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Abstract 

Climate and agricultural land-use change have increased the likelihood of infectious disease emergence and 

transmissions, but these drivers are often examined separately as synergistic effects are ignored. Further, seldom are 

the influence of climate and agricultural land use on emerging infectious diseases examined in a spatially explicit 

way at regional scales. 

Our objective in this study was to spatially examine the climate, agriculture, and socio-demographic factors 

related to agro-pastoralism that can influence the prevalence of Middle East Respiratory Syndrome coronavirus 

(MERS-CoV) in dromedary camels across northern Kenya. Our research questions were: 1) how has MERS-CoV in 

dromedary camels varied across geographic regions of northern Kenya, and 2) what climate, agriculture, and socio-

demographic factors of agro-pastoralism were spatially related to the geographic variation in MERS-CoV cases? To 

answer our questions, we analyzed the spatial distribution of historical cases of serological evidence of MERS-CoV 

at the county level and applied spatial statistical analysis to examine the spatial relationships of the MERS-CoV 

cases between 2016 and 2018 to climate, agriculture, and socio-demographic factors of agro-pastoralism. 

Regional differences in MERS-CoV cases were spatially correlated with both social and environmental 

factors and highlight the complexity in the distribution of MERS-CoV in dromedary camels across Kenya. 
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1. Introduction 

 A combination of interacting social and environmental factors often drives the emergence 

and spread of infectious diseases (Heffernan, 2018). In particular, climate and agricultural land 

use intersect in ways that influence environmental conditions (Brodie, 2016), which can trigger 

the emergence and spread of infectious diseases. Specifically, ambient temperature affects 

infection rates, reproduction, and incubation time of pathogens, with higher temperatures 

accelerating pathogen maturation (Baker et al., 2022)(Semenza et al., 2022). Further, agriculture 

for food production has been associated with more than 25% of all infectious diseases and more 

than 50% of all zoonotic infectious diseases that have emerged in humans (Rohr et al., 2019). 

Lastly, the loss of biodiversity and the ensuing loss of host heterogeneity due in part to climate 

and agricultural land-use change has been linked to disease susceptibility and transfer 

(Heffernan, 2018). 

In East Africa, changes in climate (i.e., hotter and drier trends) and agricultural land-use 

change have increased the likelihood of infectious disease emergence and transmission, such as 

Ebola virus, Flaviviruses, Usutu viruses, Chikungunya and O’nyong-nyong viruses, 

Bunyaviruses, and Rift Valley Fever and Crimean-Congo haemorrhagic viruses (Duygu et al., 

2018; Fanelli & Buonavoglia, 2021; Fenollar & Mediannikov, 2018; Muturi et al., 2023; Pandit 

et al., 2022). Further, a combination of climate, agricultural and economic changes are 

supporting the spread of emerging pathogens from East Africa into the Middle East and Europe 

(Ryan et al., 2019; Xiao et al., 2015). Still, East Africa is considered one of the most at-risk 

regions in Africa to the impacts of climate change as the livelihoods of a large proportion of the 

region’s population depends on rain-fed agriculture (Serdeczny et al., 2017). Agro-pastoralists 

who depend on both livestock keeping and rain-fed crop production are considered the most 

vulnerable groups to climate change (Hughes & Anderson, 2020). Concurrently, population 

growth rates in East Africa are among the highest in the world, which increases the pressure for 

land conversion, and specifically for the expansion of cropland that encroaches on wildlife 

habitat (Bullock et al., 2021). In all, hotter and drier conditions, population growth, cropland 

expansion, and encroachment on wildlife habitats exacerbates infectious disease emergence and 

transmission (Lee-Cruz et al., 2021).  

Despite the synergistic influence that climate and agricultural land use has on emerging 

infectious diseases, these drivers are often empirically examined separately and the potential 

synergistic effects are often missed (Brodie, 2016). Seldom, the influence of climate and 

agricultural land use have been examined related to emerging infectious diseases in a spatially 

explicit way at regional scales. This is especially true for Middle East Respiratory Syndrome 

coronavirus (MERS-CoV) that is prevalent in dromedary camels across Kenya where climate 

and agricultural land-use change are conspicuous (Lawrence et al., 2023a,b). 

MERS-CoV is an infectious zoonotic disease that in humans targets the lower respiratory 

tract and can lead to multi-organ failure, resulting in death. Dromedary camels have been shown 

to be a natural reservoir of the virus from where spill-over to humans can occur (Adney et al, 

2014). The infection is spread when a person comes into close contact with an infected 

dromedary camel, or possibly when a person consumes contaminated camel products such as 

milk and meat. Humans can also spread the virus to each other through very-close contact with 

infected individuals, similar to the current SARS-CoV-2 transmission (Aguanno et al., 2018). 
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The disease was first detected in humans in 2012 in Saudi Arabia (WHO, 2019). MERS-CoV has 

spread globally with more than 2,000 human infections resulting in nearly 850 identified deaths 

in 27 countries across North America, Europe, Asia, and Africa as of December 2019; while no 

new morbidity and mortality have been reported in the past several years (WHO, 2018). While 

no human infections have been documented in Kenya previously, the biophysical environment 

provides an opportunity to predict the conditions in which this may occur. Infection rates among 

and between camels and humans have been investigated throughout the Middle East (Reeves, 

2015), Africa (Gikonyo et al., 2018; Miguel et al., 2017), and Asia (Saqib et al., 2017), which 

has provided preliminary mapping of infection risk. Since the discovery of MERS-CoV, 

serological and molecular evidence have demonstrated that the virus in dromedary camels is 

genetically similar to the one occurring in humans confirming the hypothesis that dromedary 

camels are the primary transmission reservoirs, which sheds the virus in high numbers and likely 

serve as reservoirs for human infections (Adney et al, 2014). 

Our objective in this study was to spatially examine the climate, agriculture, and socio-

demographic factors related to agro-pastoralism that can influence the prevalence of MERS-CoV 

in dromedary camels across northern Kenya. Our research questions were: 1) how has MERS-

CoV in dromedary camels varied across geographic regions of northern Kenya, and 2) what 

climate, agriculture, and socio-demographic factors of agro-pastoralism were spatially related to 

the geographic variation in MERS-CoV cases? To answer our questions, we analyzed the spatial 

distribution of historical cases of serological evidence of MERS-CoV at the county level and 

applied spatial statistical analysis to examine the spatial relationships of the MERS-CoV cases 

between 2016 and 2018 to climate, agriculture, and socio-demographic factors of agro-

pastoralism. 

 

2. Study Site, Data Description, and Methods 

2.1 Study site: Kenya 

Located in East Africa, Kenya comprises 8 regions and 47 counties that were established 

through the revised constitution of Kenya in 2010 (Appendix A). Kenya’s lands are categorized 

as predominantly arid or semi-arid (located in the Northern Rift Valley, Eastern, Northeastern 

and Coastal regions) with only 15% suitable for agricultural production and roughly 80% being 

rangelands for the population of roughly 50 million humans (Koeva et al., 2020). Despite the 

relative aridity, Kenya’s arid and semi-arid regions support about 25% of Kenya’s human 

population, 60% of the livestock population that mostly involves pastoralism, and the largest 

proportion of wildlife (Ngugi & Nyariki, 2005). Further, Kenya is home to Africa’s third largest 

population of dromedary camels, which play a vital role in food security (Hughes & Anderson, 

2020). Smallholder farmers dominate the livestock sector in Kenya with three main livestock 

production systems: pastoral; dairying; and ranching (Cecchi et al., 2010). Additionally, 

agricultural and livelihood practices in Kenya are tightly linked to agro-climatic zones (ACZs), 

which are the delineation of landscapes into regions with relatively homogeneous and contiguous 

areas based on similar climate characteristics (Boitt et al. 2014; Kogo et al. 2021; Lawrence et 

al., 2023a,b; (Recha, 2019)). Primarily, the ACZs in Kenya represent a temperature gradient 

from alpine, to temperate, to tropical regions, and a moisture gradient from humid to arid regions 

(Gikonyo et al., 2018). 
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2.2 Data description 

The number of MERS-CoV cases in dromedary camels across northern Kenya were 

abstracted from six previous studies published between 2014 and 2020 (Appendix B). Each of 

the six studies tested for antibodies to MERS-CoV in dromedary camels and reported the results 

at the county level (Table 1). All of the cases of MERS-CoV in dromedary camels across 

northern Kenya that were used in this study were from between 1992-2018, those cases from 

1992 included archived serosamples. Socio-demographic characteristics and agriculture data 

were from the Kenya Population and Housing Census, the Socio-Economic Atlas of Kenya, 2nd 

edition (Wiesmann et al., 2016), and Kenyan Statistical Abstracts (KNBS, 2016, 2017, 2018). 

Climate data were from Weather and Climate - The Global Historical Weather and Climate Data 

for Kenya (WC-Kenya 2023). The socio-demographic, agriculture, and climate-related data were 

contemporaneous with the MERS-CoV cases examined between 2016 and 2018. The socio-

demographic, agriculture, and climate-related variables tested as independent variables are 

shown in Appendix C. The georeferenced county boundaries of Kenya were from openAFRICA 

(2015). The georeferenced county boundaries of Kenya were from CARTO (2016). 

Table 1. Number of samples and seropositivity of MERS-CoV cases by region, county, and year 

in Kenya  

 
 

 

 

Year(s) Region County Samples Seropositivity

1992 Rift Valley Laikipia 22 5%

1996 Rift Valley Laikipia 37 5%

1998 Eastern Isiolo 12 17%

1998 Rift Valley Laikipia 50 0%

1999 Eastern Marsabit 41 78%

1999 Rift Valley Laikipia 175 18%

1999 Rift Valley Turkana 50 14%

2000 Eastern Variable 73 53%

2000 Rift Valley Laikipia 56 4%

2007 Rift Valley Baringo 28 0%

2008 Northeastern Mandera/Wajir 162 56%

2008 Eastern Marsabit 21 57%

2013 Eastern Marsabit 7 100%

2013 Rift Valley Laikipia 375 42%

2016-2017 Eastern Isiolo 403 78%

2016-2017 Eastern Marsabit 370 74%

2016-2017 Rift Valley Turkana 417 68%

2016-2017 Rift Valley Laikipia 181 15%

2016-2018 Eastern Marsabit, Isiolo, Samburu 293 80%

2016-2018 Rift Valley Turkana, Baringo, W. Pokot 156 49%

2018 Eastern Marsabit 493 76%
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2.3 Data analysis, model evaluation and selection 

We analyzed the data via a combination of non-spatial and spatial analyses using R (R 

Core Team, 2013), as summarized in Figure 1. Initially, we mapped MERS-CoV cases at the 

county level in northern Kenya using ArcGIS Pro 2.9.2 (ESRI 2022) and examined seropositivity 

relative to the total samples across the region, upper Rift Valley, Eastern, and Northeastern 

regions during the study period. In the upper Rift Valley region, we included the counties of 

Turkana, Laikipia, Baringo, and W. Pokot. In the upper Eastern region, we included the counties 

of Marsabit, Isiolo, and Samburu. In the upper Northeastern region, we included the counties of 

Mandera and Wajir. We then formally investigated and quantified spatial correlation of and 

between variables using variographic analysis, which decomposes the spatial variability of 

observed variables among distance classes. In this process, first, we examined the spatial 

autocorrelation of MERS-CoV cases. Next, we examined spatial correlation between MERS-

CoV cases and a) socio-demographic variables related to agro-pastoralism, b) agriculture, and c) 

climate variables (Appendix C). Given that much of the socio-demographic data were from after 

2010 and that the MERS-CoV data in the upper Northeastern region were only from 2008, we 

focused the spatial correlation analysis of MERS-CoV on 2016 through 2018 in the upper Rift 

Valley and upper Eastern Regions. Further, we distributed the data evenly between the northern 

and southern parts of each county to satisfy the practical rule that a variogram should only be 

applied over a specified distance for which the number of pairs is greater than 30, and because 

the data were not further spatially identified (Journel and Huijbregts, 1978). We fitted the data 

using spherical and exponential models and used a distance of between 250 to 350 km, which 

was deemed conservative, based on the maximum distance of 707 km for the combined upper 

Rift Valley and Eastern regions of northern Kenya (Journel & Huijbregts, 1978; Crawley, 2013).  

 

 
Figure 1. Summary process of spatial modeling and analysis of MERS-CoV and climate, 

agriculture, and socio-demographic factors related to agro-pastoralism that can influence the 
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prevalence. The initial step involved mapping MERS-CoV cases and examining relative 

seropositivity across northern parts of regions across Kenya. The next step involved quantifying 

spatial correlation between the variables. Finally, simultaneous autoregressive models were 

tested.  

 

After confirming spatial correlation among the MERS-CoV cases and socio-

environmental variables, we specified simultaneous autoregressive (SAR) models, a statistical 

method that augments linear regression models with an additional term to account for the spatial 

correlation structure in a dataset (Kissling & Carl, 2008). To include the spatial correlation 

structure of our dataset into the SAR models, we defined neighbors among the northern and 

southern parts of and between each county based on shared borders, and created a spatially 

weighted matrix. Using shared borders to define neighbors, rather than including counties 

beyond those with shared borders, allowed us to account for spatial correlation if it diminished 

over an increasing distance. We weighted each county’s neighbor equally, such that the weights 

of all neighbors of a sub-county summed to one. Equation 1 shows the general SAR model in 

matrix form that includes the spatial structure of our dataset.  

 

Equation 1. Y = Xβ + λWu + e, 

 where 

λWu = the spatial structure (λW) in the spatially dependent error term (u) 

λ = the spatial autoregression coefficient  

W = the spatial weights matrix  

β = a vector representing the slopes associated with the explanatory  

variable(s) in the original predictor matrix X  

e = the (spatially) independent errors 

Our analyses involved testing SAR models in a stepwise process. First, we tested MERS-

CoV cases against individual predictor variables. The predictor variables that were statistically 

significant and spatial correlated with MERS-CoV cases were retained for further testing in the 

next set of models. The next set of models tested began with the predictor variable with the 

lowest AIC in the previous set of models tested. Each of the other statistically significant 

predictor variables from the previously tested set of models were then individually tested in the 

new best model at that point in the process. The stepwise testing continued until all possible 

variables were tested while retaining only the predictor variables that were statistically 

significant, exhibited spatial correlation, and had the lowest AIC. We evaluated and compared 

the SAR models relative to each other using the p-value (with at least a 90% level) of the 

likelihood ratio test where a model with no spatial correlation (i.e., λ = 0) is compared to the 

fitted model with a non-zero spatial correlation parameter (Kissling & Carl, 2008). Ultimately, 

we used the Akaike information criterion (AIC) to choose the best performing model. 
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3. Results 

The total number of samples and seropositive cases between 1992 through 2018 in the 

upper Rift Valley (Turkana, Baringo, W. Pokot, Laikipia) (n=2229, pos.= 914) had a 41% 

positivity, in the upper Eastern region (Marsabit, Isiolo, Samburu) (n=2486, pos.=1876) had a 

75% positivity, and in the upper North Eastern region (Mandera, Wajir) (n=3506, pos.=1983) 

had a 57% positivity (Figure 2). The total number of samples and seropositive cases between 

2016 through 2018 in the upper Rift Valley (n=935, pos.= 414) had a 51% positivity, and the 

upper Eastern region (n=1964, pos.=1510) had a 77% positivity. Spatial correlation of MERS-

CoV extended a distance of roughly 400 kilometers across the upper Rift Valley and Eastern 

regions between 2016 and 2018.  

 

 
Figure 2. Geographic distribution and spatial correlation of MERS-CoV across northern regions 

of Kenya. The upper Rift Valley (counties of Turkana, Baringo, W. Pokot, Laikipia) had an 

average seropositivity of 41% between 1992 and 2018, and an average seropositivity of 51% 

between 2016 and 2018. The upper Eastern region (counties Marsabit, Isiolo, Samburu) had an 

average seropositivity of 75% between 1992 and 2018, and an average seropositivity of 77% 

between 2016 and 2018. The upper Northeastern region (counties of Mandera and Wajir) had a 

seropositivity of 57% in 2008. The spatial autocorrelation of MERS-CoV extends a distance of 

approximately 400 km in 2016 to 2018 across the upper Rift Valley and Eastern regions of 

northern Kenya.  

 

The climate, agriculture, and socio-demographic variables (Appendix C) that were 

individually spatially correlated with MERS-CoV cases between 2016 and 2018 and statistically 
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significant according to the p-value were included in the SAR models. While all of the six spatial 

covariates included in the SAR models did not achieve p < 0.10, they were deemed close to the 

cutoff and important theoretically to assess the spatial relationship (Table 2). According to the 

AIC, the spatial relationship of ethno-religious camel practices with MERS-CoV cases was 

significantly better than the other independent variables. Specifically, the p-value (p=0.015) was 

below the significance threshold of p < 0.05 and the AIC was statistically different from all the 

other individually tested independent variables with a -24.92 change in the AIC from the weakest 

performing SAR model, which was the spatial relationship of human population with MERS-

CoV cases.  

 

Table 2 SAR model results for initial models that tested variables in relation to MERS-CoV in 

dromedary camels across upper Rift Valley and Eastern regions of Kenya 

 

The multi-variate SAR models that were statistically significant and spatially correlated 

with MERS-CoV cases are shown in Table 3, while all multi-variate SAR models that were 

tested are shown in Appendix D through Appendix H. The first synergistic effect appeared with 

the inclusion of agricultural land (model 9), which was statistically different from ethno-religious 

camel practices alone (model 6) based on the AIC, as well as spatially correlated with MERS-

CoV cases. The SAR model improved, according to the AIC, and a broader synergistic effect 

demonstrated when ethnic diversity and agro-pastoral activities were included (model 19). 

However, the best performing SAR model according to the AIC, and the most complex 

synergistic effect was when all of the six predictors (model 23) were included, and were spatially 

correlated with MERS-CoV cases and statistically significant. Thus, ethno-religious camel 

practices and agriculture land were the two initially interacting variables of importance. Next, 

ethnic diversity and agro-pastoral activities combined with the previous two independent 

variables were the next set of interacting variables of importance. Finally, average air 

temperature and human population combined with the previous four independent variables were 

the final set of interacting variables of importance. 

 

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) 119.64 89.97

Human Population -0.04 0.30

(Intercept) 100.19 114.44

Ethnic Diversity 2.34 18.76

(Intercept) 98.99 82.71

Agropastoral Activities       0.43 1.55

(Intercept) 171.70 85.60

Agriculture Land       -0.001 0.001

(Intercept) -506.40 253.12

Avg. Air Temperature 8.66 3.47

(Intercept) -37.23 45.24

Ethno-religious Camel Practices    3.33 0.39

5 0.55 0.110 -5.14

6 0.74 0.015 -24.92

3 0.59 0.075 -0.07

4 0.59 0.061 -1.14

Model

1 0.57 0.121 179.5

2 0.58 0.079 -0.01
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Table 3 Results of the relevant multi-variate SAR models that tested variables in relation to 

MERS-CoV in dromedary camels across upper Rift Valley and Eastern regions of Kenya 

 

4. Discussion 

This study was conducted to collate data from disparate studies and datasets to provide 

greater insight to the prediction of MERS-CoV infections that may be facing Kenya, and regions 

with similar geographies across the world. Most often, the occurrence of infectious diseases has 

been studied independently, overlooking the potential combined effects of climate change, 

agricultural land use, and human-environment interaction. Here, we comprehensively and 

spatially evaluated the influence of various components that may contribute to the emergence of 

MERS-CoV throughout the northern regions of Kenya. This study highlighted the benefit of 

bringing together diverse areas of data and research to spatially inform infectious disease risk. 

The geographical variations of serological evidence of MERS-CoV in dromedary camels 

and spatial correlations with the social and environmental variables may be partly attributed to 

the dominant ethnic groups in the different regions and their particular agro-pastoral 

management practices. Our results showed low MERS-CoV seropositivity in the Rift Valley 

region where tribal communities practice a more diversified form of livestock management with 

camels reared alongside other livestock, such as cattle, sheep, and goats (Iiyama et al., 2008). 

Particularly, the Turkana communities and the Pokot have adapted livestock diversification as 

part of a long-term adaptation strategy to manage drought and diseases (Opiyo et al., 2015), and 

tend to acquire cattle and camels through cultural practices, such as dowry rather than directly 

from markets (De Vries et al., 2006). Thus, tribal communities, such as Pokot, Maasai or 

Turkana have a limited dependence on camels for their economic activity that can result in lower 

seropositivity of MER-CoV compared to other regions (Deem et al., 2015).  

Tribal communities, such as the Somali, Gabra, and Borana in the eastern and 

northeastern regions of Kenya primarily focus on camels as a pastoral livelihood strategy due to 

the camel’s adaptability to arid environments and ability to withstand droughts (Ngere et al., 

2020). Also, the Somali primarily inhabit the Northeastern region with high regard for camels for 

Variables Autoregressive

Response Coefficient Standard coefficient

Explanatory estimate error (l) P value AIC

MERS-CoV Prevalence in Camels

(Intercept) 22.51 38.07

Ethno-religious Camel Practices    3.31 0.29

Agriculture Land       -0.0006 0.0002

(Intercept) -158.76 45.54

Ethno-religious Camel Practices    4.38 0.29

Agriculture Land       0.0007 0.0003

Ethnic Diversity 21.74 4.95

Agropastoral Activities      -3.47 0.80

(Intercept) -501.65 65.35

Ethno-religious Camel Practices    3.09 0.16

Agriculture Land       0.0001 0.00005

Ethnic Diversity 12.08 0.82

Agropastoral       -2.22 0.613

Average Temperature 7.57 1.10

Human Population -0.34 0.08

23 -1.39 0.008 95.64

Model

9 0.74 0.029 147.89

19 0.74 0.046 138.37
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their annual religious practices and ritual migrations (Watson, 2010), and a greater number of 

cultural practices and traditions associated with livestock rearing, trade, and consumption in 

tribal communities (Dan et al., 2021; Kagunyu et al., 2018). Further, the tribal communities in 

both the Eastern and Northeastern regions tend to migrate to different areas in search of fresh 

water and pastures, and restock their camels through direct markets, which can lead to higher 

prevalence rates of MERS-CoV (De Vries et al., 2006; (Hughes & Anderson, 2020). 

Recent findings have shown that the expanding arid regions of Kenya have reduced 

agricultural land use and increased the reliance on pastoralism, and particularly camel rearing 

(Lawrence et al., 2023a).  Also, the increasing trend in air temperatures has resulted in decreased 

rainfed agricultural production, and further leading to increased pastoralism (Lawrence et al., 

2023b). As a consequence, these effects of climate change may continue to pose a major 

challenge in creating favorable conditions for the emergence and transmission of viral zoonotic 

diseases resulting in the observed high seropositivity rates of MERS-CoV. Similar results of 

spatial clustering of zoonotic diseases have been studied in different agro-ecological climate 

zones and sociodemographics of Kenya to identify potential disease hotspots of anthrax (Nderitu 

et al., 2021). Overall, these findings are significant as shifting climatic zones continue to impact 

agricultural systems while zoonotic diseases like MERS-CoV pose a major risk to communities 

living in arid regions of Kenya warranting immediate interventions and continued surveillance. 

Due to these climatic and agricultural shifts, there is an urgent need to predict where and 

under what conditions would viral transmission of MERS-CoV occur. These findings suggest 

that continued monitoring of camels, humans, and their spatial patterns will be an integral 

component of informing prediction models. This study relied on previously collected data that 

differed in methods and specificity of data, which also assumes equal probability of detecting 

seropositivity. Further, the county-level finding in this study can vary at smaller more local 

spatial scales. Thus, results are limited in power and yet, the broader spatial patterns observed 

and insights that this type of study can provide are important in the planning and implementation 

of prediction modeling, as well as location-based risk management.  

 

5. Conclusion 

Climate and agricultural land-use change have increased the likelihood of infectious 

disease emergence and transmissions, but these drivers are often examined separately as 

synergistic effects are ignored. Further, seldom are the influence of climate and agricultural land 

use on emerging infectious diseases examined in a spatially explicit way at regional scales. Our 

objective in this study was to spatially examine the climate, agriculture, and socio-demographic 

factors related to agro-pastoralism that can influence the prevalence of MERS-CoV in dromedary 

camels across northern Kenya. Overall, this study can provide important insights in the planning 

and implementation of prediction modeling, as well as location-based risk management.  

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


10 
 

References 

Adney DR, van Doremalen N, Brown VR, et al. (2014) Replication and Shedding of MERS-CoV 

in Upper Respiratory Tract of Inoculated Dromedary Camels. Emerging Infectious Diseases 

20:1999-2005; doi:10.3201/eid2012.141280 

Aguanno R, ElIdrissi A, Elkholy AA, et al. (2018) MERS: Progress on the global response, 

remaining challenges and the way forward. Antiviral Research 159:35-44; 

doi:10.1016/j.antiviral.2018.09.002 

Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem 

AJ, Wagner CE, Wang L-F, Wesolowski A, Metcalf CJE (2022) Infectious disease in an era 

of global change. Nature Reviews Microbiology 20(4), Article 4; 

https://doi.org/10.1038/s41579-021-00639-z 

Boitt MK, Mundia CN, Pellikka P (2014) Modelling the Impacts of Climate Change on Agro-

Ecological Zones – a Case Study of Taita Hills, Kenya. Universal Journal of Geoscience, 8. 

Brodie JF (2016) Synergistic effects of climate change and agricultural land use on mammals. 

Frontiers in Ecology and the Environment 14:20–26; https://doi.org/10.1002/16-0110.1 

Bullock EL, Healey SP, Yang Z, Oduor P, Gorelick N, Omondi S, Ouko E, Cohen WB (2021) 

Three Decades of Land Cover Change in East Africa. Land 10:150; 

https://doi.org/10.3390/land10020150 

Cecchi G, Wint W, Shaw A, Marletta A, Mattioli R, Robinson T (2010) Geographic distribution 

and environmental characterization of livestock production systems in Eastern Africa. 

Agriculture, Ecosystems & Environment 135:98–110; 

https://doi.org/10.1016/j.agee.2009.08.011 

Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, 

Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V, Saphire 

EO, Smith DM, Weiskopf D, et al. (2021) Immunological memory to SARS-CoV-2 assessed 

for up to 8 months after infection. Science 371(6529), eabf4063; 

https://doi.org/10.1126/science.abf4063 

De Vries D, Leslie PW, McCabe JT (2006) Livestock Acquisitions Dynamics in Nomadic 

Pastoralist Herd Demography: A Case Study Among Ngisonyoka Herders of South Turkana, 

Kenya. Human Ecology 34:1–25; https://doi.org/10.1007/s10745-005-9000-2 

Deem SL, Fèvre EM, Kinnaird M, Browne AS, Muloi D, Godeke G-J, Koopmans M, Reusken 

CB (2015) Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus 

dromedaries) in Laikipia County, Kenya. PLOS ONE 10:e0140125; 

https://doi.org/10.1371/journal.pone.0140125 

Duygu F, Sari T, Kaya T, Tavsan O, Naci M (2018) THE RELATIONSHIP BETWEEN 

CRIMEAN-CONGO HEMORRHAGIC FEVER AND CLIMATE: DOES CLIMATE 

AFFECT THE NUMBER OF PATIENTS? Acta Clinica Croatica 57:443–448; 

https://doi.org/10.20471/acc.2018.57.03.06 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


11 
 

Fanelli A, Buonavoglia D (2021) Risk of Crimean Congo haemorrhagic fever virus (CCHFV) 

introduction and spread in CCHF-free countries in southern and Western Europe: A semi-

quantitative risk assessment. One Health 13; https://doi.org/10.1016/j.onehlt.2021.100290 

Fenollar F, Mediannikov O (2018) Emerging infectious diseases in Africa in the 21st century. 

New Microbes and New Infections 26:S10–S18; https://doi.org/10.1016/j.nmni.2018.09.004 

Gikonyo S, Kimani T, Matere J, Kimutai J, Kiambi SG, Bitek AO, Juma Ngeiywa KJZ, 

Makonnen YJ, Tripodi A, Morzaria S, Lubroth J, Rugalema G, Fasina FO (2018) Mapping 

Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya. EcoHealth 

15:372–387; https://doi.org/10.1007/s10393-018-1317-6 

Heffernan C (2018) Climate change and multiple emerging infectious diseases. Veterinary 

Journal 234:43–47; https://doi.org/10.1016/j.tvjl.2017.12.021 

Hughes EC, Anderson NE (2020) Zoonotic Pathogens of Dromedary Camels in Kenya: A 

Systematised Review. Veterinary Sciences 7(3), Article 3; 

https://doi.org/10.3390/vetsci7030103 

Iiyama M, Kariuki P, Kristjanson P, Kaitibie S, Maitima J (2008) Livelihood diversification 

strategies, incomes and soil management strategies: A case study from Kerio Valley, Kenya. 

Journal of International Development 20:380–397; https://doi.org/10.1002/jid.1419 

Kagunyu A, Lengarite M, Chemuluti J (2018) Analyzing the Social—Economic Issues 

Surrounding Camel Production in Northern Kenya. Environmental Research Journal 11:95–

102. 

Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous 

autoregressive models. Global Ecology and Biogeography 17:59–71; 

https://doi.org/10.1111/j.1466-8238.2007.00334.x 

Koeva M, Stöcker C, Crommelinck S, Ho S, Chipofya M, Sahib J, Bennett R, Zevenbergen J, 

Vosselman G, Lemmen C, Crompvoets J, Buntinx I, Wayumba G, Wayumba R, Odwe PO, 

Osewe GT, Chika B, Pattyn V (2020) Innovative Remote Sensing Methodologies for Kenyan 

Land Tenure Mapping. Remote Sensing 12(2), Article 2; https://doi.org/10.3390/rs12020273 

Lawrence TJ, Vilbig JM, Kangogo G, Fèvre EM, Deem SL, Gluecks I, Sagan V, Shacham E 

(2023a) Shifting climate zones and expanding tropical and arid climate regions across Kenya 

(1980–2020). Regional Environmental Change 23:59; https://doi.org/10.1007/s10113-023-

02055-w 

Lawrence TJ, Vilbig JM, Kangogo G, Fèvre EM, Deem SL, Gluecks I, Sagan V, Shacham E 

(2023b) Spatial changes to climatic suitability and availability of agropastoral farming 

systems across Kenya (1980–2020). Outlook on Agriculture 52:186–199; 

https://doi.org/10.1177/00307270231176577 

Lee-Cruz L, Lenormand M, Cappelle J, Caron A, Nys HD, Peeters M, Bourgarel M, Roger F, 

Tran A (2021) Mapping of Ebola virus spillover: Suitability and seasonal variability at the 

landscape scale. PLOS Neglected Tropical Diseases 15:e0009683; 

https://doi.org/10.1371/journal.pntd.0009683 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


12 
 

Muturi M, Mwatondo A, Nijhof AM, Akoko J, Nyamota R, Makori A, Nyamai M, Nthiwa D, 

Wambua L, Roesel K, Thumbi SM, Bett B (2023) Ecological and subject-level drivers of 

interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya. 

Scientific Reports 13:15342; https://doi.org/10.1038/s41598-023-42596-y 

Nderitu LM, Gachohi J, Otieno F, Mogoa EG, Muturi M, Mwatondo A, Osoro EM, Ngere I, 

Munyua PM, Oyas H, Njagi O, Lofgren E, Marsh T, Widdowson MA, Bett B, Njenga MK 

(2021) Spatial clustering of livestock Anthrax events associated with agro-ecological zones 

in Kenya, 1957–2017. BMC Infectious Diseases 21:191; https://doi.org/10.1186/s12879-021-

05871-9 

Ngere I, Munyua P, Harcourt J, Hunsperger E, Thornburg N, Muturi M, Osoro E, Gachohi J, 

Bodha B, Okotu B, Oyugi J, Jaoko W, Mwatondo A, Njenga K, Widdowson MA (2020) 

High MERS-CoV seropositivity associated with camel herd profile, husbandry practices and 

household socio-demographic characteristics in Northern Kenya. Epidemiology and Infection 

148:e292; https://doi.org/10.1017/S0950268820002939 

Ngugi RK, Nyariki DM (2005) Rural livelihoods in the arid and semi-arid environments of 

Kenya: Sustainable alternatives and challenges. Agriculture and Human Values 22:65–71; 

https://doi.org/10.1007/s10460-004-7231-2 

Opiyo F, Wasonga O, Nyangito M, Schilling J, Munang R (2015) Drought Adaptation and 

Coping Strategies Among the Turkana Pastoralists of Northern Kenya. International Journal 

of Disaster Risk Science 6:295–309; https://doi.org/10.1007/s13753-015-0063-4 

Pandit PS, Anthony SJ, Goldstein T, Olival KJ, Doyle MM, Gardner NR, Bird B, Smith W, 

Wolking D, Gilardi K, Monagin C, Kelly T, Uhart MM, Epstein JH, Machalaba C, Rostal M 

K, Dawson P, Hagan E, Sullivan A, et al. (2022) Predicting the potential for zoonotic 

transmission and host associations for novel viruses. Communications Biology 5:844; 

https://doi.org/10.1038/s42003-022-03797-9 

Recha CW (2019) REGIONAL VARIATIONS AND CONDITIONS FOR AGRICULTURE IN 

KENYA. Current Politics and Economics of Africa 12: 45. 

Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, Hudson PJ, Jouanard N, 

Nguyen KH, Ostfeld RS, Remais JV, Riveau G, Sokolow SH, Tilman D (2019) Emerging 

human infectious diseases and the links to global food production. Nature Sustainability 2: 

445–456; https://doi.org/10.1038/s41893-019-0293-3 

Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2019) Global expansion and redistribution of 

Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases 

13:e0007213; https://doi.org/10.1371/journal.pntd.0007213 

Semenza JC, Rocklöv J, Ebi KL (2022) Climate Change and Cascading Risks from Infectious 

Disease. Infectious Diseases and Therapy 11:1371–1390; https://doi.org/10.1007/s40121-

022-00647-3 

Serdeczny O, Adams S, Baarsch F, Coumou D, Robinson A, Hare W, Schaeffer M, Perrette M, 

Reinhardt J (2017) Climate change impacts in Sub-Saharan Africa: From physical changes to 

their social repercussions. Regional Environmental Change 17:1585–1600; 

https://doi.org/10.1007/s10113-015-0910-2 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


13 
 

Xiao Y, Beier JC, Cantrell RS, Cosner C, DeAngelis DL, Ruan S (2015) Modelling the effects of 

seasonality and socioeconomic impact on the transmission of rift valley Fever virus. PLoS 

Neglected Tropical Diseases 9:e3388; https://doi.org/10.1371/journal.pntd.0003388 

Saqib M, Sieberg A, Hussain MH, et al. (2017) Serologic Evidence for MERS-CoV Infection in 

Dromedary Camels, Punjab, Pakistan, 2012–2015. Emerging Infectious Diseases 23:550-

551; doi:10.3201/eid2303.161285 

WC-Kenya (2023) https://tcktcktck.org/kenya#climatic 

WHO (2018) Geneva, Switzerland: World Health Organization. WHO MERS-CoV Global 

Summary and Assessment of Risk, August 2018 (WHO/MERS/RA/August18). Published 

online 2018. Licence: CC BY-NC-SA 3.0 IGO. 

WHO (2019) Geneva, Switzerland: World Health Organization. WHO MERS-CoV Global 

Summary and Assessment of Risk, July 2019 (WHO/MERS/RA/19.1). Published July 2019. 

Accessed March 23, 2021. Licence: CC BY-NC-SA 3.0 IGO. 

Wiesmann U, Kiteme B, Mwangi Z (2016) Socio-Economic Atlas of Kenya: Depicting the 

National Population Census by County and Sub-Location. Second, revised edition. KNBS, 

Nairobi. CETRAD, Nanyuki. CDE, Bern; http://dx.doi.org/10.7892/boris.83693 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


14 
 

Appendix A. Kenya Regional and County Maps. Kenya comprises 8 regions (a) and 47 counties 

(b). 
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Appendix C. Independent variables tested in spatial statistical models to predict MERS-CoV 

 
* For further description and units see Wiesmann et al., 2016 

 

 

 

 

 

 

 

 

 

 

Category

Variable Name Definition Units

Socio-demographic

Human population: Number of people in each county. People

Human population density: Number of people relative to the area of the county. People/km

Poverty incidence:
Number of poor people relative to the total 

population at the same location.
People/People

Poverty severity:
Captures how deep poverty is and how difficult it is 

to climb out of it.
*

Religious camel practices:

Number of people in a county that include camels in 

religious practices, such as dowry or ceremonies 

relative to total county population

People/People

Agriculture

Agropastoral activity:
Number of people in small-scale agriculture and 

pastoralism.
People

Households owning livestock: Number of households owning livestock in a county. Households

Agriculture land: Amount of agriculture land in a county. Hectares

Camel population: Total number of camels in a county. Camels

Camel density: Camel per area in a county. Camels/km

Livestock: The number of stock in a county. Livestock

Camel-to-Cattle ratio:
Number of camels relative to the number of cattle in 

a county. 
Camels/Cattle

Camel-to-Livestock ratio:
Number of camels relative to the number of 

livestock in a county. 
Camels/Livestock

Camel per population: Number of camel per human population in a county. Camels/People

Livestock production:
Number of livestock utilized to provide labor and 

produce various products for consumption.
Livestock

Climate

Agro-climatic zone 1-3:
Humid area that exhibit specific rainfall, 

temperature, and soil characteristics.
km

% of Agro-climatic zone 1-3:
Agro-climatic zone 1-3 area relative to the total area 

of the county.
km/km

Agro-climatic zone 4-7:
Arid area that exhibit specific rainfall, temperature, 

and soil characteristics.
km

% of Agro-climatic zone 4-7: 
Agro-climatic zone 4-7 area relative to the total area 

of the county
km/km

Average temperature: Average monthly temperature in a county. Degrees Celsius

Average precipitation: Average monthly precipitation in a county mm

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298516doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298516


17 
 

Appendix D Second set of models that tested variables in relation to MERS-CoV in dromedary 

camels across upper Rift Valley and Eastern regions of Kenya 

 

Appendix E Third set of models that tested variables in relation to MERS-CoV in dromedary 

camels across upper Rift Valley and Eastern regions of Kenya 

 
 

 

 

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) -37.23 45.24

Ethno-religious Camel Practices    3.33 0.39

(Intercept) 194.17 146.34

Ethno-religious Camel Practices    3.95 0.52

Avg. Air Temperature -3.63 2.20

(Intercept) -106.39 54.54

Ethno-religious Camel Practices    3.43 0.35 0.74

Ethnic Diversity 12.93 6.70

(Intercept) 22.51 38.07

Ethno-religious Camel Practices    3.31 0.29

Agriculture Land       -0.0006 0.0001

(Intercept) -6.99 24.64

Ethno-religious Camel Practices    3.87 0.31

Agropastoral       -1.91 0.49

(Intercept) 25.60 14.53

Ethno-religious Camel Practices    4.09 0.21

Human Population -0.48 0.05

10 0.56 0.240 -7.77

11 -0.27 0.634 -15.47

154.58

9 0.74 0.029 -6.69

8

0.74 0.019 -0.49

0.018 -1.30

7

Model

6 0.74 0.015

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) 22.51 38.07

Ethno-religious Camel Practices    3.31 0.29

Agriculture Land       -0.0006 0.0002

(Intercept) -217.65 164.42

Ethno-religious Camel Practices    2.57 0.57

Agriculture Land       -0.0009 0.00027

Average Temperature 4.30 2.89

(Intercept) -22.48 53.66

Ethno-religious Camel Practices    3.39 0.27

Agriculture Land       -0.0005 0.00016

Ethnic Diversity 7.21 5.44

(Intercept) 5.99 31.77

Ethno-religious Camel Practices    3.68 0.36

Agriculture Land       -0.0002 0.0003

Agropastoral       -1.260 0.923

(Intercept) 25.33 14.54

Ethno-religious Camel Practices    4.09 0.21

Agriculture Land       0.00004 0.00017

Human Population -0.50 0.09

15 -0.27 0.618 -6.83

13 0.013 0.40

14 0.64 0.18 0.46

0.79

12 0.72 0.046 -0.05

Model

9 0.74 0.029 147.89
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Appendix F Fourth set of models that tested variables in relation to MERS-CoV in dromedary 

camels across upper Rift Valley and Eastern regions of Kenya 

 
 

 

Appendix G Fifth set of models that tested variables in relation to MERS-CoV in dromedary 

camels across upper Rift Valley and Eastern regions of Kenya 

 
 

 

 

 

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) -217.65 164.42

Ethno-religious Camel Practices    2.58 0.57

Agriculture Land       -0.0009 0.0003

Average Temperature 4.30 2.89

(Intercept) -171.47 187.71

Ethno-religious Camel Practices    2.79 0.75

Agriculture Land       -0.0008 0.0004

Average Temperature 3.13 3.82

Ethnic Diversity 3.14 7.29

(Intercept) -784.30 83.87

Ethno-religious Camel Practices    1.93 0.31

Agriculture Land       -0.0005 0.00012

Average Temperature 13.78 1.50

Agropastoral       -4.13 0.39

(Intercept) -407.43 77.45

Ethno-religious Camel Practices    2.54 0.30

Agriculture Land       -0.00044 0.00013

Average Temperature 7.80 1.39

Human Population -0.52 0.05

18 -0.27 0.599 -21.30

16 0.75 0.051 1.83

17 -0.52 0.318 -20.99

Model

12 0.72 0.046 147.84

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) -22.48 53.66

Ethno-religious Camel Practices    3.39 0.27

Agriculture Land       -0.0005 0.00016

Ethnic Diversity 7.21 5.44

(Intercept) -158.76 45.54

Ethno-religious Camel Practices    4.38 0.29

Agriculture Land       0.0007 0.0003

Ethnic Diversity 21.74 4.95

Agropastoral       -3.47 0.80

(Intercept) -97.90 16.57

Ethno-religious Camel Practices    4.41 0.09

Agriculture Land       0.001 0.0001

Ethnic Diversity 17.95 2.27

Human Population -0.662 0.042

20 -0.54 0.384 -28.77

19 0.74 0.046 -9.92

Model

13 0.79 0.013 148.29
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Appendix H Sixth set of models that tested variables in relation to MERS-CoV in dromedary 

camels across upper Rift Valley and Eastern regions of Kenya 

 
 

Variables Autoregressive

Response Coefficient Standard coefficient AIC and

Explanatory estimate error (l) P value Δ AIC

MERS-CoV Prevalence in Camels

(Intercept) -158.76 45.54

Ethno-religious Camel Practices    4.38 0.29

Agriculture Land       0.0007 0.0003

Ethnic Diversity 21.74 4.95

Agropastoral       -3.47 0.80

(Intercept) -53.39 16.58

Ethno-religious Camel Practices    4.10 0.11

Agriculture Land       0.0003 0.0001

Ethnic Diversity 14.03 1.81

Agropastoral       1.77 0.50

Human Population -0.85 0.06

(Intercept) -774.68 32.04

Ethno-religious Camel Practices    2.57 0.15

Agriculture Land       0.00002 0.0001

Ethnic Diversity 11.50 1.38

Agropastoral       -4.93 0.16

Average Temperature 12.04 0.62

(Intercept) -501.65 65.35

Ethno-religious Camel Practices    3.09 0.16

Agriculture Land       0.0001 0.00005

Ethnic Diversity 12.08 0.82

Agropastoral       -2.22 0.613

Average Temperature 7.57 1.10

Human Population -0.34 0.08

21 -1.09 0.067 -24.61

Model

19 0.74 0.046 138.37

23 -1.39 0.008 -42.73

22 -1.14 0.063 -32.72
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