
An agent-based model to simulate the transmission dynamics of bloodborne 

pathogens within hospitals 

 

Paul Henriot1,2, Mohammed El Kassas3, Wagida Anwar4, Samia Abdo5, Kévin Jean1,2, 

Laura Temime1,2  

 
1Laboratoire Modélisation, épidémiologie et surveillance des risques sanitaires, 

Conservatoire national des arts et métiers (CNAM)  
2Unité PACRI, risques infectieux et émergents, CNAM-Institut Pasteur 
3 Endemic Medicine Department, Faculty of Medicine, Helwan University 
4 Department of Community, Environmental and Occupational Medicine, Faculty of 

Medicine, Ain Shams University 
5 Department of Clinical Pathology, Faculty of Medicine, Ain Shams University 

 

Abstract   

 

Bloodborne pathogens are a major public health concern as they can lead to a variety of 

medical conditions, including cirrhosis and cancers with significant mortality and morbidity. 

Three viruses are of major concern: HCV, HBV and HIV. Their   transmission   is   mostly 

community-associated but the iatrogenic risk of infection is not negligible, even today. 

Mathematical models are widely used to describe and assess pathogens transmission, within 

communities and hospitals. Nevertheless, few are focusing on the transmission of pathogens 

through blood and even fewer on their transmission within hospital as they usually study the 

risk of community-associated infection in vulnerable populations such as MSM or drug users. 

Herein, we propose an agent- based SEI (Susceptible-Exposed-Infected) model to explore the 

transmission dynamics of bloodborne pathogens within hospitals. This model simulates the 

dynamics of patients between hospital wards, from their admission to discharge, as well as the 

dynamics of the devices used during at-risk invasive procedures, considering that patient 

contamination occurs after exposure to a contaminated device. Multiple parameters of the 

model, such as HCV prevalence, transition probabilities between wards or ward-specific 

probabilities of undergoing different invasive procedures, were informed with data collected 

in the University Hospital of Ain Shams in Cairo, Egypt in 2017. We explored the effect of 

device shortage as well as the effect of random and systematic screening with associated 
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modification in   disinfection   practices on the risk of infection for patients.  By modifying 

some parameters of   the   model, we then explored the case of HBV in Ethiopia. In the future, 

this model could be used to assess the risk of transmission of other bloodborne pathogens in 

other contexts. 

 

 

1. Introduction  

Bloodborne pathogens are a major public health concern as they can lead to a variety of 

medical conditions, including cirrhosis and cancers with significant mortality and morbidity 

(Pirozzolo and LeMay, 2007). Three viruses are of major concern: hepatitis B and C viruses 

(HBV and HCV), and human immunodeficiency virus (HIV). Transmission is mostly 

community-associated, especially due to unsafe injections during drug use. Nevertheless, 

iatrogenic transmission may occur during invasive procedures when compliance to infection 

control measures is imperfect. Recent studies have highlighted the persisting increased risk of 

HBV and HCV infection in individuals exposed to invasive procedures, with high risk levels 

in some low- or middle-income countries (2,3). 

Mathematical models are widely used to better understand pathogen transmission and assess 

control strategies, in particular within healthcare settings (4). Nevertheless, models 

investigating the bloodborne transmission of pathogens remain rare and often focused on 

community-level epidemics, notably among drug users (5). To our knowledge, no dynamic 

model has been proposed to specifically explore within-hospital transmission routes of 

bloodborne viruses and evaluate control measures.  

Herein, we present a flexible agent-based model describing movements (from admission to 

discharge) of patients between wards in a hospital, their exposure to pathogen-contaminated 

blood through medical devices during invasive procedures, and the ensuing epidemic process. 

We apply this model to simulate HCV nosocomial transmission, relying on detailed 

observational data collected in an Egyptian hospital, and extend it to the case of HBV. We 

explore varying levels of infection control within the hospital, and simulate interventions in 

order to assess their effect on the risk of infection for hospitalized patients.  
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2. Methods 

 

We developed a stochastic, discrete-time, individual-based model that describes the dynamics 

of patients within a hospital, from admission to discharge, as well as the dynamics of medical 

and surgical devices used during at-risk invasive procedures. The model further simulates the 

between-patient spreading dynamics of a bloodborne pathogen through contaminated devices 

(Fig 1). Transmission occurs during invasive procedures: device contamination from an 

infectious patient to an uncontaminated device and patient infection from a contaminated 

device to a susceptible patient. Herein we describe the mathematical framework of the model 

as well as its specificities from a user point of view, its parametrization and operation.  

 

 
 
Figure 1. Model framework. In each ward, patients are categorized as either Susceptible (S), 
Exposed (E) or Infectious (I), while the available devices may either be new (QN) and sterile, 
previously used but uncontaminated (QU) or previously used and contaminated (QC). The 
ward network represents the structure of the Ain Shams hospital into 28wards, used as an 
example for our model application. Each number is associated with a ward, with the 
numbered list of wards provided in table S1. 
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Table 1A. Hospital-associated parameters  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1B. Pathogen-associated parameters  

Entry parameters Notation Value Reference 

Initial quantity of new devices k in ward w ��,�,�
����  

Tables S7-S10 

 

Initial quantity of previously used uncontaminated devices k in ward w ��,�,�
����  

Data 

Initial quantity of previously used contaminated devices k in ward w ��,�,�
����   

Probability of successful sterilization for device of type k �	�
�,� 
0.95 (for all devices in the high-resource setting) 

0.80  (for all devices in the low-resource setting) 

Expert 
opinion 

Resupply frequency for device of type k �� Text S1 
Estimated 
from data 

 
Surgery  Internal medicine   

Total number of patients (capacity) ��
�  
400 570 Data 

Number of patient profiles ��  
1 Data 

Probability of belonging to profile g ��  
0.41 0.59 Estimated 

from data 

Number of wards ��  
10 15 Data 

Number of distinct procedures �����  
15 Data 

Number of device types �� 
10 Data 

Profile-specific probability of undergoing procedure p in  ward i ��,�
�

 
Table S5 Table S6 Estimated 

from data 

Profile-specific transfer rate between ward i and j ��,�
�

 
Table S3 Table S4 Estimated 

from data 

Entry parameters Notation Value Reference 

Profile-specific upon-admission 
prevalence in ward w ���	�

�  
Table S1 Estimated from 

data 
Transmission risk for procedure 
p 

��  Figure S4 Henriot et al., 2022 

Duration of eclipse phase (min-
max) 


�
,���, �
,�
�
 

(2-14) (HCV) 

(15-15) (HBV)  

Martinello et al.,
2018 

Candotti et Laperche 
2018 
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2.1 Population Dynamics 

 

Table 1A and 1B summarise model parameters. The total hospitalized population is assumed 

to remain constant over time, at hospital capacity 
 ����  , so that the number of patients leaving the hospital at time t is equal to the number of 

patients entering the hospital at time t+1. Patients may belong to any of �� distinct profiles 

such as age, place of admission, etc... For each profile g and each ward w the upon-admission 

prevalence is defined as �����
�.  

 

At each time step, a patient with profile g can move from ward i to ward j with probability ��,�
� . All transfer probabilities are provided in the square transfer matrix ��	

�  of size 	�� 
1� 
 	�� 
 1� with the last row being a vector of zeros except at last position (i.e., every 

discharged patient stays in the “discharged” compartment):  

 

��	
� � ��

�� �
,

� � �
,�

�� � ����
,

� � ���
,�

�0 � 1 ��
�� 

 

 

2.2 Procedures 

 

In total, Nproc distinct invasive procedures are performed within the hospital. At each time 

step, a patient of group g from ward i undergoes procedure p with probability ��,�
� . The 

procedure probability matrix of size �� 
 	��	�
 
 1�, is denoted ��	�

� . The last column of 

this matrix is the vector of probabilities associated with the event “no procedure” for each 

ward (i.e. the patient stays in a given ward without undergoing any procedure): 

��	�

� �

���
���
�� �
,


� … �
,�����

� �1 � � �
,�
�

�����

��


�
� � � �

���,

� … ���,�����

� �1 � � ���,�
�

�����

��


����
���
��
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2.3 Devices dynamics  

 

Medical or surgical devices are classified into �� types and associated with procedures by a 

table giving the device types in the first column and the associated procedures in the other 

columns. A procedure can be associated with the use of multiple devices. 

 

The quantity of available devices is ward-dependent, type-dependent, and time-dependent. It 

is divided into 3 device groups: (a) new (sterile) device, (b) previously used uncontaminated 

device, and (c) previously used contaminated device. 

 

The number of new available devices at time t of type j in ward i is given by ��
�,�	 �; 

quantities of new devices over the entire hospital are provided in a Nw 
 N�  sized matrix: 

 

#�	 � � � ��

,
	 � … ��


,�	 �� � ���
�,
	 � … ��

�,�	 �� 

 

The number of previously used uncontaminated devices at time t of type j in ward i is given 

by ��
�,�	 �; quantities of used uncontaminated devices over the entire hospital are provided in a �$ 
 ��   sized matrix: 

 

#�	 � � � ��

,
	 � … ��


,�	 �� � ���
�,
	 � … ��

�,�	 �� 

 

Finally, the number of previously used and contaminated devices at time t of type j in ward i 

is given by �

�,�	 �; quantities of contaminated devices over the entire hospital are provided in 

a Nw 
 N�  sized matrix: 

 

#
	 � � � �


,
	 � … �



,�	 �� � ��

�,
	 � … �


�,�	 �� 
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2.4 Transmission dynamics 

 

2.4.1 Patients  

 

Upon admission, a patient can be either Susceptible (S) or Infectious (I), assuming that the 

number of patients entering the hospital shortly after being contaminated (considered as 

exposed) is negligible. During hospitalization, a Susceptible patient can become Exposed (E) 

after exposure to a reused contaminated material. We denote %�	 � the status (i.e., 0 for S, 1 

for E, or 2 for I) of patient s at time t. Initial statuses of patients are randomly drawn 

according to a vector of upon-admission prevalences giving the initial prevalence (i.e., 

probability of being pathogen-positive when entering the hospital) for each group of patients.  

 

A device of type k is reused on patient s at time t for procedure p in ward w if no new device 

is available in the ward (i.e., ��
�,�	 � � 0). The contamination status of the device is defined 

by &

�,�, a random variable following a Bernoulli law with �	&


�,� � 1;  � = 
��
�,����

��
�,�������

�,����
 

(contaminated device) and �	&

�,� � 0;  � = 1 � ��

�,����

��
�,�������

�,����
 (uncontaminated device).  

 

The time-dependent probability of a susceptible patient getting infected after exposure to 

reused contaminated devices during procedure p in ward w is computed as: 

 

 

����	 � � �� 
 � �	&

�,�;  �

� � ������  

  
 

 

Where ��(((() is the vector of device types used during procedure p and �� is the risk of infection 

after exposure to a contaminated device during the same procedure, randomly drawn in an 

associated risk distribution. 

 

If infection occurs, the patient becomes exposed at time t and his status changes to %�	 � � 1. 

The patient stays in the exposed state until the end of an eclipse phase � is reached. This 

corresponds to the pre-ramp-up phase of the pathogen natural history during which the patient 
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infectiousness is considered to be null. The eclipse phase duration is drawn in a uniform 

distribution with parameters �!�� and �!�"  for each new patient s entering the hospital: 

 ��  ~ +	�!�� , �!�") 

 

A counter -�	 � of the number of time-steps since exposure is initialized upon admission and 

is given at each time-step by: 

 

.-�	 
 1� � 0 /0 %�	 � � 0 1� %�	 � � 2 -�	 
 1� �  -�	 � 
 1 /0 %�	 � � 1          3 
 

If -�	 � � � �, the eclipse phase is over and the exposed patient becomes infectious (%�	 � �2) until he leaves the hospital. 

 

 

2.4.2 Devices  

 

At each time step, in each ward, patients undergo their procedures successively. When ����
�,�	 � patients in ward w need to undergo a procedure requiring a device of type k, these 

procedures requiring the same device type are performed in a random order. The rank of 

patient s is then denoted 4�
�,�	 � among all procedures requiring device k at time t in ward w.  

 

Any device that is not already contaminated and that is used on an infected individual is 

considered contaminated after exposure. However, after each procedure, the device undergoes 

a sterilization process, which successfully clears contamination with probability ���#	
�  (which 

is device-specific).  

 

To that aim, we define 5$
� a device-dependent random variable following a Bernoulli law (i.e., 

device is well disinfected, or insufficiently disinfected) with �	5$
�  � 1� = ���#	

�  and �	5$
�  �0� = 1 � ���#	

� . 
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Between times t and t +1 the dynamics of device type k in ward w are thus described by the 

following systems of equation: 

 

If ��
�,�	 
 6��
� 7 0 (i.e., new devices of type k are still available in ward w at that time): 

 

89
:
9; ��

�,�	 
 6�� � ��
�,�	 
 6��
� � 1                                                                                   

��
�,�	 
 6�� �  <��

�,�	 
 6��
� 
 1 /0%�	 � = >0,1? 1� %�	 � � 2 @AB 5$
� � 1 ��


�,�	 
 6��
� 1 -��$/C�                                                                  3
�


�,�	 
 6�� �  <�

�,�	 
 6��
� 
 1 /0 %�	 � � 2 @AB 5$

� � 0�

�,�	 
 6��
�  1 -��$/C�                                 3                                  

3 
 

 

 

If ��
�,�	 
 6��
� � 0 (i.e., no new devices of type k are available in ward w at that time): 

 

899
9:
999
; ��

�,�	 
 6�� � 0                                                                                                                                               
��


�,�	 
 6�� �  D ��
�,�	 
 6��
� � 1 /0	&


�,� � 0 @AB %�	 � � 2 @AB 5$
� � 0�                            ��

�,�	 
 6��
� 
 1 /0 E&

�,� � 1 @AB 5$

� � 1F                                                         ��
�,�	 
 6��
� 1 -��$/C�                                                                                              3

�

�,�	 
 6�� �  D�


�,�	 
 6��
� 
 1 /0 E&

�,� � 0 @AB %�	 � � 2 @AB 5$

� � 0F�

�,�	 
 6��
� � 1 /0 E&


�,� � 1 @AB 5$
� � 1F                             �


�,�	 
 6��
�  1 -��$/C�                                                                 3                                  
3 

 

 

Where 6� �  %	
�,���� 

��
�
�,����

 is the increment of time step generated by a procedure using device k 

performed on patient s and ����
�,�	 � is the total number of patients undergoing a procedure 

requiring device k in ward w at time t. 

 

Finally, each type of device undergoes a full renewal at a given device-dependent and ward-

dependent frequency 0�
�. All previously used devices of that type are then replaced by new 

devices. 
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2.6 Model application  

 

2.6.1 Application to HCV in an Egyptian hospital: baseline scenarios 

 

We used detailed longitudinal data collected in an Egyptian hospital (Ain-Shams University 

Hospital, Cairo) in 2017 over a 6-month period to inform multiple parameters of our model 

(ClinicalTrial ID NCT02826447). Five hundred patients were screened upon-admission for 

HCV positivity and followed over the course of their hospitalization in the Surgery and 

Internal medicine departments. Many data were collected: (a) Upon-admission patient 

characteristics such as age, gender and history of previous hospitalization, (b) patient location 

within the hospital, (c) procedures underwent by these same patients. More details on the data 

collected is available in Anwar et al., 2021 (6). 

These data were used to parametrize the model, in particular estimate: (a) The initial 

prevalence, (b) the number of patients, (c) the number of wards, (d) the number of procedures, 

(e) the transition matrix between wards within the hospital, and (f) the probability matrix 

associated with the procedures. These parameters were estimated for both departments (i.e. 

patient profiles). As the minimum duration of a procedure in our data was 5 minutes, we 

considered a 5-minute time-step for our transition matrix and procedure probability matrix 

estimations.  In addition, we used other data collected in 2021 to inform the quantity of 

available devices of each type within this same hospital, the dates of resupply (i.e., renewal 

frequency), as well as the admission probability in each of the departments. The values of all 

these parameters and the method used to estimate the resupply dates are available in the 

supplementary material (Tables S3-S10, Figures S1-S3, Text S1). 

Finally, the per-procedure transmission risks were retrieved from a previous work (7) and the 

minimum and maximum durations of the eclipse phase were found in the literature (8). No 

information was available to estimate the probability of successful sterilization for each 

device so these were informed based on expert opinion. As Ain-Shams is a University 

Hospital, where adherence to control measures is usually high, the probability of successful 

sterilization was set to 95% for all device types.  

In addition to the baseline scenario exploring transmission within a high-resource setting, we 

explored the case of a hospital with lower resources and lower adherence to control measures. 

To that aim, we divided the quantity of available supply by two, and the dates of resupply 
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were estimated with this new information. In addition, the probability of successful 

sterilization was reduced to 80% for all device types. 

 

Our model was run over a year, representing 105,120 time steps. The main outcomes retrieved 

from our simulations were the daily incidence rate as well as the yearly cumulative incidence 

at hospital and ward level. In addition, we studied the yearly attributable portion to new HCV 

cases for each type of device. 

 

2.6.2. Interventions: reinforced infection control 

 

We then simulated two different interventions based on HCV testing to reduce the risk of 

infection for hospitalized patients: 

 

(i) A targeted ward-level systematic-screening intervention. The three most at-risk 

wards (i.e., with the highest yearly estimated cumulative incidence) were identified 

after running baseline scenarios. Every patient entering one of these three wards 

was screened for HCV. Reinforced infection control was then implemented for 

identified positive patients, simulated as systematic successful sterilization of 

devices following use on these patients (i.e., the probability of successful 

sterilization was set to 1). 

 

(ii) A random-screening upon admission intervention. A random subset of patients 

entering the hospital were screened for HCV. Reinforced infection control was 

then implemented for identified positive patients, simulated as systematic 

successful sterilization of devices following use on these patients.  

 

The total number of tests performed in the ward-level intervention over a year was retrieved 

so that the number of random tests in the random-testing intervention was set to be the same, 

in order to compare these two scenarios. Test sensitivity and specificity were both assumed to 

be 100%. 

 

2.6.3. Sensitivity analysis 
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Various sources of uncertainty might have interfered with the per-procedure risk estimations. 

In particular, the risk associated with surgery was estimated based on ORs reported in 

multiple studies (3), but no information was available on whether this procedure was 

describing the procedure itself or took into account surgeries and other often associated sub-

procedures (such as intubation or injection for example) as a whole. Thus, a sensitivity 

analysis was performed in order to compare our baseline assumption (i.e., that this risk is in 

fact associated with the act of surgery itself) with the alternative assumption that this risk also 

accounts for other sub-procedures associated with surgery, in which case we excluded from 

our database all procedures occurring in the operating room (OR) except the ones reported as 

surgeries.  

 

2.6.3 Extension to HBV  

 

In order to extend our field of application to the study of HBV transmission in hospitals, we 

applied our model to the case of an Ethiopian hospital, in which high levels of HBV 

prevalence were recently found. We assumed a similar hospital structure with three modified 

input parameters: 

i.  The initial prevalence. We retrieved age-based HBV seroprevalence from 

Mohammed et al. (2022) (9), who explored HBV infections in two Ethiopian 

hospitals. 

ii. The per-procedure infection risks. We estimated per-procedure infection risk 

distributions for HBV by multiplying those computed for HCV by the ratio of the 

probability of HBV infection after exposure to contaminated blood (6-30%) over 

the same probability for HCV (1.8%) (10). 

iii. The duration of the eclipse phase. From the literature, we estimated the eclipse 

phase duration for HBV to be 15 days (11)  

 

More information on these calculations is available in Supplementary Material. All other 

parameters were kept unchanged. We explored the same scenarios than for HCV: high-

resource and low-resource hospitals.  

 

 

2.6.6 Model simulations  
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This model was coded in C++ using the Rcpp interface in R version 4.3.1 (12). All 

simulations were performed using the same R version. The number of simulations needed to 

catch most of the variability produced by the model was estimated by studying the 

convergence of the cumulative mean of the number of yearly number of cases for the low-

resource setting scenario. Figure S8 shows that the mean converges after approximately 100 

simulations. Therefore, each scenario was simulated 100 times. 

 

3. Results 

3.1 HCV in Egypt  

3.1.1. Baseline scenarios 

The predicted yearly number of HCV acquisitions among hospitalized patients differed highly 

depending on the scenario.  

In the high-resource setting case, this number was estimated around 4.6 cases per 100,000 

patient/year (95% PI [0.6-9.5]) (Fig 2A). The yearly incidence rate was the highest in the OR 

(19.3 cases per 100,000 per year, 95% PI [0-40.4]), emergency room intensive-care unit (ER 

ICU) (4.5 cases per 100,000 per year, 95% PI [0-88.8]) and Ophthalmology (1.1 cases per 

100,000 per year, 95% PI [0-8.3]) wards (Fig 2B), though leading to less than 3, 0.5 and 0.14 

annual cases on average, respectively. The yearly cumulative incidence was higher in the 

surgery department (7.4 cases per 100,000 per year, 95% PI [0-15.2]) compared to the internal 

medicine department (0.4 cases per 100,000 per year, 95% PI [0-1.8]). The type of device 

associated with the largest number of HCV contaminations was the endotracheal tube, with 

90% of all cases on average (Fig 3A).  

In the low-resource setting case, the average yearly number of cases was, as expected, much 

higher, estimated at 102.7 per 100,000 patient/year (95% PI [75.5-143.1]) (Fig 2C). The ER 

ICU, OR and ER wards were associated with the highest yearly incidence, with 273.6 cases 

per 100,000 patient/year (95% PI [0-658.9]), 157.8 cases per 100,000 patient/year (95% PI 

[88.6-235.3]) respectively (Fig 2D). Again, the yearly cumulative incidence was higher in the 

surgery department (60.8 cases per 100,000 per year, 95% PI [38.1-88.8]) compared to the 

internal medicine department (43.3 cases per 100,000 per year, 95% PI [22.9-74.4]). Here 

also, endotracheal tubes were associated with the highest number of HCV contaminations, 

representing almost 30% of all HCV infections on average, followed by intravenous (IV) 

canulas (around 15% of all infection cases) (Fig 3B).  
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Figure 2. Results of the model for baseline scenarios (HCV case). (A) and (C): Daily 

incidence rate for the high-resource hospital and low-resource hospital, respectively. (B) 

and (D) Yearly cumulative incidence (mean and 95% PI) and average number of cases for 

each ward, ranked by mean cumulative incidence values.  

 

 

Figure 3. Yearly portion of new HCV cases attributable to each device, in (A) the 

baseline scenario for the high-resource hospital and (B) the baseline scenario for the low-

resource hospital.  

 

3.1.2 Interventions 
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In each case (i.e. high-resource or low-resource setting), the efficacy of the targeted ward-

level systematic screening interventions was found to be superior to that of the upon-

admission random-testing interventions (Figure 4).  

 

For the high-resource setting, a total average number of 30,375 patients (40.5%) went through 

the OR, ER ICU or Ophthalmology wards during their hospitalization. Performing systematic 

screening in these three most at-risk wards reduced the annual number of HCV acquisition 

cases by 97.6% (95% CI [96.5-98.4]) on average compared to the baseline scenario, whereas 

random testing in 40.5% of patients upon admission reduced the annual number of cases by 

an average of 41.6% (95% CI [37.6-45.5]). 

 

Trends were similar for the low-resource setting case. The three most at-risk wards were the 

ER ICU, OR, and ER wards, representing an average of 53,472 patients (71%). Performing 

systematic screening in these wards allowed a reduction of 88.5% (95% CI [88.0-89.0]). 

Performing random screening in 71% of newly admitted patients reduced the annual number 

of cases by an average of 72.1% (95% CI [71.4-72.7]).  

 

Figure 4. Yearly cumulative incidence comparison to baseline scenarios for two different 

intervention strategies (95% CI of the mean) for (A) high-resource and (B) low-resource 
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hospitals. Baseline scenarios corresponds to the no-intervention scenarios. For the high-

resource and low-resource settings on average of 30,375 patients (40.5%) and 53,472 (71%) 

patients were screened, respectively, (i) either systematically (in the three most at-risk wards) 

or (ii) randomly upon admission.  

 

3.1.3. Sensitivity analysis  

When considering that our estimate of HCV infection risk associated with surgery already 

takes into account the risk of other associated sub-procedures, the yearly cumulative incidence 

was reduced by 73.7% in the high-resource setting baseline scenario (with 1.2 cases per 

100,000 patient/year ; 95% PI [0-3.7]) and by 22.9% in the low-resource setting baseline 

scenario (79.2 cases per 100,000 patient/year ; 95% PI [52.2-117.9]), compared to the 

baseline case where each of the procedures occurring in the operating room was taken into 

account individually.  

 

3.2 HBV in Ethiopia 

3.2.1. Baseline scenarios 

The predicted number of HBV acquisitions among hospitalized patients was higher than for 

HCV, and again differed highly between low- and high-infection control hospital settings 

(Fig. S5).  

In the high-resource setting, this number was estimated at 49.8 cases per 100,000 patient/year 

(95% PI [38.2-70.2]), with the OR ward being the most at-risk, with a yearly cumulative 

incidence of 210 cases per 100,000 patient/year (95% PI [160-291.2]), followed by the ER 

ICU ward (17 cases per 100,000 patient/year, 95% PI [0-91]) and the Endoscopy ward (11.5 

cases per 100,000 patient/year, 95% PI [0-47.9]). The type of device associated with highest 

number of HCV contaminations was the endotracheal tube with more than 80% of all cases on 

average (Fig S6). 

In the low-resource setting, the yearly cumulative incidence reached 860.8 cases per 100,000 

patient/year (95% PI [667.8-1119]), with the ER ICU ward again being one of the most at-risk 

with a yearly cumulative incidence of 1823.9 cases per 100,000 patient/year (95% PI [533-

3635]), followed by the OR ward (1608.3 cases per 100,000 patient/year, 95% PI [1122.5-

2288.6]), and the ER ward (492.6 cases per 100,000 patient/year, 95% PI [388.2-628.1]). 

Again, the endotracheal tube was associated with the highest number of contaminations, 

accounting for more than 30% of all contaminations, on average (Fig S6). 
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4. Discussion 

Herein we describe the framework of a novel agent-based model of the nosocomial 

transmission of bloodborne pathogens. Using data on patient movements within the hospital, 

procedures underwent by patients and the hospital structure, we were able to reproduce the 

dynamics of patients and medical devices within the hospital. We showed that the risk of 

HCV infection is low in a hospital with high resources and good disinfection practices (less 

than 5 cases per 100,000 patients per year) but higher for a low-resource hospital with around 

100 cases per 100,000 patients per year. For the HBV case, the trends were the same but with 

higher absolute risk values.  

Until now, and to our knowledge, no such model was available in the literature and all 

previous modelling approaches to explore bloodborne pathogen spread in healthcare settings 

were based on quantitative risk assessment (13,14). Dynamic models had already been used to 

study the transmission dynamics of HCV and other bloodborne pathogens in the community, 

especially within IDU networks as reviewed by Cousien et al. (2015) (5). However, most of 

these models were fully compartmental and only few used an individual-based approach.  

 

The community incidence of HCV in rural villages in Egypt was estimated at 37/100,000 per 

year in 2018, soon after the implementation of a mass HCV screening campaign. Even if this 

may not be fully comparable with our results, our estimations remain in the same order of 

magnitude (15). Our work suggests that hospitals might still generate new HCV and HBV 

contaminations, especially in healthcare settings with low resources and/or suboptimal 

disinfection practices. This is in line with recent studies highlighting a persisting increased 

risk of HBV and HCV infection associated with medical and surgical procedures (2,16). We 

showed that nosocomial acquisitions could however be tackled by improving control 

measures and by a better allocation of financial resources to make more sterile devices 

available for hospitals. 

 

Some limitations related to the model structure and data used to inform the model may be 

highlighted.  

 

First, the model only accounts for between-patient transmission without considering 

transmission from healthcare workers to patients or from patients to healthcare workers. Cases 
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of contamination through these routes have been reported, leading us to potentially 

underestimate acquisition risks. However, such cases are usually quite rare (17).   

Second, our results highly depend on the assumed per-procedure risks of transmission through 

blood contact. However, as mentioned in the method section, these risks might have been 

over- or under-estimated. Our sensitivity analysis showed that the estimated yearly 

cumulative incidence could vary depending on the assumption made on the risk associated 

with surgery: considering that this risk takes into account the risk of other associated sub-

procedures led to a lower yearly cumulative incidence.  

 

Third, our model allowed us to assess the effectiveness of ward-level targeted systematic and 

upon-admission random testing in the hospital. While randomly testing patients upon-

admission appeared to be a sub-optimal strategy, our results suggested that systematically 

screening patients admitted into the three most at-risk wards could be more efficient in 

reducing the yearly number of cases. Nevertheless, we assumed perfect disinfection of 

devices used on positive patients, which might be difficult to reach in practice. Other 

interventions could be assessed using our model. In particular, a more realistic intervention 

would be device reallocation between wards, which could reduce the overall number of 

infections by setting the risk to zero in most at-risk wards while potentially increasing it in 

other wards.  

 

Fourth, the data used to inform the quantity of available devices within wards was 

approximated using the available devices at the entire Ain Shams hospital level, assuming that 

these devices were allocated to wards proportionally to admissions. This may not reflect the 

real supply allocation. In addition, we assumed that the available quantity of devices in low-

resource hospitals was twice lower than for high-resource hospitals, without any data to base 

this on. Finally, probabilities of successful disinfection were chosen based on expert opinion 

but do not rely on data collected within hospitals.  

 

Many of these limitations stem from a lack of data to correctly inform the corresponding 

model parameters, forcing us to make assumptions. However, our aim here was mostly to 

describe a new modelling framework and to illustrate its potential applications, rather than to 

directly inform public health decision-making regarding HCV or HBV control in hospitals. 
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On a related note, our results may not accurately describe the current Egyptian situation as we 

used data from 2017. The current upon-admission prevalence of HCV infected patients might 

be much lower, as a massive test and treat program launched by the Egyptian government in 

2018 led to the treatment of more than 2 million Egyptian and the national prevalence in 2023 

is expected to fall around 0.5% (18).  

 

Nevertheless, some countries still report a high HCV or HBV prevalence. A recent meta-

analysis focusing on HBV prevalence in sub-continental countries showed that Pakistan and 

India still have a national prevalence over 5% (19). In addition, nosocomial outbreaks of 

bloodborne infections still occur nowadays, even in developed countries. Between 2006 and 

2020, 91 outbreaks of transmission of HBV and HCV within hospitals have been reported in 

Europe, corresponding to 442 cases of infections (20). In the USA, such events were reported 

66 times between 2008 and 2019, corresponding to more than 500 new infections (21).  Our 

model could help predict such outbreaks, track past contamination events and assess the 

effectiveness of intervention measures.     

 

To conclude, the modelling tool we propose may be useful to study the spread of bloodborne 

pathogens at a hospital level and assess the efficacy of multiple interventions on the reduction 

of their transmission, as well as the associated costs. It could help implement more efficient 

prevention measures in hospitals and, for instance, make WHO HCV elimination targets more 

easily achieved. The advantage of this model lies in its high flexibility, while computation 

times remain reasonable despite model complexity. It can account for heterogeneity between 

patient profiles by informing different transition matrices and could be easily applied to other 

hospitals in other contexts beyond those described here.It model could also help study the 

transmission of other existing bloodborne pathogens such as Zika virus, or prions, which are 

yet poorly understood.  In addition, as experienced with the COVID-19 pandemic, emerging 

pathogens can lead to a huge public health burden. Being able to model the transmission of 

potential emerging bloodborne pathogens could help predict the associated disease burden in 

hospitals and help implement efficient public health policies.  
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