1 Dairy consumption and incident cardiovascular disease: a global

2 analysis

Pan Zhuang^{1,2,#}, Xiaohui Liu^{3,#}, Yin Li³, Yang Ao³, Yuqi Wu², Hao Ye³, Xuzhi Wan²,
Lange Zhang³, Denghui Meng², Yimei Tian², Xiaomei Yu², Fan Zhang², Anli Wang²,
Yu Zhang^{1,2*}, and Jingjing Jiao^{3*}.

6 Affiliations:

⁷ ¹Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University

8 School of Medicine, Hangzhou 310006, Zhejiang, China

²Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food
 Processing, College of Biosystems Engineering and Food Science, Zhejiang
 University, Hangzhou 310058, Zhejiang, China.

³Department of Nutrition, School of Public Health, Department of Endocrinology, The
 Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
 310058, Zhejiang, China.

*Correspondence to: Jingjing Jiao, PhD, Department of Nutrition, School of Public 15 Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang 16 University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, 17 China. Tel.: +86-571-8898-1368. E-mail: jingjingjiao@zju.edu.cn. Or Yu Zhang, PhD, 18 Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University 19 School of Medicine, Department of Food Science and Nutrition, College of 20 Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang 21 Road, Hangzhou 310058, Zhejiang, China. Tel.: +86-571-88982211. E-mail: 22 y zhang@zju.edu.cn; 23

[#] The two authors equally contributed to the work.

25 **Short running title:** Dairy Consumption and Cardiovascular Disease guide clinical practice.

26 **Abstract**

BACKGROUND: The role of dairy products in the primary prevention of cardiovascular disease (CVD) remains highly debated. Our study aimed to comprehensively evaluate the association between dairy consumption and CVD risk in Eastern and Western countries.

METHODS: Cohort analyses include 487 212 individuals from the China Kadoorie Biobank (CKB) and 418 895 individuals from the UK Biobank (UKB). Dairy consumption was assessed by validated food frequency questionnaires. We calculated hazard ratios using multivariable Cox proportional-hazards models. The primary outcome was incident CVD, coronary heart disease (CHD) and stroke. An updated meta-analysis of prospective cohort studies was further conducted.

37 **RESULTS:** A total of 98 954 CVD cases occurred during a mean follow-up of 8.6 years in CKB and 11.3 years in UKB. In CKB, regular dairy consumption (mainly liquid 38 39 whole milk) was not associated with CVD risk but significantly associated with a 9% (95% confidence interval [CI], 5% to 13%) higher CHD risk and a 6% (95% CI, 3% to 40 9%) lower stroke risk compared with non/rare consumers. In UKB, total dairy 41 consumption was associated with lower risk of CVD, CHD and ischemic stroke. 42 Cheese consumption was associated with lower CVD risk. Multivariable-adjusted 43 hazard ratios (HRs) (95% CIs) comparing \geq 7 times/week to the < 2 times/week of 44 cheese were 0.88 (0.83-0.94) for CVD, 0.88 (0.82-0.94) for CHD, and 0.97 (0.85-45 1.11) for stroke. Semi-skimmed milk consumers had decreased risk of CVD and 46 stroke. In the updated meta-analysis, total dairy consumption was significantly 47 associated with a lower risk of CVD (relative risk [RR], 0.963; 95% CI, 0.932 to 0.995; 48 49 26 risk estimates) and stroke (RR, 0.94; 95% CI, 0.90 to 0.98; 14 risk estimates). Inverse associations with CVD incidence were found for cheese (0.94; 0.91 to 0.97; 50

20 risk estimates) and low-fat dairy (0.96; 0.92 to 0.99; 20 risk estimates) but not milk
and yogurt.

CONCLUSIONS: Total dairy consumption is associated with a lower risk of total CVD
 and stroke overall but relationships vary by types of dairy products. Cheese and
 low-fat dairy consumption may be advocated for the primary prevention of CVD.

Key Words: Dairy products; Cheese; Cardiovascular disease; Coronary heart
 disease; Stroke.

58

59 Nonstandard Abbreviations and Acronyms

60 BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; CKB,

61 China Kadoorie Biobank; CRP, C-reactive protein; CVD, cardiovascular disease; FFQ,

food frequency questionnaire; HDL, high-density lipoprotein; HR, hazard ratios; LDL,

low-density lipoprotein; RR, relative risk; SFA, saturated fatty acids; TDI, Townsend

64 deprivation index; UKB, UK Biobank.

66 Clinical Perspective

67 What Is New?

- Whether dairy products are protective for cardiovascular disease (CVD) remains
 highly debated.
- This global largest analysis that included two original cohorts of 0.9 million
 participants from China and the UK and an updated meta-analysis demonstrates
 that higher consumption of total dairy products was associated with lower risk of
 CVD and stroke overall.
- For dairy subtypes, cheese and low-fat dairy consumption was associated with
 lower CVD risk while no significant association was observed for milk, yogurt, and
 high-fat dairy consumption.
- 77 What Are the Clinical Implications?
- Results from our two large cohort studies and updated meta-analysis support that
 dairy product consumption is protective for CVD, especially stroke, and provide
 compelling evidence relevant to dietary guidelines.
- Considering specific dairy subtypes, cheese, and low-fat dairy products may be
 protective and should be advocated for CVD prevention.

Cardiovascular disease (CVD) is the largest contributor to death globally.¹ Adopting 84 healthy dietary patterns is one of the cornerstones of primary prevention of CVD. 85 Thereinto, although dairy consumption features in many dietary guidelines, its role in 86 a heart-healthy diet remains highly debated.² Dairy products contain various 87 beneficial nutrients, including high biological value protein, milk fat globule 88 phospholipids, and vitamins and minerals that could improve CVD risk factors,³⁻⁵ 89 whereas saturated fats⁶ and multiple anabolic hormones⁷ in dairy products might 90 adversely affect the health benefit. Previous prospective studies linking dairy 91 92 consumption with CVD outcomes have yielded conflicting results. Some cohort studies reported a protective relationship between dairy consumption and CVD 93 outcomes,^{8–12} whereas others showed no significant associations^{13–16} or even 94 positive associations.^{17, 18} Meta-analyses also yielded inconsistent conclusions on 95 associations of dairy intake with CHD and stroke risk.^{19, 20} Notably, heterogeneity 96 between included studies was considerable and the overall quality of the evidence 97 98 was low to moderate.

Prevailing recommendations advocate low-fat or non-fat dairy over whole-fat 99 dairy.²¹ However, scientific evidence for this recommendation was scant and 100 inconsistent.¹⁹ Importantly, different subtypes of dairy products may confer divergent 101 health effects after processing. Fermented milk products such as yogurt contain 102 probiotics that can favorably regulate gut microbiome.²² whereas cheese is rich in 103 sodium which may elevate blood pressure when consumed in excessive amounts.²³ 104 Nonetheless, cheese is also a fermented food that can contain vitamin K2, high levels 105 of milk fat globule membrane, as well as probiotics. Furthermore, previous 106 epidemiological studies were largely conducted in western countries, where the 107 consumption level of dairy products especially cheese is high and usually correlated 108

with a higher socio-economic position.^{24, 25} In Asia where strokes are more common 109 than CHD, only few studies demonstrated an inverse association of dairy 110 consumption with stroke.^{8, 26} Overall, evidence from large cohort studies in both 111 western and non-western countries is needed to make global policy 112 recommendations. 113 To address the above-mentioned gaps in knowledge, we followed 0.9 million 114 individuals from the UK Biobank (UKB) study and the China Kadoorie Biobank (CKB) 115 study to evaluate the associations of dairy product consumption with incident CVD. 116 117 CHD and stroke. We also performed an updated systematic review of the literature and meta-analysis of dairy product intake and incident CVD risk which included our 118 findings to address the role of dairy consumption in CVD prevention and improve 119 dietary guidelines. 120

121

122 METHODS

123 Study Population

CKB is one of the largest cohort studies that recruited over 500,000 adults from ten 124 geographically diverse areas across China during 2004-2008.²⁷ The CKB study 125 received ethical approval from the Oxford University Tropical Research Ethics 126 Committee, the Chinese Centre for Disease Control and Prevention (CDC) Ethical 127 Review Committee and the local CDC of each study area. All participants gave 128 written informed consent. For this analysis, participants with a history of CVD or 129 cancer were excluded at baseline, which resulted in a sample of 487 212 individuals 130 in the CKB. 131

UKB is also a large prospective study of more than 500,000 people who were
 aged 37–73 years and recruited from one of 22 assessment centers across the UK

between 2007 and 2010.²⁸ The UK Biobank received ethical approval from the 134 research ethics committee (REC reference for UK Biobank 11/NW/0382). Among 502 135 476 participants, we excluded participants with a history of CVD or cancer at baseline 136 and participants who withdrew during the follow-up (data cannot be used). 137 Furthermore, we excluded persons without data on cheese consumption frequency 138 from the food frequency questionnaire (FFQ) or those without information about 139 24-hour dietary recalls. Finally, 418 895 individuals in the UKB remained in the final 140 analytical samples for cheese consumption and 183 446 individuals remained for 141 142 individual dairy products. The detailed flow chart is shown in Figure S1.

143

144 **Dietary Assessments**

In the CKB, participants were asked about the consumption frequency of 12 major food groups, including total dairy products over the preceding year by a qualitative FFQ. The weighted kappa statistics of dairy consumption frequency were 0.82 for reproducibility and 0.75 for validity, comparing two FFQs conducted in the second and third surveys with the baseline FFQ, which implicated good performance of the FFQ²⁹. Subtypes of dairy products were not included in the baseline FFQ and thus were not analyzed in CKB.

In the UKB, participants completed a touch to Screen short FFQ that consisted of 29 diet questions over the past 12 months, including frequency of cheese intake (0, <1, 1, 2 to 4, 5 to 6, \geq 7 times a week) and type of milk (never/rarely have milk, full, semi-skimmed, skimmed cream, soya, other) in which they could select multiple types of milk they drank. Besides, participants were invited to complete a 24-hour dietary questionnaire that inquired about the consumption of nearly 200 foods and drinks including various dairy products (milk, cheese, yogurt and ice cream). Five separate

occasions of 24-hour dietary recalls were conducted during 2011-2012 to provide an
 average measure for individuals (repeated measurement per person). The dietary
 touch-screen FFQ has been validated against online 24-hour dietary assessments³⁰
 and the latter has been validated using biomarkers reported elsewhere.³¹
 Ascertainment of Incident Cardiovascular Disease

Detailed information used to define incident CVD cases including fatal or non-fatal CHD and stroke is presented in Table S1. Incident cases of CVD were identified by using linkages with disease registries and national health insurance claim databases and further supplemented with annual active follow-up in CKB. In UKB, information on the CVD cases of all participants was obtained from cumulative hospital inpatient records. All events were ascertained using the International Classification of Diseases, 10th Revision (ICD–10).

172

173 Statistical Analysis

The main exposures of interest were the frequency of total dairy consumption in CKB 174 and the frequency of cheese intake (<2, 2 to 4, 5 to 6, or \geq 7 times a week), milk type, 175 and total dairy consumption in UKB. The intake of dairy products (0, ≤ 0.5 , 0.5 to 1, 176 or >1 serving per day), including milk, yogurt, and cheese $(0, \leq 0.5, \text{ or } > 0.5 \text{ serving per })$ 177 day), was categorized into predefined categories based on consumption distributions. 178 The person-year was calculated from the date of entry to the time of CVD 179 diagnosis, lost to follow-up, death, or the end date of follow-up (December 31, 2016) 180 for CKB, and 31 December 2020 for UKB), whichever occurred earlier. Only 1.2% of 181 individuals in CKB and 0.3% in UKB were lost to follow-up and censored in analyses. 182 Cox proportional hazards regression model was used to estimate hazard ratios (HRs) 183

and 95% confidence intervals (CIs) of CVD risk for total or each type of dairy product 184 consumption after checking the violation of the proportional hazard assumption. To 185 control known and potential confounders, multivariable models were sequentially 186 adjusted for age, sex, race, study area (for CKB)/assessment centers (for UKB), body 187 mass index (BMI), education level, household income, Townsend deprivation index 188 (TDI, only in UKB), smoking status, alcohol drinking, physical activity, history of 189 190 hypertension, history of diabetes, family history of CVD, use of vitamins, minerals and aspirin, and consumption frequency of red meat, processed red meat (only in UKB). 191 192 fish, oily fish (only in UKB), non-oily fish (only in UKB), poultry, vegetables, fruits, and eggs (all categories of consumption). All missing data were coded as an independent 193 category if necessary. The linear trend was tested by fitting the ordinal dairy variables 194 as continuous variables in the models. 195

As dairy products are one of the major sources of dietary protein, we used 196 substitution analysis to estimate the theoretical effect on CVD risk of substituting one 197 serving of dairy products for an equivalent serving of other common alternative 198 protein sources, including red/processed meat, fish, poultry, eggs, and 199 sovbean/legumes.¹¹ We further examined whether the documented associations 200 varied by subgroups according to baseline characteristics, including age, sex, BMI, 201 household income, smoking status, alcohol intake frequency, physical activity, diet 202 203 guality, hypertension, diabetes, and family history of CVD. Besides, we conducted several sensitivity analyses. First, we adjusted a healthy diet score^{32 33} to evaluate 204 the influence of the overall diet quality. Second, lipid-lowering drugs or 205 anti-hypertensive medications were further adjusted in the model. Third, we further 206 excluded incident CVD cases within the first 2 years of follow-up or participants with 207 extreme BMIs (<18.5 or >40 kg/m²). Finally, participants were censored at a 5-y 208

209	follow-up. In addition, in CKB analysis, we used a multivariable Cox frailty model with
210	random intercepts to account for center clustering (10 regions). In UKB analysis, we
211	further adjusted for energy intake or salt added to food to see whether the main
212	findings altered.
213	All statistical analyses were conducted with SAS 9.4 (SAS Institute, Cary, NC,
214	USA) and a two-sided $P < 0.05$ was considered statistically significant.
215	
216	Meta-analysis
	······································
217	We performed a systematic review and updated meta-analysis including UKB and
217 218	
	We performed a systematic review and updated meta-analysis including UKB and
218	We performed a systematic review and updated meta-analysis including UKB and CKB studies as well as previous prospective cohort studies which explored the
218 219	We performed a systematic review and updated meta-analysis including UKB and CKB studies as well as previous prospective cohort studies which explored the relationship of dairy product intake with CVD risk in the general population. Table S2

222

223 **RESULTS**

224 Cohort Analyses

During a follow-up of 4 190 676 person-years in CKB and 4 736 113 person-years in 225 UKB, we documented 66 132 CVD cases in CKB and 32 822 CVD cases in UKB. In 226 CKB, participants who consumed dairy products more frequently tended to be women, 227 higher-educated, high-income class, urban residents and vitamin and mineral 228 supplements users, have diabetes and family history of CVD, and consume fruits and 229 eggs more frequently (Table S3). In UKB, individuals with higher total dairy 230 consumption were more likely to exercise, be more educated, take vitamin and 231 mineral supplements, and consume oily fish and fruits more frequently, whereas they 232 drank alcohol less frequently and had a lower hypertension prevalence (Table S4). 233

Characteristics of participants by cheese consumption (the main subtype of dairy in
 UKB) and milk types in UKB are shown in Tables S5 and S6.

Compared to non/rare consumers, those who consumed at least 4 times/week of 236 dairy had no significant association with CVD after the multivariable adjustment in 237 CKB (HR 1.09, 95% CI 0.97–1.03, P-trend=0.470). Regular dairy consumption was 238 related to a 9% higher risk of CHD (HR 1.09, 95% CI 1.05–1.13, P-trend<0.001) but a 239 6% lower risk of stroke (HR 0.94, 95% CI 0.91-0.97, P-trend=0.005), especially 240 hemorrhagic stroke (HR 0.76, 95% CI 0.69–0.83, P-trend<0.001) (Table 1). In UKB, 241 total dairy intake was inversely associated with incident CVD (HR 0.93, 95% CI 0.88-242 0.98, P-trend=0.004), CHD (HR 0.93, 95% CI 0.88-0.99, P-trend=0.014), and 243 ischemic stroke (HR 0.86, 95% CI 0.75–0.99, P-trend=0.036) (Table 2). For individual 244 dairy products, cheese consumption was associated with lower CVD and CHD risk. 245 The HRs (95% CIs) comparing the frequency at least 7 times/week of cheese with 246 less than 2 times/week were 0.88 (0.83–0.94) for CVD, 0.88 (0.82–0.94) for CHD, 247 and 0.97 (0.85–1.11) for stroke in the fully adjusted model (Table S7), which was 248 similar to the results from 24 h dietary recalls (Table S8). For subtypes of cheese, 249 both hard cheese and fresh cheese (>0.5 serving/d) were associated with a lower risk 250 of CVD and CHD (Tables S9 to S11). We found milk consumption (>0 to 0.5 serving/d) 251 was associated with a lower risk of hemorrhagic stroke (HR 0.43, 95% CI 0.21-0.87) 252 and vogurt consumption (>0.5 serving/d) was related to decreased ischemic stroke 253 risk (HR 0.86, 95% CI 0.77–0.98), compared with non-consumers (Tables S12 and 254 S13). With regard to different types of milk, compared with participants who never or 255 rarely drank milk, both semi-skimmed and skimmed milk consumers had decreased 256 CVD risk (semi-skimmed: HR 0.92, 95% CI 0.87-0.98; skimmed: HR 0.91, 95% CI 257 0.86–0.97) and stroke risk (semi-skimmed: HR 0.80, 95% CI 0.71–0.90; skimmed: 258

259 HR 0.76, 95% CI 0.66–0.86) (Table S14).

260	We also found significant interactions by sex and history of diabetes in the
261	subgroup analyses in both CKB and UKB (Tables S15 to S18). Moreover, our results
262	did not alter substantially in sensitivity analyses (Tables S19 to S22). In hypothetical
263	substitution analyses (Figure S2), though we didn't find a significant association for
264	CVD risk when replacing red meats, fish, poultry, or soybeans with dairy products,
265	replacing eggs with dairy products was related to a 12% higher risk of CVD (P<0.001)
266	in CKB. Besides, a higher risk of CHD (P<0.001) and stroke (P=0.039) was also
267	observed when eggs were replaced by total dairy products. Substituting one serving
268	of dairy products for red meats or soybeans was associated with lower stroke risk
269	(HR for red meats 0.93, 95% CI 0.89–0.98; HR for soybeans 0.92, 95% CI 0.87–0.97).
270	No significant results were found for hypothetical substitution analyses in UKB.
271	

272 Systematic Review and Meta-Analysis

Overall, 30 publications from 25 prospective cohorts and our results from CKB and
UKB were kept in our final meta-analysis (Figure S3, Tables S23 and S24). During a
range of 5.5 to 30.0 follow-up years, 73 193 CVD cases were documented among 1
288 420 participants from 30 countries or territories around the world in the previous
studies (30 studies) (Table S25).

Although no significant association was found between total dairy intake and
incident CVD in the meta-analysis of previously published studies (RR 0.963, 95% CI
0.926–1.001, n=24 risk estimates), the summary RR (95% CI) turned into 0.963
(0.932–0.995) when the results of CKB and UKB studies were added (Figure 1).
Each serving/day increment of total dairy products was related to a 2% lower CVD
risk (RR 0.98, 95% CI 0.96–0.99, P<0.001, n=17 risk estimates) (Figure S4). A similar

inverse relationship for CVD was also shown in non-linear analysis (P-nonlinear 284 =0.002, n=12 studies, Figure S5). For subtypes of CVD, the meta-analysis showed 285 dairy consumption had an inverse relationship with total stroke risk (RR 0.94, 95% CI 286 0.90-0.98, 14 risk estimates, $l^2=61.8\%$) but null association with CHD risk (RR 0.98, 287 95% CI 0.93–1.02, 19 risk estimates, I²=70.5%, Figure 1). 288 For major subtypes of dairy products, high intake of fermented dairy products, 289 especially cheese, had a protective association with CVD risk (RR for fermented dairy 290 0.96, 95% CI: 0.94–0.98, n=24 risk estimates; RR for cheese 0.94, 95% CI: 0.91– 291 292 0.97, n=20 risk estimates), but not yogurt (RR 0.99, 95% CI 0.93–1.06, n=14 risk estimates) or milk (RR 1.00, 95% CI 0.97-1.04, n=21 risk estimates) (Figure 2 and 293 Figure S6). Cheese intake was also associated with decreased risk of CHD and 294 295 stroke (Figures S7 and S8). Considering the content of fat, consumption of low-fat dairy products was significantly related to lower total CVD (RR: 0.96, 95% CI: 0.92-296 0.99, n=20 risk estimates) and stroke risk (RR: 0.90, 95% CI: 0.84–0.97, n=9 risk 297 estimates) (Figure 3 and Figure S9). No significant relationships were observed for 298 high-fat dairy products (including high-fat milk, high-fat yogurt, high-fat cheese, and 299 cream or butter) (Figure 3 and Figure S10). For subtypes of stroke, milk consumption 300 was related to a higher risk of hemorrhagic stroke (RR 1.08, 95% CI 1.01–1.17, n=5 301 risk estimates) and a decreased ischemic stroke risk was detected for total dairy (RR 302 303 0.92, 95% CI 0.86–0.99, n=7 risk estimates) and cheese consumption (RR 0.91, 95% CI 0.85–0.97, n=4 risk estimates) (Figures S11 to S14). 304 For total dairy consumption, we observed considerable heterogeneity across the 305

studies (I²=66.1%) but did not find any publication bias (Figure 1 and Figures S15 to
S19). No significant heterogeneity was found in the predefined subgroup (sex,
follow-up duration, region, Newcastle-Ottawa Scale score, etc.) meta-regressions

(Table S26), indicating the source of heterogeneity mainly comes from subtypes of
dairy. No single study disproportionately caused the heterogeneity (Figure S20).
Results of influence analysis for subtypes of dairy and subtypes of CVD are shown in
Figures S21 to S30. If no significant heterogeneity was found across the studies for
specific meta-analyses, we also conducted a fixed effects model to calculate
summary HRs and 95% CIs which showed similar results (Table S27).

315

316 **DISCUSSION**

In both UKB and CKB studies, dairy consumption was overall associated with lower
risk of stroke. Further analysis of dairy subtypes in UKB revealed that cheese and
skimmed/semi-skimmed milk consumption were inversely associated with CVD risk.
The updated meta-analysis overall supported that dairy consumption, especially
cheese and low-fat dairy consumption, was beneficial for CVD prevention among the
general population.

323

324 Comparison with Previous Studies and Possible Explanations

Our finding of the inverse association of dairy consumption with stroke risk was 325 consistent with a recent meta-analysis showing a 1 to Serving/d increase in total dairy 326 consumption was significantly related to a 4% decreased stroke risk.²⁰ Although dairy 327 products are major sources of saturated fatty acids (SFA) (about 65% of total fats). 328 which has been shown to increase low-density lipoprotein (LDL) cholesterol levels, 329 emerging evidence suggests that a low LDL cholesterol level (<70 mg/dL) was a risk 330 factor for hemorrhagic stroke.^{34, 35} A meta-analysis summarizing data from 462,268 331 participants showed a dose-response relation of dietary SFA intake with lower stroke 332 risk, especially intracranial hemorrhage risk.³⁶ Congruously, we found that moderate 333

intake of milk (0<milk intake<0.5 serving/d) was associated with lower hemorrhagic 334 stroke risk in UKB and total dairy consumption (mainly fresh milk/liquid whole milk in 335 China)^{37, 38} was related to lower hemorrhagic stroke risk in CKB. Importantly, despite 336 a high content of even-chain SFAs, dairy fats also consist of medium-chain (9.8%) 337 and odd-chain (31.9%) SFAs,³⁹ which may improve insulin sensitivity,⁴⁰ Besides, dairy 338 products also contain potentially beneficial natural trans fats, unsaturated fats, 339 specific amino acids, branched-chain fats, vitamins K1 and K2, and calcium.⁴¹ Thus, 340 given the complex food matrix of dairy products, their health impact cannot be fully 341 342 accounted for by the presumed effect of SFAs. In our substitution analysis, replacing red meats with dairy products was related to lower stroke risk in CKB, reinforcing that 343 the source of SFAs is more important. In addition, meta-analyses of randomized 344 controlled trials demonstrated that fermented milk or dairy foods enriched with 345 probiotics could reduce blood pressure,^{42, 43} which also partially explains the 346 protective association for stroke, including a lower ischemic stroke risk for dairy in 347 UKB and our meta-analysis. 348

With regard to CHD, we found great heterogeneity between UKB and CKB 349 studies, which was also shown in our further updated meta-analysis (I^2 =68.6%). 350 Further analyses revealed that the discrepancy between studies may be largely 351 ascribed to different subtypes of dairy products. The protective relationship was 352 mainly driven by cheese intake in the UKB study, which was further supported by our 353 updated meta-analysis. Consistently, a meta-analysis of 15 prospective studies 354 demonstrated that cheese consumption was related to reduced risk of CHD (RR [95% 355 CI] for high vs. low consumption 0.86 [0.77–0.96]), stroke and total CVD.⁴⁴ Another 356 meta-analysis also showed a protective relationship of fermented dairy products with 357 CVD risk and such protective association was detected for cheese but not vogurt.¹⁹ 358

Although cheese, especially hard cheese, is rich in salt, saturated fat and calories, we 359 still detected protective relationships for both hard cheese and fresh cheese in UKB. 360 Potential mechanisms that underpin the relationship may be related to the high 361 content of calcium, which may benefit cardiovascular health by limiting the absorption 362 of SFAs and cholesterol⁴⁵ and regulating the cell membrane potentials of the 363 myocardium.⁴⁶ Cheese also contains a high amount of conjugated linoleic acid that 364 has been evidenced to inhibit the progression or induce the regression of 365 atherosclerosis through modulating monocyte/macrophage function.⁴⁷ In addition, the 366 fermentation of dairy produced beneficial vitamin K₂ that has been linked with a lower 367 CHD risk.⁴⁸ Microorganisms or probiotics from fermented dairy could modulate the 368 gut microbiota composition, inhibit the reabsorption of bile acid, and produce 369 beneficial short-chain fatty acids.⁴⁹ A recent meta-analysis of 39 trials demonstrated 370 that probiotic fermented milk products reduced serum total cholesterol and LDL 371 cholesterol levels.⁵⁰ However, our results of the updated meta-analysis and other 372 meta-analyses found little benefit of yogurt consumption on CVD risk,^{19, 51} which 373 could be due to the commonly added sugars or artificial sweeteners that might 374 counteract the health benefit.⁵² Pertaining to milk consumption, mixed results have 375 been reported from prospective studies.^{19, 53} A meta-analysis of cohort studies 376 reported that milk intake was associated with a 4% (1%–5%) higher CHD mortality.⁵⁴ 377 which was congruent with our finding of a positive relation with CHD risk in CKB 378 where liquid whole milk was the major dairy product.^{37, 38} In addition to the long 379 even-chain SFAs elevating LDL cholesterol, a high D-galactose intake from 380 non-fermented milk could be toxic.⁵⁵ D-galactose has been widely used to establish 381 an experimental model for premature aging by inducing oxidative stress and chronic 382 inflammation,^{55, 56} which is also involved in the pathogenesis of CVD. Results from 2 383

large Swedish cohorts showed positive relations of milk intake with oxidative stress 384 and inflammation markers while negative associations were observed for fermented 385 milk products.⁵⁷ Altogether, individual dairy products have divergent associations with 386 CVD risk, which seemed to be the major reason for the discrepant results for CHD 387 observed in CKB and UKB and also for the great heterogeneity between studies in 388 our meta-analysis. Therefore, our study provides compelling evidence to highlight the 389 390 importance of focusing on specific types of dairy products among which cheese may be the healthiest choice for the primary prevention of CVD. 391

392 Although prevailing dietary recommendations advocate consuming low-fat or non-fat dairy products over high-fat dairy/whole milk, previous evidence from 393 meta-analyses showed no significant relations of low-fat dairy consumption with CVD 394 or CHD risk.^{19, 20} Our meta-analysis showed inverse relationships of low-fat dairy 395 consumption with CVD and stroke risk, supporting the protective role of low-fat dairy 396 in CVD prevention. Nonetheless, we found no detrimental associations for high-fat 397 dairy consumption. In a meta-analysis of 20 trials, both low-fat and high-fat dairy 398 consumption increased body weight but had neutral effects on other cardiometabolic 399 indicators, including waist circumference, fasting glucose, LDL cholesterol, 400 high-density lipoprotein (HDL) cholesterol, blood pressure and C-reactive protein 401 (CRP).⁵⁸ Overall, current evidence suggests low-fat dairy may be beneficial for CVD 402 whereas specific subtypes of high-fat dairy such as cheese could also be protective. 403 More large studies are needed to compare low-fat with high-fat dairy on long-term 404 CVD outcomes. 405

406

407 Strengths and Limitations

408 This analysis has important strengths, including the large sample size, long follow-up

duration, and the design of using data from two large cohorts in the UK and China, 409 which enable us to directly compare the results from western vs. eastern countries. 410 Finally, the updated meta-analysis provides a comprehensive overview of the 411 evidence. Potential limitations also deserve attention. First, measurement errors by 412 FFQs are inevitable in epidemiological studies. However, such errors tend to 413 attenuate findings toward the null because of the prospective analysis. Although 414 415 absolute dairy intake was not estimated in CKB and UKB, consumption frequency is rather useful in categorizing individuals on the basis of relative intakes. The 416 417 consumption of subtypes of dairy products assessed from 24-hour recalls in UKB might not be representative of an individual's long-term dietary habits. However, we 418 calculated mean intakes from five separate occasions of 24-hour dietary recalls 419 conducted from 2011 to 2012 (repeated measurement per person) to minimize this 420 bias. Second, unmeasured or residual confounding cannot be fully ruled out despite 421 our full adjustment for multiple risk factors. Specifically, higher dairy consumption 422 seemed to be indicative of a higher socioeconomic status. Nonetheless, our results 423 were consistent among both individuals with higher and lower income, indicating the 424 documented associations of dairy were independent of socioeconomic status. Third, 425 dairy consumption was measured once at baseline and changes over time were not 426 considered. However, we still observed similar findings for a shorter follow-up 427 duration (5 years), indicating that repeated measures are unlikely to affect our 428 findings. Fourth, we could not further analyze dairy subtypes separately in CKB and 429 butter was also not assessed in both CKB and UKB due to the lack of available data, 430 which could have provided more implications. 431

432

433 **Conclusions and Implications**

The results from our two large cohort studies and updated meta-analysis show that dairy consumption is associated with lower risk of stroke and total CVD overall while relationships for subtypes of dairy products differ. Cheese consumption but not milk or yogurt was inversely associated with CVD risk. Low-fat dairy consumption was inversely related to CVD and stroke risk. Our findings provide useful clinical evidence to advocate the consumption of dairy, especially cheese and low-fat dairy, for the primary prevention of CVD.

441 Acknowledgements

- We are grateful to UK Biobank and CKB participants. This research has been 442 conducted using the UK Biobank resource (https://www.ukbiobank.ac.uk) under 443 application number 47365 and CKB resource (https://www.ckbiobank.org/) under 444 application number DAR-2020–00282. We thank Chinese Center for Disease Control 445 and Prevention, Chinese Ministry of Health, National Health and Family Planning 446 447 Commission of China, and 10 provincial/regional Health Administrative Departments. The most important acknowledgement is to the participants in the CKB study and the 448 449 members of the survey teams in each of the 10 regional centers, as well as to the project development and management teams based at Beijing, Oxford and the 10 450 regional centers. 451 Sources of Funding 452 This research was supported by the National Key Research and Development 453 Program of China (grant no. 2017YFC1600500), China National Program for Support 454 of Top-notch Young Professionals, and China Postdoctoral Science Foundation (grant 455 no. 2022T150577). 456 **Disclosures** 457 None. 458 **Conflict of interest** 459 The authors declare that there is no conflict of interest. 460 Data availability statement 461 The UK Biobank data are available from the UK Biobank on request 462 (www.ukbiobank.ac.uk/). Details of how to access China Kadoorie Biobank data and 463
- details of the data release schedule are available from
- 465 www.ckbiobank.org/site/Data+Access.

466 **References**

Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, Bo J, Lou Q, Lu F, L
 iu T, Yu L, Zhang S, Mony P, Swaminathan S, Mohan V, Gupta R, Kumar R,
 Vijayakumar K, Lear S, Anand S, Wielgosz A, Diaz R, Avezum A, Lopez-Jaram
 illo P, Lanas F, Yusoff K, Ismail N, Iqbal R, Rahman O, Rosengren A, Yusufali
 A, Kelishadi R, Kruger A, Puoane T, Szuba A, Chifamba J, Oguz A, McQuee
 n M, McKee M and Dagenais G. Cardiovascular risk and events in 17 low-, mi
 ddle-, and high-income countries. *N Engl J Med.* 2014;371:818–827.

474 2. Willett WC and Ludwig DS. Milk and health. *N Engl J Med.* 2020;382:644–
475 654.

3. Soedamah-Muthu Sabita S, Verberne Lisa DM, Ding Eric L, Engberink Mari
ëlle F and Geleijnse Johanna M. Dairy consumption and incidence of hypertens
ion. *Hypertension*. 2012;60:1131–1137.

479 4. Elwood PC, Pickering JE and Fehily AM. Milk and dairy consumption, diabe 480 tes and the metabolic syndrome: the Caerphilly prospective study. *J Epidemiol* 481 *Community Health*. 2007;61:695–698.

482 5. Pérez-Hernández N, Aptilon-Duque G, Nostroza-Hernández MC, Vargas-Alar
483 cón G, Rodríguez-Pérez JM and Blachman-Braun R. Vitamin D and its effects
484 on cardiovascular diseases: a comprehensive review. *Korean J Intern Med.* 201
485 6;31:1018–1029.

486 6. Li Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, Sampson L,
487 Rexrode KM, Rimm EB, Willett WC and Hu FB. Saturated fats compared with
488 unsaturated fats and sources of carbohydrates in relation to risk of coronary he
489 art disease: a prospective cohort study. *J Am Coll Cardiol.* 2015;66:1538–1548.
490 7. Aune D, Navarro Rosenblatt DA, Chan DSM, Vieira AR, Vieira R, Greenwo

od DC, Vatten LJ and Norat T. Dairy products, calcium, and prostate cancer ris
k: a systematic review and meta-analysis of cohort studies. *Am J Clin Nutr.* 20
15;101:87–117.

494 8. Kinjo Y, Beral V, Akiba S, Key T, Mizuno S, Appleby P, Yamaguchi N, Wat 495 anabe S and Doll R. Possible protective effect of milk, meat and fish for cereb 496 rovascular disease mortality in Japan. *J Epidemiol*. 1999;9:268–274.

9. Buendia JR, Li Y, Hu FB, Cabral HJ, Bradlee ML, Quatromoni PA, Singer
MR, Curhan GC and Moore LL. Regular yogurt intake and risk of cardiovascul
ar disease among hypertensive adults. *Am J Hypertens*. 2018;31:557–565.

10. Bernstein AM, Pan A, Rexrode KM, Stampfer M, Hu FB, Mozaffarian D an
d Willett WC. Dietary protein sources and the risk of stroke in men and wome
n. *Stroke*. 2012;43:637–644.

11. Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE and Willett WC. M
ajor dietary protein sources and risk of coronary heart disease in women. *Circu lation.* 2010;122:876–883.

12. Dehghan M, Mente A, Rangarajan S, Sheridan P, Mohan V, Igbal R, Gupta 506 R, Lear S, Wentzel-Viljoen E, Avezum A, Lopez-Jaramillo P, Mony P, Varma R 507 P, Kumar R, Chifamba J, Alhabib KF, Mohammadifard N, Oguz A, Lanas F, Ro 508 zanska D, Bostrom KB, Yusoff K, Tsolkile LP, Dans A, Yusufali A, Orlandini A, 509 Poirier P, Khatib R, Hu B, Wei L, Yin L, Deeraili A, Yeates K, Yusuf R, Ismail 510 N, Mozaffarian D, Teo K, Anand SS and Yusuf S. Association of dairy intake 511 with cardiovascular disease and mortality in 21 countries from five continents 512 (PURE): a prospective cohort study. Lancet. 2018;392:2288-2297. 513

13. Louie CJ, Flood MV, Burlutsky G, Rangan MA, Gill PT and Mitchell P. Dair
y consumption and the risk of 15-year cardiovascular disease mortality in a co

516 hort of older australians. *Nutrients*. 2013;5:441–454.

14. Dalmeijer GW, Struijk EA, van der Schouw YT, Soedamah-Muthu SS, Versc
huren WMM, Boer JMA, Geleijnse JM and Beulens JWJ. Dairy intake and coro
nary heart disease or stroke—a population-based cohort study. *Int J Cardiol.* 20
13;167:925–929.

15. Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM and Brunner EJ.
Consumption of dairy products and associations with incident diabetes, CHD a
nd mortality in the Whitehall II study. *Br J Nutr.* 2012;109:718–726.

16. Bonthuis M, Hughes MCB, Ibiebele TI, Green AC and van der Pols JC. Da
iry consumption and patterns of mortality of Australian adults. *Eur J Clin Nutr*.
2010;64:569.

527 17. Larsson SC, Männistö S, Virtanen MJ, Kontto J, Albanes D and Virtamo J. 528 Dairy foods and risk of stroke. *Epidemiology*. 2009;20:355–360.

18. Olsson E, Larsson SC, Höijer J, Kilander L and Byberg L. Milk and fermen
ted milk consumption and risk of stroke: longitudinal study. *Nutrients*. 2022;14:1
070.

19. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI and Soedamah-Muth
u SS. Milk and dairy consumption and risk of cardiovascular diseases and all-c
ause mortality: dose-response meta-analysis of prospective cohort studies. *Eur J Epidemiol.* 2017;32:269–287.

20. Chen Z, Ahmed M, Ha V, Jefferson K, Malik V, Ribeiro PAB, Zuchinali P a
nd Drouin-Chartier JP. Dairy product consumption and cardiovascular health: a
systematic review and meta-analysis of prospective cohort studies. *Adv Nutr.* 2
021;13:439–454.

540 21. Alexander DD, Bylsma LC, Vargas AJ, Cohen SS, Doucette A, Mohamed

541 M, Irvin SR, Miller PE, Watson H and Fryzek JP. Dairy consumption and CVD: 542 a systematic review and meta-analysis. *Br J Nutr.* 2016;115:737–750.

543 22. Fernández M, Hudson JA, Korpela R and de los Reyes-Gavilán CG. Impact 544 on human health of microorganisms present in fermented dairy products: an o 545 verview. *Biomed Res Int.* 2015;2015:412714.

23. Neal B, Wu Y, Feng X, Zhang R, Zhang Y, Shi J, Zhang J, Tian M, Huang
L, Li Z, Yu Y, Zhao Y, Zhou B, Sun J, Liu Y, Yin X, Hao Z, Yu J, Li KC, Zh
ang X, Duan P, Wang F, Ma B, Shi W, Di Tanna GL, Stepien S, Shan S, Pea
rson SA, Li N, Yan LL, Labarthe D and Elliott P. Effect of salt substitution on
cardiovascular events and death. *N Engl J Med.* 2021;385:1067–1077.

24. James WP, Nelson M, Ralph A and Leather S. Socioeconomic determinants
of health. The contribution of nutrition to inequalities in health. *BMJ*. 1997;314:
1545–1549.

25. Sanchez-Villegas A, Martínez JA, Prättälä R, Toledo E, Roos G and Martín ez-González MA. A systematic review of socioeconomic differences in food habi ts in Europe: consumption of cheese and milk. *Eur J Clin Nutr*. 2003;57:917.

26. Huang L-Y, Wahlqvist ML, Huang Y-C and Lee M to S. Optimal dairy intak
e is predicated on total, cardiovascular, and stroke mortalities in a Taiwanese c
ohort. *J Am Coll Nutr.* 2014;33:426–436.

27. Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F and Li L. China Kadoori
e Biobank of 0.5 million people: survey methods, baseline characteristics and I
ong-term follow-up. *Int J Epidemiol.* 2011;40:1652–1666.

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, E
lliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, You
ng A, Sprosen T, Peakman T and Collins R. UK biobank: an open access res

566 ource for identifying the causes of a wide range of complex diseases of middle 567 and old age. *PLoS Med.* 2015;12:e1001779.

29. Qin C, Guo Y, Pei P, Du H, Yang L, Chen Y, Shen X, Shi Z, Qi L, Chen
J, Chen Z, Yu C, Lv J and Li L. The relative validity and reproducibility of foo
d frequency questionnaires in the China Kadoorie Biobank study. *Nutrients*. 202
2;14:794.

572 30. Bradbury KE, Young HJ, Guo W and Key TJ. Dietary assessment in UK Bi 573 obank: an evaluation of the performance of the touchscreen dietary questionnai 574 re. *J Nutr Sci.* 2018;7:e6.

31. Greenwood DC, Hardie LJ, Frost GS, Alwan NA, Bradbury KE, Carter M, E
lliott P, Evans CEL, Ford HE, Hancock N, Key TJ, Liu B, Morris MA, Mulla UZ,
Petropoulou K, Potter GDM, Riboli E, Young H, Wark PA and Cade JE. Valida
tion of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers. *Am J Epidemiol.* 2019;188:1858–1867.

32. Zhuang P, Liu X, Li Y, Wan X, Wu Y, Wu F, Zhang Y and Jiao J. Effect of
diet quality and genetic predisposition on hemoglobin A(1c) and type 2 diabet
es risk: gene-diet interaction analysis of 357,419 individuals. *Diabetes Care*. 20
21;44:2470–2479.

584 33. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabe 585 tes, and obesity: a comprehensive review. *Circulation*. 2016;133:187–225.

34. Rist PM, Buring JE, Ridker PM, Kase CS, Kurth T and Rexrode KM. Lipid
levels and the risk of hemorrhagic stroke among women. *Neurology*. 2019;92:e
2286–e2294.

589 35. Ma C, Gurol ME, Huang Z, Lichtenstein AH, Wang X, Wang Y, Neumann 590 S, Wu S and Gao X. Low-density lipoprotein cholesterol and risk of intracerebr

al hemorrhage: a prospective study. *Neurology*. 2019;93:e445-e457.

592 36. Kang ZQ, Yang Y and Xiao B. Dietary saturated fat intake and risk of stro 593 ke: systematic review and dose-response meta-analysis of prospective cohort st 594 udies. *Nutr Metab Cardiovasc Dis.* 2020;30:179–189.

37. Huang F, Wang H, Wang Z, Zhang J, Su C, Du W, Jiang H, Jia X, Ouyan
g Y, Wang Y, Li L and Zhang B. Knowledge, behavior and consumption types
of milk and dairy products among the Chinese aged 60 and above in 15 provi
nces (autonomous regions and municipalities) in 2015. *Wei Sheng Yan Jiu*. 201
9;48:9–15.

38. Jin S, Yuan R, Zhang Y and Jin X. Chinese consumers' preferences for att
ributes of fresh milk: a best-worst approach. *Int J Environ Res Public Health.* 2
019;16:4286.

39. Månsson HL. Fatty acids in bovine milk fat. Food Nutr Res. 2008;52:1821. 603 40. Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen 604 M, Qureshi W, Helmer C, Chen TA, Wong K, Bassett JK, Murphy R, Tintle N, 605 Yu CI, Brouwer IA, Chien KL, Frazier-Wood AC, Del Gobbo LC, Djoussé L, Ge 606 leijnse JM, Giles GG, de Goede J, Gudnason V, Harris WS, Hodge A, Hu F, K 607 oulman A, Laakso M, Lind L, Lin HJ, McKnight B, Rajaobelina K, Risérus U, R 608 obinson JG, Samieri C, Siscovick DS, Soedamah-Muthu SS, Sotoodehnia N, S 609 un Q, Tsai MY, Uusitupa M, Wagenknecht LE, Wareham NJ, Wu JH, Micha R, 610 Forouhi NG, Lemaitre RN and Mozaffarian D. Fatty acid biomarkers of dairy f 611 at consumption and incidence of type 2 diabetes: a pooled analysis of prospect 612 ive cohort studies. PLoS Med. 2018;15:e1002670. 613

41. Mozaffarian D and Wu JHY. Flavonoids, dairy foods, and cardiovascular an d metabolic health: a review of emerging biologic pathways. *Circ Res.* 2018;12

616 2:369–384.

- 42. Usinger L, Reimer C and Ibsen H. Fermented milk for hypertension. *Cochra ne Database Syst Rev.* 2012;4:Cd008118.
- 43. Dixon A, Robertson K, Yung A, Que M, Randall H, Wellalagodage D, Cox
 T, Robertson D, Chi C and Sun J. Efficacy of probiotics in patients of cardiova
 scular disease risk: a systematic review and meta-analysis. *Curr Hypertens Rep.*2020;22:74.
- 44. Chen GC, Wang Y, Tong X, Szeto IMY, Smit G, Li ZN and Qin LQ. Chees
 e consumption and risk of cardiovascular disease: a meta-analysis of prospectiv
 e studies. *Eur J Nutr.* 2017;56:2565–2575.
- 45. Mulet-Cabero AI and Wilde PJ. Role of calcium on lipid digestion and seru m lipids: a review. *Crit Rev Food Sci Nutr.* 2023;63:813–826.
- 46. Sutanto H, Lyon A, Lumens J, Schotten U, Dobrev D and Heijman J. Cardi omyocyte calcium handling in health and disease: insights from in vitro and in silico studies. *Prog Biophys Mol Biol.* 2020;157:54–75.
- 47. Bruen R, Fitzsimons S and Belton O. Atheroprotective effects of conjugated
 linoleic acid. *Br J Clin Pharmacol.* 2017;83:46–53.
- 48. Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, van der
 Meer IM, Hofman A and Witteman JC. Dietary intake of menaquinone is asso
 ciated with a reduced risk of coronary heart disease: the Rotterdam Study. *J N utr.* 2004;134:3100–3105.
- 49. Hjerpsted J and Tholstrup T. Cheese and cardiovascular disease risk: a rev
 iew of the evidence and discussion of possible mechanisms. *Crit Rev Food Sci Nutr.* 2016;56:1389–1403.
- 50. Ziaei R, Ghavami A, Khalesi S, Ghiasvand R and Mokari Yamchi A. The ef

fect of probiotic fermented milk products on blood lipid concentrations: a syste
 matic review and meta-analysis of randomized controlled trials. *Nutr Metab Car diovasc Dis.* 2021;31:997–1015.

51. Wu L and Sun D. Consumption of yogurt and the incident risk of cardiovas
cular disease: a meta-analysis of nine cohort studies. *Nutrients*. 2017;9:315.

52. Wan Z, Khubber S, Dwivedi M and Misra NN. Strategies for lowering the a
dded sugar in yogurts. *Food Chem*. 2021;344:128573.

53. Chen Z, Ahmed M, Ha V, Jefferson K, Malik V, Ribeiro PAB, Zuchinali P a
nd Drouin-Chartier JP. Dairy product consumption and cardiovascular health: a
systematic review and meta-analysis of prospective cohort studies. *Adv Nutr.* 2
021;13:439–54.

54. Mazidi M, Mikhailidis DP, Sattar N, Howard G, Graham I and Banach M. C
onsumption of dairy product and its association with total and cause specific m
ortality - a population-based cohort study and meta-analysis. *Clin Nutr.* 2019;38:
2833–2845.

55. Lai K, Elsas LJ and Wierenga KJ. Galactose toxicity in animals. *IUBMB Lif*e. 2009;61:1063–1074.

56. Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L and Liu J. Chronic
systemic D-galactose exposure induces memory loss, neurodegeneration, and o
xidative damage in mice: protective effects of R-alpha-lipoic acid. *J Neurosci R*es. 2006;83:1584–1590.

57. Michaëlsson K, Wolk A, Langenskiöld S, Basu S, Warensjö Lemming E, Me
lhus H and Byberg L. Milk intake and risk of mortality and fractures in women
and men: cohort studies. *BMJ*. 2014;349:g6015.

58. Benatar JR, Sidhu K and Stewart RA. Effects of high and low fat dairy foo

- d on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS
- 667 ONE. 2013;8:e76480.

Figure legends

Figure 1. Associations of dairy consumption with cardiovascular disease, coronary heart disease, and stroke risk for high compared with low category of intake using random effects meta-analysis. (A) Cardiovascular disease. (B) Coronary heart disease. (C) Stroke. Squares represent study to Specific relative risk. Gray square areas are proportional to the individual study weight for the overall meta-analysis. Horizontal lines denote 95% CIs. I² refers to the proportion of heterogeneity among studies. M, men; W, women; CKB, China Kadoorie Biobank; UKB, UK Biobank.

Figure 2. Associations of milk, yogurt, cheese consumption with cardiovascular disease risk for high compared with low category of intake using random effects meta-analysis. (A) Milk. (B) Yogurt. (C) Cheese. Squares represent study to Specific relative risk. Gray square areas are proportional to the individual study weight for the overall meta-analysis. Horizontal lines denote 95% CIs. I² refers to the proportion of heterogeneity among studies. M, men; W, women; CKB, China Kadoorie Biobank; UKB, UK Biobank.

Figure 3. Associations of low-fat and high-fat dairy consumption with cardiovascular disease risk for high compared with low category of intake using random effects meta-analysis. (A) Low-fat. (B) High-fat. Squares represent study to Specific relative risk. Gray square areas are proportional to the individual study weight for the overall meta-analysis. Horizontal lines denote 95% CIs. I² refers to the proportion of heterogeneity among studies. M, men; W, women; CKB, China Kadoorie Biobank; UKB, UK Biobank.

medRxiv preprint doi: https://doi.org/10.1101/2023.11.14.23298545; this version posted November 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Table 1. Hazard ratios (95% confidence intervals) for incident cardiovascular disease according to categories of dairy consumption in China Kadoorie Biobank

		Frequency of	f dairy consumption	on	_
	Never/rarely	Monthly	1-3 d/wk	Regularly (≥4 d/wk)	P trend
Total cardiovascular disease					
No of cases (%)	42 641 (12.6)	7830 (14.5)	5788 (14.1)	9873 (18.1)	
Person-years	2 939 269	450 552	343 795	457 060	
Model 1*	1 (Reference)	1.21 (1.18–1.24)	1.26 (1.23–1.30)	1.33 (1.30–1.36)	<0.001
Model 2†	1 (Reference)	1.00 (0.98–1.03)	0.98 (0.95–1.01)	0.94 (0.92–0.97)	<0.001
Model 3‡	1 (Reference)	1.01 (0.99–1.04)	1.00 (0.97–1.03)	0.96 (0.93–0.98)	0.007
Model 4§	1 (Reference)	1.03 (1.00–1.05)	1.03 (1.00–1.06)	1.00 (0.97–1.03)	0.470
Coronary heart disease	х ,	, , , , , , , , , , , , , , , , , , ,			
No of cases (%)	21 129 (6.3)	4032 (7.5)	3264 (8.0)	6051 (11.1)	
Person-years	3 006 398	463 388	352 952	471 541	
Model 1*	1 (Reference)	1.24 (1.20–1.28)	1.41 (1.36–1.46)	1.61 (1.57–1.66)	<0.001
Model 2†	1 (Reference)	1.03 (1.00–1.07)	1.03 (0.99–1.07)	1.04 (1.00–1.07)	0.023
Model 3‡	1 (Reference)	1.04 (1.00–1.08)	1.05 (1.01–1.09)	1.05 (1.01–1.09)	0.002
Model 4§	1 (Reference)	1.05 (1.02–1.09)	1.07 (1.03–1.12)	1.09 (1.05–1.13)	<0.001
Stroke	х ,	, , , , , , , , , , , , , , , , , , ,			
No of cases (%)	25 708 (7.6)	4732 (8.8)	3338 (8.1)	5450 (10.0)	
Person-years	2 999 803	461 574	353 514	475 204	
Model 1*	1 (Reference)	1.20 (1.17–1.24)	1.20 (1.16–1.24)	1.17 (1.13–1.20)	<0.001
Model 2†	1 (Reference)	0.98 (0.95–1.01)	0.96 (0.92–0.99)	0.88 (0.85–0.91)	<0.001
Model 3‡	1 (Reference)	0.99 (0.96–1.02)	0.98 (0.94–1.02)	0.89 (0.86–0.92)	<0.001
Model 4§	1 (Reference)	1.01 (0.98–1.04)	1.01 (0.97–1.05)	0.94 (0.91–0.97)	0.005
Haemorrhagic stroke					
No of cases (%)	6128 (1.8)	825 (1.5)	410 (1.0)	552 (1.0)	
Person-years	3 065 433	475 123	363 921	492 972	
Model 1*	1 (Reference)	0.86 (0.80–0.92)	0.60 (0.55–0.67)	0.48 (0.44–0.52)	<0.001
Model 2†	1 (Reference)	0.89 (0.83–0.96)	0.83 (0.75–0.92)	0.66 (0.60–0.72)	<0.001
Model 3‡	1 (Reference)	0.92 (0.85–0.99)	0.87 (0.78–0.96)	0.69 (0.63–0.76)	<0.001
Model 4§	1 (Reference)	0.95 (0.88–1.02)	0.92 (0.83–1.02)	0.76 (0.69–0.83)	<0.001
Ischaemic stroke		4000 (7.4)	0000 (7.0)	4000 (0.4)	
No of cases (%)	20 256 (6.0)	4008 (7.4)	2992 (7.3)	4966 (9.1)	
Person-years	3 010 375	463 106	354 354	476 285	0.004
Model 1*	1 (Reference)	1.30 (1.25–1.34)	1.37 (1.31–1.42)	1.35 (1.31–1.40)	<0.001
Model 2†	1 (Reference)	0.99 (0.96–1.03)	0.98 (0.94–1.02)	0.90 (0.87–0.93)	<0.001
Model 3‡	1 (Reference)	1.00 (0.97–1.04)	1.00 (0.96–1.04)	0.91 (0.88–0.95)	<0.001
Model 4§	1 (Reference)	1.02 (0.98–1.05)	1.03 (0.98–1.07)	0.96 (0.92–0.99)	0.090

*Model 1 was adjusted for age and sex.

†Model 2 was further adjusted for study area (10 regions), survey season, education (no formal school, primary school, middle or high school, or college and above), income (in yuan/year; <5000, 5000-9999, 10 000–19 999, 20 000-34 999, or ≥35 000), physical activity (in MET-h/wk; quartiles), smoking (never/occasionally, former, or current smoker), alcohol drinking (never/occasionally, former, or current drinker), family history of CVD (yes or no), aspirin use (yes or no), vitamins use (yes or no) and minerals use (yes or no).

 \pm Model 3 was further adjusted for body mass index (in kg/m²; <18.5, 18.5-23.9, 24-27.9, or ≥28), history of hypertension (yes or no), and diabetes (yes or no).

§Model 4 was further adjusted for red meat, fish, poultry, eggs, fruits (never/rarely, monthly, 1–3

days/week, or regularly), and vegetables (daily or less than daily).

medRxiv preprint doi: https://doi.org/10.1101/2023.11.14.23298545; this version posted November 15, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

		Dairy co	onsumption		- P trend
	0 serving/d	≤0.5 serving/d	0.5–1.0 serving/d	> 1 serving/d	- Furena
Ν	33 803	34 858	54 276	60 509	
CVD					
No of cases (%)	2448 (7.2)	2292 (6.6)	3497 (6.4)	3895 (6.4)	
Person-years	373 622.5	390 329.4	606 703.7	678 468.8	
Model 1*	1 [Reference]	0.87 (0.83–0.93)	0.86 (0.81–0.90)	0.84 (0.80–0.88)	<0.001
Model 2†	1 [Reference]	0.93 (0.88–0.99)	0.91 (0.86–0.96)	0.90 (0.86–0.95)	<0.001
Model 3‡	1 [Reference]	0.95 (0.90–1.01)	0.92 (0.88–0.97)	0.92 (0.87–0.97)	<0.001
Model 4§	1 [Reference]	0.96 (0.90–1.01)	0.93 (0.88–0.98)	0.93 (0.88–0.98)	0.004
CHD					
No of cases (%)	2042 (6.0)	1906 (5.5)	2912 (5.4)	3228 (5.3)	
Person-years	375 317.5	391 952.6	609 158.4	681 277.5	
Model 1*	1 [Reference]	0.87 (0.82–0.93)	0.86 (0.81–0.91)	0.84 (0.80–0.89)	<0.001
Model 2†	1 [Reference]	0.94 (0.88–1.00)	0.92 (0.87–0.97)	0.91 (0.86–0.96)	<0.001
Model 3‡	1 [Reference]	0.96 (0.90-1.02)	0.93 (0.88–0.99)	0.92 (0.87–0.98)	0.005
Model 4§	1 [Reference]	0.96 (0.90–1.02)	0.94 (0.89–0.99)	0.93 (0.88–0.99)	0.014
Stroke					
No of cases (%)	499 (1.5)	457 (1.3)	698 (1.3)	802 (1.3)	
Person-years	384 114.7	399 863.2	621 356.8	694 107.5	
Model 1*	1 [Reference]	0.84 (0.74–0.96)	0.82 (0.73–0.92)	0.83 (0.74–0.93)	0.003
Model 2†	1 [Reference]	0.89 (0.78–1.01)	0.86 (0.77-0.97)	0.87 (0.78–0.98)	0.027
Model 3‡	1 [Reference]	0.90 (0.79–1.02)	0.87 (0.78–0.98)	0.89 (0.79–0.99)	0.051
Model 4§	1 [Reference]	0.91 (0.80–1.03)	0.88 (0.78–0.99)	0.90 (0.80–1.01)	0.084
Hemorrhagic stroke					
No of cases (%)	81 (0.2)	73 (0.2)	106 (0.2)	138 (0.2)	
Person-years	385 796.5	401 501.5	623 807.9	696 931.7	
Model 1*	1 [Reference]	0.82 (0.60–1.13)	0.76 (0.57–1.02)	0.87 (0.66–1.14)	0.369
Model 2†	1 [Reference]	0.85 (0.62–1.17)	0.79 (0.59–1.05)	0.89 (0.67–1.17)	0.464
Model 3‡	1 [Reference]	0.86 (0.62–1.18)	0.79 (0.59–1.06)	0.90 (0.68–1.19)	0.521
Model 4§	1 [Reference]	0.86 (0.63–1.19)	0.80 (0.60–1.07)	0.91 (0.69–1.20)	0.555
Ischemic stroke					
No of cases (%)	338 (1.0)	307 (0.9)	472 (0.9)	512 (0.9)	
Person-years	384 882.6	400 535.3	622 373.4	695 336.2	
Model 1*	1 [Reference]	0.84 (0.72–0.98)	0.82 (0.71–0.94)	0.78 (0.68–0.89)	<0.001
Model 2†	1 [Reference]	0.89 (0.77–1.04)	0.87 (0.75–1.00)	0.83 (0.72–0.95)	0.010
Model 3‡	1 [Reference]	0.91 (0.78–1.06)	0.88 (0.76–1.01)	0.85 (0.74–0.98)	0.023
Model 4§	1 [Reference]	0.92 (0.78–1.07)	0.89 (0.77–1.02)	0.86 (0.75–0.99)	0.036

Table 2. Hazard ratios (95% confidence intervals) for incident cardiovascular disease according to categories of dairy consumption in UK Biobank

*Model 1 was adjusted for age (continues) and sex (male or female).

†Model 2 was additionally adjusted for centers (22 categories), survey season (spring, summer, autumn, or winter), education (college or university degree, vocational qualifications, optional national exams at ages 17–18 years, national exams at age 16 years, others, or missing), household income (<£18 000, £18 000-£30 999, £31 000-£51 999, £52 000-£100 000, >£100 000, or missing), physical activity (MET-h/wk, quartiles), smoking (never, former, current, or missing), alcohol drinking (never or special occasions only, 1 or 2 times/week, 3 or 4 times/week, ≥5 times/week, or missing), family history of CVD (yes or no), aspirin use (yes or no), vitamins use (yes or no) and minerals use (yes or no).

‡Model 3 was further adjusted for body mass index (in kg/m²; <18.5, 18.5 to 25, 25 to 30), history of hypertension (yes or no), and diabetes (yes or no).

§Model 4 was further adjusted for red meat, poultry (times/week; <2, 2-4, >4), processed red meat, oily fish, non-oily fish (times/week; <1, 1, ≥2), vegetables (servings/day; <1/, 1-3, ≥3), fruits (servings/day; <2, 2-4, \geq 4), and eggs (yes or no).

Figure 1

	Cases/N	HR (95% CI)	Wei
Excluding the CKB study and the UKB			
Matina Kouvari 2020 Pao-Hwa Lin 2013	277/1885	0.72 (0.29, 1.80) 0.74 (0.48, 1.14)	0. 0.
Emma Patterson 2013	1392/33 636	• 0.77 (0.63, 0.95)	1.
Mahshid Dehghan 2018	5855/136 384	0.78 (0.67, 0.90)	3.
Tammy Y.N. Tong 2020	7378/418 329	0.89 (0.85, 0.93)	7
Emily Sonestedt 2011	2520/26 445	0.89 (0.78, 1.01)	3
Adam M. Bernstein 2012	4030/127 160 7198/409 885	0.90 (0.83, 0.98)	5
Timothy J. Key 2019 Sabita S. Soedamah-Muthu 2013	323/4255	0.91 (0.68, 1.22)	1
Susanna C. Larsson 2012	4089/74 961	0.91 (0.80, 1.02)	3
Ingegerd Johansson 2018 W	2746/50 231	0.96 (0.90, 1.03)	e
Timo T. Koskinen 2018	472/1981	0.97 (0.71, 1.34)	(
Geertje W. Dalmeijer 2013	2179/33 625	0.98 (0.93, 1.03)	6
Laury Sellem 2021	1952/104 805	0.99 (0.88, 1.13)	3
Amée M.Buziau 2019	835/7679	0.99 (0.82, 1.18)	2
Jaike Praagman 2015	1131/4235	0.99 (0.83, 1.18)	-
Adam M. Bernstein 2010	3162/84 136	0.99 (0.91, 1.08)	5
Wael K. Al-Delaimy 2003	1458/39 800	1.01 (0.83, 1.23)	-
Bernhard Haring 2014	1147/12 066 5203/48 341	1.04 (0.84, 1.29)	
Ingegerd Johansson 2018 M Elisea E. Avalos 2012 M	222/751	◆ 1.05 (1.00, 1.10) ◆ 1.08 (0.95, 1.23)	1
Elisea E. Avalos 2012 W	229/1008	1.08 (0.93, 1.26)	
Jing Guo 2022	904/1746	• 1.13 (0.90, 1.43)	
Susanna C. Larsson 2009	3281/26 556	1.17 (1.03, 1.33)	3
Subgroup, DL ($I^2 = 65.1\%$, p < 0.001)		0.963 (0.926, 1.001)	85
The CKB study and the UKB study Pan Zhuang 2023 (UKB)	12 132/183 446	0.93 (0.88, 0.98)	e
Pan Zhuang 2023 (CKB)	66 132/487 212	1.00 (0.97, 1.03)	-
Subgroup, DL (I ² = 81.2%, p = 0.021)		0.97 (0.90, 1.04)	14
Heterogeneity between groups: p = 0.89 Overall, DL (l ² = 66.1%, p < 0.001)	95	0.963 (0.932, 0.995)	100
		l l .5 1 2	
Group and Study	Cases/N	HR (95% CI)	Wei
Excluding the CKB study and the UKE Jing Guo 2022	3 study 332/1746	0.76 (0.52, 1.11)	1
Emma Patterson 2013	1392/33 636	0.77 (0.63, 0.95)	3
Emily Sonestedt 2011	1344/26 445	0.86 (0.73, 1.02)	4
Mahshid Dehghan 2018	2594/136 384	0.89 (0.71, 1.11)	2
Timothy J. Key 2019	7198/409 885	0.91 (0.87, 0.96)	9
Sabita S. Soedamah-Muthu 2013	323/4255	0.91 (0.68, 1.22)	1
Ingegerd Johansson 2018 W	1193/50 231	0.95 (0.86, 1.05)	6
Laury Sellem 2021	1219/104 805	0.95 (0.80, 1.12)	4
Timo T. Koskinen 2018	472/1981	0.97 (0.71, 1.34)	1
	567/4235	0.98 (0.77, 1.25)	2
Jaike Praagman 2015			9
Geertje W. Dalmeijer 2013	1648/33 625	0.99 (0.94, 1.05)	
Adam M. Bernstein 2010	3162/84 136	0.99 (0.91, 1.08)	7
Wael K. Al-Delaimy 2003	1458/39 800	1.01 (0.83, 1.23)	3
Bernhard Haring 2014	1147/12 066	1.04 (0.84, 1.29)	3
Ingegerd Johansson 2018 M	3102/48 341	1.05 (0.99, 1.12)	8
Elisea E. Avalos 2012 M	222/751	1.08 (0.95, 1.23)	5
Elisea E. Avalos 2012 W	229/1008	1.08 (0.93, 1.26)	4
Subgroup, DL (l ² = 44.0%, p = 0.027)		0.97 (0.93, 1.01)	81
The CKB study and the UKB study			
Pan Zhuang 2023 (UKB)	10 088/183 446	0.93 (0.88, 0.99)	8
Pan Zhuang 2023 (CKB)	34 776/487 212	1.09 (1.05, 1.13)	9
Subgroup, DL (I ² = 95.0%, p < 0.001)		1.01 (0.86, 1.18)	18
Heterogeneity between groups: p = 0.6 Overall, DL (l² = 70.5%, p < 0.001)	36	0.98 (0.93, 1.02)	100
	l .5		
Group and Study	Cases/N	HR (95% CI)	Wei
Excluding the CKB study and the L	JKB study		
Mahshid Dehghan 2018	2718/136 384 -	0.66 (0.53, 0.82)	3
Pao-Hwa Lin 2013	123/2061	0.74 (0.48, 1.14)	C
Tammy Y.N. Tong 2020	7378/418 329	0.89 (0.85, 0.93)	13
Adam M. Bernstein 2012	4030/127 160	0.90 (0.83, 0.98)	ş
Susanna C. Larsson 2012	4089/74 961	0.91 (0.80, 1.03)	e
Emily Sonestedt 2011	1176/26 445	0.91 (0.75, 1.09)	3
Laury Sellem 2021	878/104 805	0.93 (0.76, 1.13)	3
Geertje W. Dalmeijer 2013	531/33 625	0.95 (0.85, 1.05)	ε
Ingegerd Johansson 2018 W	1553/50 231		ç
		0.96 (0.88, 1.05)	
Jaike Praagman 2015	564/4235	0.99 (0.76, 1.27)	2
Ingegerd Johansson 2018 M	2101/48 341	• 1.02 (0.94, 1.10)	10
Susanna C. Larsson 2009	1281/26 556	1.17 (1.03, 1.33)	6
Subgroup, DL (I ² = 67.1%, p < 0.00			78
the CKB study and the UKB study			
Pan Zhuang 2023 (UKB)	2456/183 446	0.90 (0.80, 1.01)	-
		<u> </u>	
Pan Zhuang 2023 (CKB) Subgroup, DL (l ² = 0.0%, p = 0.481)	39 228/487 212	0.94 (0.91, 0.97)	14 21
- and and a final			
Heterogeneity between groups: p = 0	970		

Figure 2

Home begins 218 Charles 128	Group and Study	Cases/N	HR (95% Cl)	% Weigh
Main Description protein SPECing and protein SPE				
Targery Ni Teg 2020 Targe Go 2027 Targery Ni Teg 2020 Targery Ni Teg				0.59
Arp Gazz Dev1748 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				5.2
projega data data data data data data data da				8.0 2.6
bis is Sociality Lotter 0.00101 221420 0.00101<				2.0
Hein K. M. Beginsta 2015 366/07.00 0				1.7
Market Koval 200 277/1455 0, 07 (0, 8, 1, 10) Law 2004 1992 (0, 4, 20) 0, 07 (0, 8, 1, 10) Law 2004 1992 (0, 4, 20) 0, 07 (0, 8, 1, 10) Law 2004 1992 (0, 4, 20) 1992 (0, 4, 20) Law 2004 1992 (0, 4, 20) 1992 (0, 4, 20) Law 2004 220 (10) 1992 (0, 4, 20) Law 2004 277 (10) 100 (0, 4, 10) Law 2004 297 (10, 10) 100 (0, 4, 10) Law 2004 297 (10, 10) 100 (0, 10) <				6.1
Browing Zeing 2022 45(102-04) Law Select 2017 115(2014) 12(2017) Eliber E. Average 2017 N 12(2017) Eliber E. Average 2017 N 12(2017) Eliber E. Average 2018 N 12(2017) Eliber E. Average 2				4.3
Lang Selem 2021 Lang S	Timothy J. Key 2019	7198/409 885		7.0
Lase Fuedors 2016 Else E. Anos 2017 Ma Else E. Charlos 2017 Ma Else E. Charlos 2017 Ma Else E. Charlos 2017 Ma Else Charlos 2018 Ma Else E. Charlos 2018 Ma Else Charlos 2018 Ma Else Else S. Anos 2018 Ma Else Else S. Boltanda Ma Else Else S. Bolta		4261/20 499		11.5
BEBE E. Advance 2010 M 220191 100 (022, 13) Bebe C. Marcel 2000 (2004) 3110 (2004) 100 (022, 13) Bebe C. Marcel 2000 (2004) 3110 (2004) 100 (022, 13) Bebe C. Marcel 2001 (2004) 3110 (2004) 100 (022, 13) Bebe C. Marcel 2001 (2004) 3110 (2004) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 100 (023, 150) 100 (023, 150) Bebe C. Marcel 2001 (2004) 207/1463 000 (03, 150) Marcel 2004 (2004) 207/1463 000 (03, 150) Bebe C. Marcel 2001 (2004) 207/1463 000 (03, 150) Marcel 2004 (2004) 207/1463 000 (03, 150) Marcel 2004 (2004) 100 (03, 150) 100 (03, 150) Marcel 2004 (2004) 100 (03, 150) 100 (0	Laury Sellem 2021	1952/104 805	1.00 (0.89, 1.14)	5.4
Bink Deck 2020 (COSM) 19 82043 79 Bink Deck 2020 (COSM) 19 82043 79 Bink Deck 2020 (SM) 79 8003 882 Bink Deck 2020 (SM) 79 8003 882 Bink Deck 2020 (SM) 19 8003 882 Bink Deck 2020 (SM) 20 1088 Bink Deck 2020 (SM) 100 (SX, 16) Bink Deck 2020 (SM) 100 (SX, 16) Deck 2020 (SM) 2771485 Deck 2020 (SM) 277148 Deck 2020 (SM) 227148 Disk 2020 (SM) 227148 Disk 2020 (SM) 220102		1131/4235		2.4
Barran C Laracei 200 Barran C Laracei 200 The UC abar Barran C Laracei 200 The UC abar Barran C Laracei 200 Barran C Laracei 200 The UC abar Barran C Laracei 200 Barran C Laracei 200 The UC abar Barran C Laracei 200 Barran C Larac				2.3
Eine Global 2022 (MC) 70605 892 Eine Fatterson 2013 (12023 508 Eine Fatterson 2014 (12023 508 Eine Fatterson 2015 (12023 508 Eine Fatterson 2016 508 Eine Fatterson 2016 508 Eine Fatterson 2017 508 Eine Fatterson 2016 508 Eine Fatterson 2016 508 Eine Fatterson 2016 508 Eine Fatterson 2016 508 Eine Fatterson 2017 508 Eine Fatterson 2018 508 Ei				7.5
Emma Platelone 2013 132023 0.86 Timo T, Kolene SDIB 202344.81 Segreg, D, LI, P = 61 Hs, p < 0.01)				7.8
Import Standard 2016 472:1011 Import Standard 2018 M 220109 Standard 2018 M 220109 Standard 2018 M 220109 The UKB staty 100 (0.97, 10.91) The UKB staty 100 (0.97, 10.91) The UKB staty 00				2.5
Image of Lenses. 2016 M 52/2014 39 1 Elseria E. Anice 2017 W 2201009 Part Viet and Part Part Part Part Part Part Part Part				3.4
Efficiency 229/1028 120 (108, 102) File Gamp 120 (108, 102) 120 (108, 102) The UKB and/ Pan Zhung 2020 (UKB) 12 122/103 446 150 (108, 102) Intercognently between groups: p = 0.800 150 (108, 102) 150 (108, 102) Group and Study Cases/N HR (65% CD) V Excluding the UKB study 5 1 0.0 (20, 0.69) Amine Kounal 2020 277/1865 0.70 (020, 0.69) 0.70 (020, 0.69) Immetry Like groups: p = 0.800 500 (020, 0.69) 0.80 (081, 0.69) 0.80 (081, 0.69) Excluding the UKB study Materia Kounal 2020 277/1865 0.70 (020, 0.69) 0.70 (020, 0.69) Immetry Like groups: p = 0.800 0.70 (020, 0.77 (06) 0.80 (081, 0.69) 0.80 (081, 0.69) Excluding the UKB study 1.00 (081, 120) 0.80 (081, 0.69) 0.80 (081, 0.69) Substance Clamans 2005 1.20 (081, 120) 1.20 (081, 120) 0.80 (081, 0.69) Substance Clamans 2005 1.20 (081, 120) 1.20 (081, 120) 1.20 (081, 120) Substance Clamans 2005 1.20 (081, 120) 1.20 (081, 120) 1.20 (081, 120				3.1
Storgen, DL, U ⁺ = 61, Hb, p < 0.001)				6.1
Pair Zhang 2023 (KK) 12 122/183.44 150 (5.9, 110) Hemperity Memory (puckers) products pr		229/1008		1.7 93.3
Ownell DL (I ⁺ = 51%, p < 0.001) 100 (0.97, 104) 10 Group and Study Cases/N HR (65%, CI) V Excluding the UKB study HR (65%, CI) V Image: Compared Study Cases/N HR (65%, CI) V Excluding the UKB study Bitson Zool 0.77 (0.28, 0.88) 0.80 (0.75, 106) 0.80 (0.75, 106) Imathy J. Key 2019 7198449 385 0.99 (0.42, 0.27) 0.88 (0.75, 106) 0.90 (0.42, 0.27) Market Dubying 2019 7198449 385 0.99 (0.75, 106) 0.90 (0.82, 1.02) Market Dubying 2019 7198449 385 10.00 (0.82, 1.02) 10.00 (0.82, 1.02) Market Dubying 2015 1111/12325 11.10 (0.81, 122) 11.10 (0.81, 122) Jage Colon 222/155 12.20 (0.81, 168) 12.20 (0.81, 168) Bitema E, Avalos 2012 W 222/1008 12.20 (0.81, 168) 12.20 (0.81, 168) Bitema D, Avalos 2012 W 222/1010 10.00 (0.2, 1.07) 10.00 (0.2, 1.07) The UKB study 22/1003 22/1003 0.77 (0.43, 1.20) 0.77 (0.43, 1.20) Bitema D, 2010 W 22/1003 22/10		12 132/183 446	1.00 (0.90, 1.10)	6.6
Ownel, DL (* = 53, 1%, p < 0.001) 100, 0.97, 1.04) 10 Scop and Sludy Cases/N HR (65%, C) V Excluding the UKB study B307679 0.88 (0.75, 1.05) 0.88 (0.75, 1.05) Tammy VI, Torg 2020 7.778418 320 0.98 (0.75, 1.05) 0.98 (0.75, 1.05) Materia Roam 2015 1.199243 885 0.99 (0.84, 0.07) 0.88 (0.75, 1.05) Materia Roam 2015 1.199243 885 0.99 (0.84, 0.07) 0.88 (0.75, 1.05) Materia Roam 2015 1.1914235 1.10 (0.87, 1.23) 1.00 (0.87, 1.01) Statum Roam 2015 1.1914235 1.11 (0.06, 1.22) 1.19 (0.87, 1.64) Status S, Scedama Mutru 2013 2.22751 1.23 (0.85, 1.68) 1.23 (0.87, 1.68) Status S, Scedama Mutru 2013 2.22755 1.23 (0.82, 1.69) 1.23 (0.82, 1.69) Else El, Avalos 2012 W 2.22751 1.23 (0.82, 1.69) 1.23 (0.82, 1.69) Demogratily between groups: p = 0.750 0.99 (0.83, 1.00) 0.77 (0.43, 1.20) Demogratily between groups: p = 0.750 0.77 (0.43, 1.20) 0.77 (0.43, 1.20) Demogratily between groups: 0.10 2.277718 0.80 (0.60, 0.01)	Heterogeneity between groups; p = 0.00	15	\rightarrow	
Group and Study Cases/N HR (65% C) V Excluding the UK8 study 0.70 0.24, 0.80 0.87 0.72, 1.96 0.87 0.72, 1.96 Arren V M. Trag 2020 7378418 0.29 0.87 0.72, 1.96 0.88 0.81, 0.94 Emme Platerion 2013 139203 0.86 0.90 0.75, 1.07 0.90 0.75, 1.07 Mathing Color 2019 5381728 800 0.90 0.75, 1.07 0.90 0.75, 1.07 Subare Pragman 2015 1314203 0.90 0.75, 1.07 0.90 0.75, 1.07 Jake Pragman 2015 1314203 1.90 0.86, 1.29 1.30 0.87, 1.80 Jake Pragman 2015 1314203 1.10 0.86, 1.29 1.33 (0.81, 1.63) Jake Pragman 2015 1.314203 1.30 0.87, 1.80 1.32 (0.81, 1.63) Databate S oceasimeMuthum 2013 2.201008 1.32 (0.81, 1.63) 1.32 (0.81, 1.63) Subgroup, DL (* 64.3%, p < 0.001)			1.00 (0.97, 1.04)	100.0
Excluding the UKB study 0.70 (0.28, 0.88) Amele Musicu 2010 3577718 Tammy ML roug 2020 7774418329 Birman Faterson 2013 1392933 066 Tumely J. Key 2019 7196409 865 Malatio Explana 2015 54394738 300 Jase Franzyman 2015 11314235 Jase Franzyman 2015 11310 87, 148 Elinea E. Avaios 2012 M 2221701 Subgroup, DL (* 64.3%, p = 0.001) 120 (0.8, 169) The UKB study 123 (0.8, 16.9) Pan Zhang 2023 (IKB) 12 132/183.446 Tommy N. Trong 2020 778418 329 Subgroup, DL (* 64.8%, p < 0.001)	Group and Study	Cases/N		Wei
Marea Kuwan 2020 2771885 0.70 0.28 0.89) Arnde M, Buzini 2019 8357779 0.87 0.72 1.04) Tarmry N. Tong 2020 7378415 229 0.80 0.81 0.04) Eines E, Avalos 2012 1952104 805 0.80 0.81 0.04) Jaake T, Lasson 2029 9041746 100 0.98 1.25) Jaake T, Raagman 2015 11314235 110 0.98 1.27) Jaake T, Raagman 2015 1131 0.87 1.71 120 0.98 1.18) Subgroup, DL (f* e4.3%, p e 0.001) 12 122/183 446 1.01 0.97, 1.00) The UKB study 2291008 1.32 (0.28 1.10) 0.99 0.93, 1.09) Par Zhuang 2023 (UKB) 12 122/183 446 1.01 0.97, 1.00) The UKB study 239108 0.97 (0.43, 1.20) Parking the UKB study 239108 0.97 (0.43, 1.20) Subgroup, DL (f* e4.3%, p e 0.001) 132/0.28 1.65 0.97 (0.43, 1.20) Timothy J, Key 2109 132/0.28 1.65 0.97 (0.43, 1.20) Subgroup, DL (f* e4.3%, p e 0.001) 132/0.28 1.65 0.97 (0.43, 1.00) Subgroup, DL (f* 26.3%, p e 0.17		00000		
Ande M. Buziau 2019 857679 0 07 27, 104) Tammy YA. Tray 2020 7378/418 329 0 08 (0.51, 105) Tammy YA. Tray 2020 7378/418 329 0 08 (0.51, 105) Timotry J. Key 2019 7198/408 885 0 0.00 (0.75, 107) Lucy Selem 2021 1952/104 805 Susanoa C. Larason 2009 229/102 854 Jake Praagman 2015 1131/4255 J. 110 (0.86, 1.29) Jake Praagman 2015 1131/4255 J. 111 (0.98, 1.27) Jang Goo 2022 99/41746 J. 2019 08 (0.81, 106) Babta S. Seedamah-Mutury 2013 229/1028 854 Jake Praagman 2015 1131/4255 J. 111 (0.98, 1.27) Jang Goo 2022 99/41746 J. 2019 08 J. 2019 08 J. 2019 08 J. 2019 08 J. 2019 09 J. 2019 00	• •			
Termy YN. Torg 2020 Terms Patterion 2013 Timothy J. Kry 2016 Timothy	Matina Kouvari 2020	277/1885	• 0.70 (0.28, 0.88)	1
Emma Patterson 2013 139233.636 0.89 (0.75, 1.05) Timotry J. Key 2019 71944/09.885 0.90 (0.8, 1.02) Mathid Delphan 2019 2381/25.856 1.00 (0.8, 1.20) Susama C. Linson 2000 3281/25.656 1.10 (0.8, 1.20) Jake Pragman 2015 1.111/10.255 1.110 (0.8, 1.20) Jake Pragman 2015 1.23 (0.83, 1.68) 1.20 (0.85, 1.89) Statawa C. Largo 2022 9.941744 1.20 (0.8, 1.89) Statawa C. Largo 2012 M 22911008 1.23 (0.83, 1.69) Statawa C. Largo 2012 W 22911008 1.20 (0.8, 1.89) Statawa 2012 W 22911008 1.00 (0.92, 1.07) The UKB study 1.01 (0.97, 1.06) 1.00 (0.92, 1.07) Pan Zhuang 2023 (UKB) 12 132/183 446 1.01 (0.97, 1.06) Heterogenetity between groups: p = 0.750 0.99 (0.33, 1.00) 0.74 (0.43, 1.20) Owerall, DL (I* 64.3%, p < 0.001)	Amée M. Buziau 2019	835/7679	• 0.87 (0.72, 1.04)	6
Emma Patterson 2013 19203 636 10 00 75, 105 10 00 96, 123 10 00 96, 123 11 00 09, 122 11 10 09, 122 12 102/155 Eleas E. Avidos 2012 M 22 102/153 446 10 10 097, 106 10 00 92, 107 10 00 92, 1	Tammy Y.N. Tong 2020	7378/418 329	0.88 (0.81, 0.94)	12
Timothy J. Key 2019 7196409 885 0 00 (0 8.0 57) Mantalo Denghan 2015 1334427 0 00 (0 8.0 57) Jake Pragman 2015 13141235 110 (0 08, 1.23) Jake Pragman 2015 13141235 111 (0 08, 1.25) Jake Dragman 2015 13141235 111 (0 08, 1.25) Jake Dragman 2015 13141235 111 (0 08, 1.26) Jake Dragman Authu 2013 3247265 123 (0 08, 1.68) Eliese E. Aviolos 2012 W 22911008 123 (0 08, 1.68) Subgroup, DL (f = 64.3%, p = 0.001) 12 132/183 446 1.01 (0.97, 1.06) Heterogeneity between groups: p = 0.750 0 0.99 (0 33, 1.08) 1 Overall, DL (f = 64.3%, p = 0.001) 5 2 0.71 (0.43, 1.20) 0.74 (0.60, 0.91) Subgroup, DL (r = 64.3%, p < 0.001)		1392/33 636	—	7
Mahala Dehghan 2019 94347/23 830 0.00 (0.75, 1.07) Laury Selima 2021 11952/104 805 1.00 (0.96, 1.23) Jake Pragman 2015 1131/6235 1.10 (0.96, 1.27) Jake Pragman 2015 1131/6235 1.11 (0.96, 1.27) Jake Pragman 2015 1131/6235 1.11 (0.96, 1.27) Jake Pragman 2015 1.22 (0.96, 1.27) 1.23 (0.93, 1.68) Elses E. Avaios 2012 M 222/751 1.20 (0.95, 1.68) Subgroup, DL (f² = 64.3%, p = 0.001) 1.00 (0.92, 1.07) The UKB study 1.01 (0.97, 1.06) Pan Zhuang 2023 (UKB) 12 132/183.446 Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) Overeil, DL (f² = 64.3%, p < 0.001)				12.
Lany Selem 2021 Suman C. Larsson 2009 Subarna C. Larsson 2009 Subarna C. Larsson 2009 Subarna C. Larsson 2010 Subarna C. Larsson 2010 Subarna C. Larsson 2010 Subarna C. Larsson 2010 Subarna S. Larsson 2012 M 229/1008 Subarna S. Larsson 2012 M 229/108 Subarna S. Larsson 2012 M 277/1884 329 Subarna S. Larsson 2015 M 277/1885 M 274/1805 M 274/			—	
Busarna C. Larson 2009 3281/26 566 110 (0.98, 1.25) Jake Pragman 2015 1131/4235 111 (0.98, 1.25) Jing Guo 2022 904/1746 113 (0.98, 1.25) Elses E. Avalos 2012 M 222/751 120 (0.95, 1.85) Sabta S. Soedamah-Mutru 2013 323/4255 120 (0.93, 1.80) Elses E. Avalos 2012 W 229/1008 120 (0.93, 1.05) Subgroup, DL (f* 64.3%, p = 0.001) 100 (0.92, 1.07) The UKB study 0.99 (0.93, 1.06) 100 (0.92, 1.07) Overall, DL (f* 64.3%, p = 0.001) 0.99 (0.93, 1.06) 100 (0.92, 1.07) Corcup and Study Cases/N HR (95% Cl) V Emma Patters 2013 1392/33 836 0.71 (0.43, 1.20) 0.71 (0.43, 1.20) Statts S. Soedamah-Mutru 2013 323/4255 0.99 (0.93, 1.06) 100 (0.92, 1.07) Emma Patters 2013 1392/33 836 0.71 (0.43, 1.20) 0.71 (0.43, 1.20) 0.71 (0.43, 1.20) Statts S. Soedamah-Mutru 2013 323/4255 0.99 (0.93, 1.06) 0.90 (0.98, 0.98) 0.90 (0.98, 0.98) 0.90 (0.98, 0.98) 0.91 (0.97, 1.06) 0.90 (0.98, 0.98) 0.91 (0.97, 1.06) 0.92 (0.91, 1.10) 0.92 (0.91, 1.10) 0.92 (0.91, 1.10) 0.	Mahshid Dehghan 2018	5435/123 830	• 0.90 (0.75, 1.07)	6
Jatke Pragman 2015 1131/4235 1.11 (0.86, 1.27) Jing Guo 2022 904/1746 1.32 (0.87, 1.48) Elisea E, Avaloz 2012 M 2227751 Sabta S, Soedamah-Muthu 2013 323/4255 Subjoury, DL (* e4.38, p = 0.001) 1.2 (0.87, 1.68) The UKB study 1.01 (0.97, 1.69) Pan Zhung 2023 (UKB) 12 122/183 446 Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) Overall, DL (* e4.38, p < 0.001)	Laury Sellem 2021	1952/104 805	1.09 (0.96, 1.23)	9
Jaike Pragman 2015 1131/4235 Jing Guo 2022 904/17/46 Elisse E, Avalos 2012 M 222/751 Sabia S. Sociamah-Muthu 2013 323/4255 Elisse E, Avalos 2012 W 229/1008 Subgroup, DL (f = 64.3%, p = 0.001) 12.10/083, 1.63) The UKB study 1.01 (0.97, 1.68) Pan Zhuang 2023 (UKB) 12.12/183 446 Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.62) Overall, DL (f' = 64.3%, p < 0.001)	Susanna C. Larsson 2009	3281/26 556	1.10 (0.98, 1.25)	9
Jing Guo 2022 904/1746 Elsea E. Availos 2012 M 222751 Sabba S. Sockannah-Muthu 2013 323/4255 Elsea E. Availos 2012 W 229/1008 Subgroup, DL (f = 64.3%, p = 0.001) 12 132/183 446 The UKB study 1.01 (0.97, 1.06) Pen Zhuang 2023 (UKB) 12 132/183 446 Overall, DL (f' = 64.3%, p < 0.001)		1131/4235		8.
Eliese E. Availos 2012 M 222751 Sabita S. Scedamah-Muthu 2013 323/4255 Eliese E. Availos 2012 W 229/1008 Subgroup, DL (f ² = 64.3%, p = 0.001) The UKB study Pen Zhuang 2023 (UKB) 12 132/183 446 Heterogeneity between groups: p = 0.750 Overall, DL (f ² = 64.3%, p < 0.001) Heterogeneity between groups: p = 0.750 Overall, DL (f ² = 64.3%, p < 0.001) Heterogeneity between groups: p = 0.750 Overall, DL (f ² = 64.3%, p < 0.001) Heterogeneity between groups: p = 0.750 Overall, DL (f ² = 64.3%, p < 0.001) Heterogeneity between groups: p = 0.750 Overall, DL (f ² = 64.3%, p < 0.001)				
Sabita S. Soedamah-Muthu 2013 3234255 Elisea E. Avalos 2012 W 229/1008 Subgroup, DL (I* = 64.3%, p = 0.001) 1.23 (0.93, 1.62) The UKB study 1.21 (0.97, 1.06) Pan Zhuang 2023 (UKB) 12 132/183 446 Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) Overail, DL (I* = 64.3%, p < 0.001)	-			4.
Elsea E. Avaios 2012 W 229/1008 Subgroup, DL (I ² = 64.38, p = 0.001) 1.32 (0.80, 1.92) The UKB study 1.2 132/183.446 Pan Zhuang 2023 (UKB) 12 132/183.446 Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) Overail, DL (I ² = 64.3%, p < 0.001)	Elisea E. Avalos 2012 M	222/751	1.20 (0.85, 1.68)	2.
Subgroup, DL (I ² = 64.3%, p = 0.001) 100 (0.92, 1.07) The UKB study 12 132/183 446 1.01 (0.97, 1.06) Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) 1 Overail, DL (I ² = 64.3%, p < 0.001)	Sabita S. Soedamah-Muthu 2013	323/4255	1.23 (0.93, 1.63)	3.
Subgroup, DL (l ² = 64.3%, p = 0.001) 1.00 (0.92, 1.07) The UKB study Pan Zhuang 2023 (UKB) 12 132/183 446 1.01 (0.97, 1.06) Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) 1 Overail, DL (l ² = 64.8%, p < 0.001)	Flisea E Avalos 2012 W	229/1008	1.32 (0.90, 1.92)	2
Pan Zhuang 2023 (UKB) 12 132/183 446 1.01 (0.97, 1.06) Heterogeneity between groups: p = 0.750 0.99 (0.93, 1.06) 1 Overail, DL (1 ² = 64.3%, p < 0.001))	1	86
Heterogeneity between groups: p = 0.750 Overall, DL (l ² = 64.8%, p < 0.001) Image: the UKB study Elses E. Avaios 2012 W Sobilities Sobilities Sobilities Sobilities Sobilities Sobilities Overall, DL (l ² = 64.8%, p < 0.001) Excluding the UKB study Elises E. Avaios 2012 W Zeynia Biblities Sobilities		10 100/100 110		40
Overall, DL (l ² = 64.8%, p < 0.001) 0.99 (0.93, 1.06) 1 5 1 2 Group and Study Cases/N HR (95% C) N Elsea E. Avaios 2012 W 229/1008 0.71 (0.43, 1.20) 0.74 (0.60, 0.91) Sabita S, Socdamah-Muthu 2013 323/4255 0.88 (0.80, 0.96) 0.88 (0.80, 0.96) Timmer Patterson 2013 1392/33 636 0.74 (0.60, 0.91) 0.88 (0.80, 0.96) Timmer Patterson 2013 323/4255 0.88 (0.80, 0.96) 0.88 (0.80, 0.96) Timmer Y, N. Tong 2020 7378/418 329 0.99 (0.83, 0.98) 0.99 (0.83, 0.98) Susanna C. Larsson 2009 2702/26 556 0.91 (0.80, 1.02) 0.91 (0.80, 1.02) Mathik Dehghan 2018 4623109 976 0.93 (0.78, 1.11) 0.93 (0.78, 1.11) Emily Sonestedt 2011 250/26 445 0.94 (0.83, 1.06) 0.95 (0.85, 1.06) Mathar Kotuvari 2020 2771/1885 0.97 (0.95, 1.00) 0.98 (0.83, 1.26) Jang Guo 2022 904/17/46 1.03 (0.78, 1.36) 1.03 (0.78, 1.36) Ingegerd Johansson 2018 5203/48 341 1.03 (0.78, 1.36) 1.09 (0.83, 1.23)	Pan Zhuang 2023 (UKB)	12 132/183 446	1.01 (0.97, 1.06)	13.
Source Source Source Source Status Cases/N HR (95% Cl) M Excluding the UKB study 29/1008 0.71 (0.43, 1.20) 0.71 (0.43, 1.20) Emme Patterson 2013 1392/33 636 0.74 (0.60, 0.91) 0.88 (0.80, 0.96) Sabita S. Soedamah-Muthu 2013 323/4255 0.82 (0.61, 1.09) 0.88 (0.80, 0.96) Timothy J. Key 2019 7198/408 885 0.88 (0.80, 0.96) 0.88 (0.80, 0.96) Susanna C. Larsson 2012 4089/74 961 0.94 (0.81, 1.01) 0.94 (0.81, 1.01) Susanna C. Larsson 2012 4089/74 961 0.92 (0.77, 1.11) Amée M. Buziau 2019 835/7679 0.93 (0.78, 1.11) Ingegerd Johansson 2018 W 27/4050 221 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 27/4050 221 0.95 (0.85, 1.00) Mathia Kouvari 2020 277/11825 0.94 (0.83, 1.22) Jing Guo 2022 904/1746 1.02 (0.83, 1.22) Ingegerd Johansson 2018 M 5203/43 341 1.03 (0.78, 1.36) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Louise H. Dekker 2019 1490/78 774 0.95 (0.92, 0.88)		50		
Excluding the UK study 0.71 (0.43, 1.20) Elisea E. Avalos 2012 W 229/1008 Emma Patterson 2013 1392/33 636 Subita S. Soedamah-Muthu 2013 323/4255 Timothy J. Key 2019 7198/409 885 Tammy Y. N. Tong 2020 7378/418 329 Susanna C. Larsson 2012 4089/74 961 Susanna C. Larsson 2009 2702/25 556 Mahshid Dehghan 2018 4623/109 976 Mahshid Dehghan 2018 4623/109 976 Mathana Kouvari 2020 2717/1885 Jingegerd Johansson 2018 W 2746/50 231 Mathana Kouvari 2020 2777/1885 Jing Guo 2022 904/1746 Timo T. Koskinen 2018 472/1981 Ingegerd Johansson 2018 M 5203/48 341 Laury Sellem 2021 1952/104 805 Louise H. Dekker 2019 1490/78 774 Elisea E. Avalos 2012 M 222751 Subgroup, DL (I ^P = 25.9%, p = 0.146) 0.88 (0.83, 0.94)	Overall, DL (l ² = 64.8%, p < 0.001)		0.99 (0.93, 1.06)	100.
Elisea E. Avalos 2012 W 229/1008 0.71 (0.43, 1.20) Emma Patterson 2013 1392/33 636 0.74 (0.60, 0.91) Sabita S. Soedamah-Muthu 2013 323/4255 0.88 (0.80, 0.96) Timothy J. Key 2019 7198/409 885 0.88 (0.80, 0.96) Tammy Y.N. Tong 2020 7378/418 329 0.99 (0.83, 0.96) Susanna C. Larsson 2012 4089/74 961 0.91 (0.81, 1.01) Susanna C. Larsson 2019 835/7679 0.91 (0.81, 1.01) Mahshid Dehghan 2018 4623/109 976 0.92 (0.77, 1.11) Amée M. Buziau 2019 835/7679 0.93 (0.78, 1.10) Jaike Praagman 2015 1131/4235 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 274/1885 0.95 (0.05, 1.00) Jaike Praagman 2015 1131/4235 0.98 (0.83, 1.17) Jing Guo 2022 904/1746 1.02 (0.83, 1.26) Lury Sellem 2021 1952/104 805 1.03 (0.76, 1.36) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Lury Sellem 2021 M 222/751 1.02 (0.83, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 0.95 (0.92, 0	Group and Study	Cases/N	.5 1 2 HR (95% CI)	Wei
Emma Patterson 2013 1392/33 636 Sabita S. Soedamah-Muthu 2013 323/4255 Timothy J. Key 2019 7198/409 885 Tammy Y. N. Tong 2020 7378/418 329 Susanna C. Larsson 2012 4089/74 961 Susanna C. Larsson 2009 2702/26 556 Mahshid Dehghan 2018 4623/109 976 Mahshid Dehghan 2018 4623/109 976 Matha Kouvari 2020 2771/1885 Jaike P Tangman 2015 1131/4225 Jing Guo 2022 904/1746 Timo T. Koskinen 2018 472/1981 Ingegerd Johansson 2018 M 22746/50 231 Jing Guo 2022 904/1746 Timo T. Koskinen 2018 472/1981 Ingegerd Johansson 2018 M 222/751 Subgroup, DL (I ^P = 25.9%, p = 0.146) 109/78 774 The UKB study 0.93 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 622/418 895		229/1008	0.74 (0.42.4.20)	0
Sabita S. Soedamah-Muthu 2013 323/4255 0.82 (0.61, 1.09) Timothy J. Key 2019 7198/409 885 0.88 (0.80, 0.96) Tammy Y. N. Tong 2020 7378/418 329 0.98 (0.80, 0.96) Susanna C. Larsson 2012 4089/74 961 0.91 (0.81, 1.01) Susanna C. Larsson 2009 2702/26 556 0.91 (0.81, 1.02) Mahshid Dehghan 2018 4623/109 976 0.91 (0.81, 1.02) Mahshid Denghan 2018 2520/26 445 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 274/6/50 231 0.94 (0.83, 1.06) Mathan Kouvari 2020 277/1885 0.95 (0.95, 1.00) Jaike Praagman 2015 1131/4235 0.98 (0.83, 1.77) Jing Guo 2022 904/1746 1.02 (0.83, 1.25) Timo T. Koskinen 2018 472/1981 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222751 0.95 (0.92, 0.98) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) 0.88 (0.83, 0.94)				2
Timothy J. Key 2019 7198/409 885 0.88 (0.80, 0.96) Tammy Y.N. Tong 2020 7378/418 329 0.90 (0.83, 0.98) Susanna C. Larsson 2012 4089/74 961 0.91 (0.81, 1.01) Susanna C. Larsson 2009 2702/26 556 0.91 (0.81, 1.01) Mahshid Dehghan 2018 4623/109 976 0.92 (0.77, 1.11) Amée M. Buziau 2019 835/7679 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 2746/50 221 0.94 (0.83, 1.06) Matina Kouvari 2020 277/1885 0.94 (0.83, 1.17) Jing Guo 2022 904/1746 0.95 (0.08, 1.02) Jing Guo 2022 904/1746 1.02 (0.83, 1.27) Laury Sellem 2011 1952/104 805 1.03 (0.76, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 0.95 (0.92, 0.98) The UKB study 0.95 (0.92, 0.98) 0.88 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 822/418 895 0.88 (0.83, 0.94)				1
Tammy Y.N. Tong 2020 7378/418 329 0.90 (0.83, 0.98) Susanna C. Larsson 2012 4089/74 961 0.91 (0.81, 1.01) Susanna C. Larsson 2009 2702/26 556 0.91 (0.81, 1.01) Mahshid Dehghan 2018 4623/109 976 0.92 (0.77, 1.11) Amée M. Buziau 2019 835/7679 0.93 (0.78, 1.12) Emily Sonestedt 2011 2520/26 445 0.95 (0.85, 1.06) Ingegerd Johansson 2018 W 2746/50 231 0.95 (0.85, 1.06) Matina Kouwar 2020 2777/1885 0.98 (0.83, 1.77) Jing Guo 2022 904/1746 0.98 (0.83, 1.17) Jing Guo 2022 904/1746 1.02 (0.83, 1.25) Timo T. Koskinen 2018 472/1981 1.03 (0.78, 1.13) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.78, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222751 0.95 (0.92, 0.98) The UKB study 0.95 (0.92, 0.98) 0.88 (0.83, 0.94)				7
Susana C. Larsson 2012 4089/74 961 0.91 (0.81, 1.01) Susana C. Larsson 2009 2702/26 556 0.91 (0.81, 1.02) Mahshid Dehghan 2018 4623/109 976 0.92 (0.77, 1.11) Amée M. Buziau 2019 35/7679 0.93 (0.78, 1.11) Emily Sonestedt 2011 2520/26 445 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 2746/50 231 0.95 (0.85, 1.00) Jaike Praagman 2015 1131/4235 0.98 (0.83, 1.17) Jing Guo 2022 904/174 6 1.02 (0.83, 1.26) Timo T. Koskinen 2018 472/1981 1.03 (0.76, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 0.95 (0.92, 0.98) The UKB study 0.95 (0.92, 0.98) 0.95 (0.92, 0.98) Pan Zhuang 2023 (UKB) 32 822/418 895 0.88 (0.83, 0.94)				8
Susanna C, Larsson 2009 2702/26 556 0.91 (0.80, 1.02) Mahshid Dehghan 2018 4623/109 976 0.92 (0.77, 1.11) Amée M, Buziau 2019 833/67679 0.93 (0.78, 1.11) Emily Sonestedt 2011 2520/26 445 0.94 (0.83, 1.06) Ingegerd Johansson 2018 W 274/650 231 0.95 (0.85, 1.06) Jaike Praagman 2015 1131/4235 0.98 (0.83, 1.17) Jing Guo 2022 904/1746 1.02 (0.83, 1.26) Timo T. Koskinen 2018 472/1981 1.03 (0.76, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avaios 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (f ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) 0.88 (0.83, 0.94)				e
Amée M. Buziau 2019 835/7679 Emily Sonestedt 2011 250/26 445 Ingegerd Johansson 2018 W 2746/50 231 Matina Kouvari 2020 277/1885 Jaike Praagman 2015 1131/4235 Jaike Praagman 2015 1131/4235 Jimor T. Koskinen 2018 472/1981 Ingegerd Johansson 2018 M 5203/48 341 Laury Sellem 2021 1952/104 805 Louise H. Dekker 2019 1490/78 774 Elisea E. Avalos 2012 M 222/751 Subgroup, DL (f [*] = 25.9%, p = 0.146) 0.93 (0.83, 0.94)				5
Amée M. Buziau 2019 835/7679 Emily Sonestedt 2011 2500/26 445 Ingegerd Johansson 2018 W 2746/50 231 Matina Kouvari 2020 277/1885 Jaike Praagman 2015 1131/4235 Jaike Praagman 2015 1131/4245 Jingegerd Johansson 2018 W 5203/48 341 Laury Sellem 2021 1962/104 805 Louise H. Dekker 2019 1990/78 774 Elisea E. Avalos 2012 M 222/751 Subgroup, DL (I ^e = 25.9%, p = 0.146) 0.93 (0.83, 0.94)		4623/109 976		2
Ingegerd Johansson 2018 W 2746/50 231 0.95 (0.85, 1.06) Matina Kouwai 2020 2771/1885 0.97 (0.95, 1.00) Jaike Prazyman 2015 1131/4225 0.98 (0.83, 1.17) Jing Guo 2022 904/1746 1.02 (0.83, 1.25) Timo T. Koskinen 2018 472/1981 1.03 (0.95, 1.10) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalacs 2012 M 222751 1.23 (0.70, 2.18) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) 0.88 (0.83, 0.94)		835/7679		3
Matina Kouvari 2020 277/1885 0.97 (0.95, 1.00) Jaike Praagman 2015 1131/4235 0.98 (0.83, 1.17) Jing Guo 2022 904/1746 1.02 (0.83, 1.25) Timo T. Koskinen 2018 472/1981 1.03 (0.78, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.96) 0.95 (0.92, 0.96) The UKB study 0.88 (0.83, 0.94) 0.88 (0.83, 0.94)				5
Jaike Praagman 2015 1131/4225 0.98 (083, 1.17) Jing Guo 2022 904/1746 1.02 (083, 1.26) Timo T. Koskinen 2018 472/1981 1.03 (0.76, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.03 (0.76, 1.36) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (f ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) 0.88 (0.83, 0.94)				6
Jing Guo 2022 904/1746 1.02 (0.83, 1.25) Timo T. Koskinen 2018 472/1981 1.03 (0.78, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.2) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/76 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94)				16
Timo T. Koskinen 2018 472/1981 1.03 (0.78, 1.36) Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94)				3
Ingegerd Johansson 2018 M 5203/48 341 1.03 (0.95, 1.12) Laury Sellem 2021 1952/104 805 1.06 (0.93, 1.20) Louise H. Dekker 2019 1490/78 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.23 (0.70, 2.18) Subgroup, DL (f ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94) 0.88 (0.83, 0.94)				2
Laury Sellem 2021 1952/104 805 106 (0.93, 1.20) Louise H. Dekker 2019 1490/76 774 1.09 (0.83, 1.43) Elisea E. Avalos 2012 M 222/751 1.20 (0.70, 2.18) Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 822/418 895				1
Louise H. Dekker 2019 1490/78 774 Elisea E. Avalos 2012 M 222/751 Subgroup, DL (I ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 822/418 895				8
Elisea E. Avalos 2012 M 222/751 Subgroup, DL (l ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 822/418 895				5
Subgroup, DL (l ² = 25.9%, p = 0.146) 0.95 (0.92, 0.98) The UKB study 0.88 (0.83, 0.94) Pan Zhuang 2023 (UKB) 32 822/418 895				1
Pan Zhuang 2023 (UKB) 32 822/418 895 0.88 (0.83, 0.94)				C 88
		32 822/418 895	0.88./0.83.0.04)	11
Hatersagnaity between grouper n = 0.041	r an zhuang 2025 (UKB)			
	Heterogeneity between groups: $p = 0$			100

Figure 3

Group and Study	Cases/N	HR (95% CI)	We
Excluding the UKB study			
Matina Kouvari 2020	277/1885	• 0.53 (0.25, 1.03)	
Mahshid Dehghan 2018	4219/136 384	0.78 (0.64, 0.99)	
Jing Guo 2022	904/1746	0.84 (0.68, 1.03)	
Sabita S. Soedamah-Muthu 2013	323/4255	• • • • • • • • • • • • • • • • • • • •	
Susanna C. Larsson 2012	4089/74 961	0.88 (0.80, 0.97)	
Timo T. Koskinen 2018	472/1981	0.89 (0.74, 1.08)	
Adam M. Bernstein 2010	3162/84 136	0.90 (0.80, 1.01)	
Bernhard Haring 2014	1147/12 066	0.91 (0.74, 1.12)	
Adam M. Bernstein 2012 W	2633/84 010	0.91 (0.79, 1.04)	
Emily Sonestedt 2011	2520/26 445	0.93 (0.82, 1.05)	
Adam M. Bernstein 2012 M	1397/43 150	0.94 (0.78, 1.12)	
Geertje W. Dalmeijer 2013	2179/33 625	0.99 (0.95, 1.04)	1
von Ruesten A. 2013	363/23 531	1.01 (0.91, 1.13)	
Emma Patterson 2013	1392/33 636	1.03 (0.89, 1.18)	
	1952/104 805	1.04 (0.91, 1.18)	
Laury Sellem 2021	3281/26 556		
Susanna C. Larsson 2009		1.04 (0.93, 1.16)	
Elisea E. Avalos 2012 M	222/751	1.08 (0.78, 1.49)	
Jaike Praagman 2015	1131/4235	1.10 (0.95, 1.27)	
Elisea E. Avalos 2012 W	229/1008	1.48 (1.02, 2.16)	
Subgroup, DL (I ² = 41.0%, p = 0.0	033)	0.96 (0.92, 1.00)	8
The UKB study Pan Zhuang 2023 (UKB)	33 897/429 240	0.92 (0.88, 0.95)	1
Heterogeneity between groups: p =	0.145		
Overall, DL ($I^2 = 46.5\%$, p = 0.012		0.96 (0.92, 0.99)	10
		0.96 (0.92, 0.99)	10
			10 We
Overall, DL (l ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study	2) Cases/N	I I .5 1 2 HR (95% Cl)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018	2) Cases/N 5765/40 827	L.5 1 2 HR (95% Ci)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020	2) Cases/N 5765/40 827 277/1885	HR (95% Cl)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M	2) Cases/N 5765/40 827 277/1885 1397/43 150	HR (95% Cl)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010	L Control Cont	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805	L C C C C C C C C C C C C C C C C C C C	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235	HR (95% Cl) HR (95% Cl) 068 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 1.06) 0.90 (0.79, 1.03) 0.91 (0.80, 1.03) 0.91 (0.80, 1.03) 0.91 (0.78, 1.08)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531	.5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.74 (0.40, 1.33) 0 87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.78, 108) 0.93 (0.81, 106)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235	HR (95% Cl) HR (95% Cl) 068 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 1.06) 0.90 (0.79, 1.03) 0.91 (0.80, 1.03) 0.91 (0.80, 1.03) 0.91 (0.78, 1.08)	w
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531	.5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.74 (0.40, 1.33) 0 87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.78, 108) 0.93 (0.81, 106)	w
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/22 531 4089/74 961	L S 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.74 (0.40, 1.33) 0 87 (0.72, 1.06) 0 90 (0.79, 1.03) 0 91 (0.80, 1.03) 0 91 (0.78, 1.08) 0 93 (0.81, 1.06) 0 94 (0.83, 1.07)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertig W. Dalmeijer 2013 Jing Guo 2022	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4069/74 961 2179/33 625	L C C C C C C C C C C C C C C C C C C C	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746	L C C C C C C C C C C C C C C C C C C C	W 4
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Ermma Patterson 2013	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/22 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636	L S 1 2 HR (95% Cl) 0.68 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 1.06) 0.90 (0.79, 1.03) 0.91 (0.80, 1.03) 0.91 (0.81, 1.06) 0.94 (0.83, 1.07) 0.94 (0.83, 1.07) 0.94 (0.83, 1.07) 0.94 (0.83, 1.07) 0.94 (0.71, 1.38) 1.00 (0.91, 1.38) 1.00 (0.91, 1.09)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertije W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Eimma Patterson 2013 Elisea E. Avalos 2012 W	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/44 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 222/751 1392/33 636 2229/1008	.5 1 2 HR (95% Cl) 0.68 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 1.06) 0.90 (0.79, 1.03) 0.91 (0.80, 1.03) 0.91 (0.80, 1.03) 0.91 (0.80, 1.03) 0.93 (0.81, 1.06) 0.93 (0.81, 1.06) 0.93 (0.81, 1.06) 0.93 (0.74, 1.21) 0.98 (0.74, 1.21) 0.99 (0.71,	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Erma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 90/41746 222/751 1392/33 636 229/1008 323/4255	5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.74 (0.40, 1.33) 0 87 (0.72, 1.06) 0 90 (0.79, 1.03) 0 91 (0.80, 1.03) 0 91 (0.81, 1.06) 0 93 (0.81, 1.06) 0 94 (0.83, 1.07) 0 97 (0.93, 1.02) 0 98 (0.79, 1.21) 0 99 (0.71, 1.38) 1 00 (0.91, 1.39) 1 00 (0.19, 1.13) 1 00 (0.81, 1.49) 1 00 (0.91, 1.34)	W 4
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Ermma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011	2) Cases/N 5765/40 827 277/1885 1387/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636 229/1008 323/4255 2520/26 445	Line Constraints of the second	W 4
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Emma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/44 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636 229/1008 323/4255 2520/26 445 472/1981	L C C C C C C C C C C C C C C C C C C C	W 4
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Ernma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 90/41746 222/751 1392/33 645 222/91008 323/4255 2520/26 445 472/1981 3281/26 556	.5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.77 (0.40, 1.33) 0.87 (0.72, 1.06) 0.90 (0.79, 1.03) 0.91 (0.78, 1.08) 0.93 (0.81, 1.06) 0.94 (0.83, 107) 0.99 (0.71, 1.38) 1.00 (0.91, 1.09) 1.01 (0.68, 1.49) 1.01 (0.68, 1.49) 1.01 (0.68, 1.49) 1.01 (0.68, 1.49) 1.03 (0.91, 1.17) 1.03 (0.91, 1.17) 1.03 (0.91, 1.17) 1.03 (0.91, 1.27)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Erima Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4069/74 961 2179/33 625 904/1746 222/751 1392/33 636 229/1008 323/4255 2520/26 445 472/1981 3281/26 556 3162/84 136	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	W e
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Emma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010 Bernhard Haring 2014	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 222/751 1392/33 636 229/1008 323/4255 2520/26 445 472/1981 3281/26 556 3162/84 138 1147/12 066	Length 1 2 HR (95% Cl) HR (95% Cl) 0.68 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.80, 103) 0.91 (0.81, 106) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.99 (0.71, 1.38) 100 (0.91, 1.17) 107 (0.67, 132) 11.31 (1.00, 1.27) 10.99 (0.77, 1.21) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.22) 11.41 (0.93, 1.39)	W (
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Emma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010 Bernhard Haring 2014 Mohammad Talaei 2019	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636 229/1008 323/4255 2520/26 445 472/1981 3281/26 556 3162/84 136 1147/12 066 705/5432	.5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.77 (0.40, 1:33) 0.87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.78, 108) 0.93 (0.81, 106) 0.94 (0.83, 107) 0.99 (0.74, 121) 0.99 (0.74, 122) 0.99 (0.74, 132) 1.00 (0.91, 109) 1.01 (0.68, 149) 1.02 (0.77, 134) 1.03 (0.91, 1.17) 1.03 (0.91, 1.27) 1.09 (0.97, 122) 1.09 (0.97, 122) 1.0	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Erima Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010 Bernhard Haring 2014 Mohammad Talaei 2019 Subgroup, DL (I ² = 44.2%, p = 0.0	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636 229/1008 323/4255 2520/26 445 472/1981 3281/26 556 3162/84 136 1147/12 066 705/5432	Length 1 2 HR (95% Cl) HR (95% Cl) 0.68 (0.56, 0.84) 0.74 (0.40, 1.33) 0.87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.80, 103) 0.91 (0.81, 106) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.94 (0.83, 107) 0.99 (0.71, 1.38) 100 (0.91, 1.17) 107 (0.67, 132) 11.31 (1.00, 1.27) 10.99 (0.77, 1.21) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.27) 11.31 (1.00, 1.22) 11.41 (0.93, 1.39)	W
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Dehghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 M Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Emma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010 Bernhard Haring 2014 Mohammad Talaei 2019	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/84 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 2227/51 1392/33 636 229/1008 323/4255 2520/26 445 472/1981 3281/26 556 3162/84 136 1147/12 066 705/5432	.5 1 2 HR (95% Cl) 0 68 (0.56, 0.84) 0.77 (0.40, 1:33) 0.87 (0.72, 106) 0.90 (0.79, 103) 0.91 (0.78, 108) 0.93 (0.81, 106) 0.94 (0.83, 107) 0.99 (0.74, 121) 0.99 (0.74, 122) 0.99 (0.74, 132) 1.00 (0.91, 109) 1.01 (0.68, 149) 1.02 (0.77, 134) 1.03 (0.91, 1.17) 1.03 (0.91, 1.27) 1.09 (0.97, 122) 1.09 (0.97, 122) 1.0	W 4 1
Overall, DL (I ² = 46.5%, p = 0.012 Group and Study Excluding the UKB study Mahshid Denghan 2018 Matina Kouvari 2020 Adam M. Bernstein 2012 W Laury Sellem 2021 Jaike Praagman 2015 von Ruesten A. 2013 Susanna C. Larsson 2012 Geertje W. Dalmeijer 2013 Jing Guo 2022 Elisea E. Avalos 2012 M Emma Patterson 2013 Elisea E. Avalos 2012 W Sabita S. Soedamah-Muthu 2013 Emily Sonestedt 2011 Timo T. Koskinen 2018 Susanna C. Larsson 2009 Adam M. Bernstein 2010 Bernhard Haring 2014 Mohammad Talaei 2019 Subgroup, DL (I ² = 44.2%, p = 0.0	2) Cases/N 5765/40 827 277/1885 1397/43 150 2633/44 010 1952/104 805 1131/4235 363/23 531 4089/74 961 2179/33 625 904/1746 222/751 1392/33 636 229/1008 323/4255 2450/26 445 3162/24 136 3162/24 136 3162/24 136 3162/24 138 3162/24 138 3176/34 13	.5 HR (95% Cl)	W (