.504 145.9672
ken sa 26 0.092[0.002-0.664] 0.15[0.003-1.082] 0.521 80.22054
ken sa 5 0.084[0.002-1.082] 0.104[0.003-1.336] 0.423 113.1349
ken sa 8 0.13[0.002-0.385] 0.348[0.005-1.036] 0.576 247.5898
gam sa 10 0.259[0.004-0.65] 0.244[0.004-0.611] 0.373 6574.967
gam sa 2 0.171[0.005-1.273] 0.233[0.007-1.734] 0.333 24110.21
gam sa 22 0.203[0.006-0.919] 0.487[0.014-2.206] 0.335 23602.96
gam sa 26 2.374[0.053-2.995] 3.869[0.086-4.882] 0.36 10354.19
gam sa 5 0.164[0.005-1.411] 0.202[0.006-1.743] 0.333 21663.93
gam sa 8 0.185[0.005-0.905] 0.498[0.013-2.434] 0.336 18415.62
ken mal 10 1.588[0.008-1.865] 1.494[0.007-1.755] 1 12223.04
ken mal 2 1.054[0.007-1.28] 1.436[0.01-1.744] 1 10179.53
ken mal 22 0.537[0.012-0.713] 1.289[0.028-1.712] 0.976 615.344
ken mal 26 0.645[0.009-0.835] 1.052[0.014-1.362] 0.979 1909.27
ken mal 5 1.534[0.008-1.816] 1.894[0.01-2.242] 1 11555.99
ken mal 8 0.361[0.005-0.56] 0.969[0.013-1.505] 0.903 826.4831
gam mal 10 0.241[0.007-1.408] 0.227[0.007-1.325] 0.362 514.1442
gam mal 2 2.797[1.892-2.993] 3.812[2.577-4.077] 0.546 6888.511
gam mal 22 0.191[0.006-1.714] 0.457[0.013-4.114] 0.334 5317.546
gam mal 26 0.232[0.007-2.826] 0.379[0.011-4.606] 0.333 6652.609
gam mal 5 2.512[0.198-2.988] 3.102[0.244-3.69] 0.471 1395.229
gam mal 8 0.209[0.007-2.484] 0.562[0.017-6.679] 0.333 9834.932
ken gam 10 0.62[0.015-0.822] 0.584[0.014-0.774] 0.953 6380.046
ken gam 2 0.966[0.012-1.18] 1.316[0.017-1.608] 0.998 9089.028
ken gam 22 0.549[0.011-0.726] 1.319[0.027-1.742] 0.952 5777.879
ken gam 26 0.712[0.018-0.897] 1.161[0.03-1.462] 0.989 8371.036
ken gam 5 1.335[0.016-1.593] 1.648[0.019-1.968] 1 12688.59
ken gam 8 0.753[0.012-0.932] 2.023[0.031-2.506] 0.995 5378.5
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Table S2: Migration parameter estimates symmetrically across four demes for
six GPSCs. Values within the square brackets denote the 95% confidence intervals. The
’Parameter’ is the raw migration parameter estimate while the ’Relative Parameter’ is
relative to all other deme pairs within each GPSC.

Deme GPSC Parameter Relative Parameter

sa mal 10 1.761[0.241-4.655] 1.031[0.141-2.725]
sa ken 10 0.841[0.064-1.916] 0.492[0.037-1.121]
sa gam 10 3.156[0.57-4.862] 1.847[0.333-2.846]
mal ken 10 1.606[0.106-4.751] 0.94[0.062-2.781]
mal gam 10 1.336[0.253-2.863] 0.782[0.148-1.676]
gam ken 10 1.119[0.186-2.847] 0.655[0.109-1.666]
sa mal 2 1.465[0.108-3.99] 0.833[0.061-2.268]
sa ken 2 2.135[0.267-3.816] 1.213[0.152-2.169]
sa gam 2 0.886[0.076-2.675] 0.504[0.043-1.52]
mal ken 2 0.138[0.005-0.961] 0.078[0.003-0.546]
mal gam 2 4.242[3.047-4.937] 2.411[1.732-2.806]
gam ken 2 1.476[0.462-2.383] 0.839[0.262-1.354]
sa mal 22 1.755[0.121-4.77] 1.077[0.074-2.927]
sa ken 22 2.111[0.204-4.721] 1.295[0.125-2.897]
sa gam 22 0.726[0.023-2.728] 0.445[0.014-1.674]
mal ken 22 1.258[0.063-4.492] 0.772[0.039-2.757]
mal gam 22 1.777[0.109-4.608] 1.091[0.067-2.828]
gam ken 22 0.863[0.03-3.116] 0.53[0.019-1.912]
sa mal 26 0.805[0.042-3.071] 0.473[0.025-1.802]
sa ken 26 4.07[2.368-4.948] 2.388[1.39-2.903]
sa gam 26 0.779[0.032-2.133] 0.457[0.019-1.251]
mal ken 26 0.464[0.015-2.029] 0.272[0.009-1.191]
mal gam 26 2.777[1.818-4.105] 1.63[1.067-2.409]
gam ken 26 1.027[0.082-2.095] 0.602[0.048-1.229]
sa mal 5 1.42[0.178-4.208] 0.684[0.086-2.028]
sa ken 5 1.935[0.679-4.668] 0.933[0.327-2.25]
sa gam 5 1.45[0.088-4.149] 0.699[0.042-2]
mal ken 5 0.437[0.018-1.476] 0.211[0.009-0.712]
mal gam 5 4.544[3.209-4.986] 2.19[1.547-2.404]
gam ken 5 1.925[0.698-4.79] 0.928[0.337-2.309]
sa mal 8 1.446[0.086-4.485] 0.872[0.052-2.705]
sa ken 8 2.05[0.138-4.818] 1.236[0.083-2.905]
sa gam 8 0.74[0.037-2.669] 0.446[0.022-1.609]
mal ken 8 0.93[0.038-4.051] 0.561[0.023-2.443]
mal gam 8 2.585[0.481-4.835] 1.559[0.29-2.916]
gam ken 8 1.042[0.051-4.051] 0.628[0.031-2.443]

53

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.15.23298520doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.15.23298520
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Population Divergence Summary Statistics
	Inference Strategy Overview
	Simulator
	Parameter Inference Algorithm
	Model Validation: Recapturing Simulated Data

	Application to a Pneumococcal Dataset
	Isolate Culture and Sequencing
	Neutral Gene Selection
	Pairwise Distances Between Genes
	Controlling Population Structure
	Fixation Index

	Overall Between-Country Migration Risk

	Results
	Inference Strategy
	Application to a Pneumococcal Dataset
	Estimating the Weight and Direction of Migration for Country Pairs
	Weight
	Direction
	Demographic Contribution to Migration

	Estimating the Weight of Migration Across Four Countries
	Overview
	Weights

	Between-country migration probability
	Discussion

	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	References
	Supplementary Figures
	Supplementary Tables

