
Scalable Approach to Medical Wearable

Post-Market Surveillance

Richard M. Yoo PhD MBI1*§, Ben T. Viggiano BS1*, Krishna N. Pundi MD2*, Jason A. Fries

PhD1, Aydin Zahedivash MD MBA3, Tanya Podchiyska MS4, Natasha Din MBBS MAS4, Nigam

H. Shah MBBS PhD1,5,6

1Department of Medicine, School of Medicine, Stanford University, Stanford, CA

2Department of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford,

CA

3Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA

4VA Palo Alto Health Care System, Palo Alto, CA

5Clinical Excellence Research Center, School of Medicine, Stanford University, Stanford, CA

6Technology and Digital Services, Stanford Health Care, Stanford, CA

*These authors contributed equally

§Corresponding Author:

Richard M. Yoo

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298488doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.14.23298488
http://creativecommons.org/licenses/by/4.0/


1265 Welch Road, Stanford, CA 94305

rmyoo@stanford.edu

Keywords: wearable devices, atrial fibrillation, post-market surveillance, weakly supervised

machine learning, prompting, large language model

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298488doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298488
http://creativecommons.org/licenses/by/4.0/


ABSTRACT

Objective

We sought to develop a weak supervision-based approach to demonstrate feasibility of

post-market surveillance of wearable devices that render AF pre-diagnosis.

Materials and Methods

Two approaches were evaluated to reduce clinical note labeling overhead for creating a training

set for a classifier: one using programmatic codes, and the other using prompts to large language

models (LLMs). Probabilistically labeled notes were then used to fine-tune a classifier, which

identified patients with AF pre-diagnosis mentions in a note. A retrospective cohort study was

conducted, where the baseline characteristics and subsequent care patterns of patients identified

by the classifier were compared against those who did not receive pre-diagnosis.

Results

Label model derived from prompt-based labeling heuristics using LLMs (precision = 0.67, recall

= 0.83, F1 = 0.74) nearly achieved the performance of code-based heuristics (precision = 0.84,

recall = 0.72, F1 = 0.77), while cutting down the cost to create a labeled training set. The

classifier learned on the labeled notes accurately identified patients with AF pre-diagnosis

(precision = 0.85, recall = 0.81, F1 = 0.83). Those patients who received pre-diagnosis exhibited

different demographic and comorbidity characteristics, and were enriched for anticoagulation
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and eventual diagnosis of AF. At the index diagnosis, existence of pre-diagnosis did not stratify

patients on clinical characteristics, but did correlate with anticoagulant prescription.

Discussion and Conclusion

Our work establishes the feasibility of an EHR-based surveillance system for wearable devices

that render AF pre-diagnosis. Further work is necessary to generalize these findings for patient

populations at other sites.
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BACKGROUND

With the advent of consumer-facing devices such as Apple Watch[1] and FitBit[1,2] that can

render pre-diagnosis such as atrial fibrillation (AF) based on collected photoplethysmography

and electrocardiogram (ECG) data, medical wearables now have the potential to affect diagnosis

rates and initiate cascades of medical care[3,4]. While these devices undergo pre-market

validation to obtain FDA clearance[5], there remains limited information on their post-market

use and clinical utility.

One of the primary challenges in post-market surveillance for wearables is that current medical

terminologies do not have terms for representing wearable use. For example, much of outcomes

research is built around medical diagnosis codes used for billing purposes, such as the

International Classification of Disease (ICD)[6] or Current Procedural Terminology (CPT)[7],

neither of which contain terms for describing wearable use. Therefore, no structured data exists

in electronic health records (EHRs), and unstructured data such as clinical notes must be parsed

to obtain the information.

Advances in deep learning-based natural language processing (NLP) methods[8–10], in

particular their application to clinical note classification tasks[11,12], have shown to outperform

traditional pattern and rule-based approaches. However, these deep-learning based classifiers

require large, hand-labeled training sets that can be costly and time-consuming to generate. For a

post-market surveillance strategy based on EHRs to be widely implemented, a scalable approach

is necessary to reduce the labeling overhead. In particular, pre-trained large language models
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(LLMs) have the potential to dramatically accelerate this process through prompting, but their

application to the medical domain has not been clear.

OBJECTIVE

We developed a weak supervision-based approach to demonstrate feasibility of post-market

surveillance of wearable devices that render AF pre-diagnosis, and evaluated its efficacy. The

first aim of this study was to evaluate two approaches for generating labeling heuristics for

training sets: one using programmatic codes, and the other using prompts submitted to LLMs. A

label model derived from such labeling heuristics probabilistically assigns labels to clinical

notes, about whether the note contains a mention of the patient receiving AF pre-diagnosis from

a wearable device. The second aim was to use a training set labeled by the label model to

fine-tune a classifier that identifies mentions of AF pre-diagnosis in a clinical note, and to

evaluate its performance. Our third aim was to summarize the clinical characteristics of patients

identified by the classifier, and compare them to patients who were not alerted to AF

pre-diagnosis.

MATERIALS AND METHODS

Cohort Identification

We used the Stanford Medicine Research Data Repository (STARR)[13], which contains

EHR-derived medical records from the inpatient, outpatient, and ER visits at Stanford Health
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Care and the Lucile Packard Children’s Hospital. Methods for dataset creation have been

previously described[13]. We queried STARR to retrieve all clinical notes that contain a mention

of a wearable device (see Supplemental Table 1 for the complete list of search terms), resulting

in 86,260 notes from 34,329 unique patients. To match the FDA guidance for pertinent

cardiovascular algorithms[5], we excluded patients less than 22 years of age when the note was

written, leaving 78,323 notes from 30,133 unique patients. We further limited to notes written on

or after January 1, 2019, since the first publicly available AF detection feature became available

in December 2018[14]. The resulting cohort comprised 56,924 clinical notes from 21,332 unique

individuals.

Manual Labeling Process

Among the 56,924 clinical notes with mentions of wearables, we manually labeled 600 notes to

construct a test set to assess the performance of the label model and the classifier. Specifically, to

remove duplicate texts and cover as many patients as possible, we randomly selected 600 unique

patients, then selected one note for each patient. These notes were then labeled independently by

two data scientists, and differences were adjudicated by two physicians. A clinical note was

labeled as positive when it was clear that the patient received automated AF notification from the

wearable, or that the patient initiated an on-demand measurement (e.g., ECG strip) which

resulted in AF pre-diagnosis.

In addition to the test set, to aid in label model development, we prepared another set of 600

notes that was used as the development set. This set was manually labeled by a single data
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scientist, using a labeling guideline (see Supplemental Material 1) that was developed as part of

the test set generation.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298488doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298488
http://creativecommons.org/licenses/by/4.0/


Figure 1. Label model and classifier generation process using the Snorkel[15] framework.
Figure 1(a) describes the label model generation process, where labeling heuristics are
expressed as either code-based or prompt-based labeling functions. Snorkel then applies the
labeling functions to the sample clinical notes and fits a generative model on the labeling
function predictions. In Figure 1(b), the obtained label model is used to probabilistically assign
labels for a large number of unlabeled clinical notes, which are then used to fine-tune a
classifier to detect whether a patient received AF pre-diagnosis from a wearable device.

Label Model Derivation 1: Code-Based Labeling Functions

We then derived a label model that used a weak supervision-based approach to programmatically

generate training set labels. Specifically, as shown in Figure 1(a), we used data

programming[16], where labeling heuristics are expressed as labeling functions (LFs) that

encode domain insights. In particular, code-based labeling functions (see Figure 1(a), Approach

1) capture heuristics using programmatic language constructs. Predictions from these labeling

functions are then combined to learn a generative label model.

We used the Snorkel framework[15] to implement data programming. A preprocessing

framework[17] was applied to preprocess our notes, where the clinical notes were split into

sentences using the spaCy[18] framework, with a specialized tokenizer to recognize

abbreviations and terms specific to medical literature. Thus parsed grammatical information was

made available to the labeling functions as metadata to each sentence.

We then observed the notes in the development set to understand how AF notifications were

described, and expressed each pattern as a labeling function using the grammar metadata, or

simple dictionary lookup. The labeling function development process was iterative, where each
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labeling function was further optimized based on the performance metrics (i.e., precision, recall,

and F1) calculated by the Snorkel framework on the development set.

Once developed, we ran the labeling functions on the samples, then instructed the Snorkel

framework to fit a generative model on the output. We used 10-fold cross validation on the test

set, and chose the best performing label model. This model was then run across the entire 56,924

clinical notes to probabilistically assign their labels.

Label Model Derivation 2: Prompt-Based Labeling Functions

We then derived another label model that applies prompting techniques to query LLMs (see

Figure 1(a), Approach 2). This approach leverages the observation that a pre-trained LLM can

generalize to a new task that it was not trained for[19]. Specifically, inside a labeling function, a

clinical note is presented to the LLM as part of a prompt, which queries the LLM for certain

characteristics of the note that would be relevant to determining the label. The LLM’s answer to

the prompts are then mapped to predicted labels returned by a labeling function.

Compared to code-based labeling functions where heuristics to determine note labels are

expressed using software language constructs, prompt-based labeling functions accept natural

language prompts to query the characteristics of clinical notes. This approach has been shown to

provide remarkable performance gains while reducing overall cost (i.e., engineering time, expert

face time) to author and optimize labeling functions[20].
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Similar to how code-based labeling functions were developed, different natural language

prompts were tried iteratively, while using Snorkel to assess performance. We tried two different

open LLMs: T0++[21] and Flan-T5-XXL[22]. T0++ is an LLM that is trained specifically with

multiple prompts for multiple tasks, which often shows better performance than a much larger

model like GPT-3 on prompting tasks. Flan-T5-XXL also leverages similar multitask training.

Both models are similar in their size (11 billion parameters), but were released about a year

apart, reflecting the advances in machine learning techniques. We could not leverage closed

LLMs such as GPT and ChatGPT, since at the time of this research they lacked a HIPAA

compliant API. We used Manifest[23] to set up the Hugging Face releases of each LLM in a

HIPAA-compliant secure computing environment.

To properly assess the tradeoff that the prompt-based approach introduces between label model

performance and development cost, we time-boxed ourselves to a single day of prompt-based

labeling function development, and observed how much of the performance with code-based

labeling functions could be attained. In comparison, we devoted an unbounded amount of time

for code-based labeling function development and optimization—amounting to two weeks of

data scientist time and three days of clinician time. The same 10-fold cross validation on the test

set was used to evaluate the label model. To remediate LLM performance variances across runs,

we repeated the same experiment 3 times, and observed the average performance.

Classifier Development

Clinical notes that were probabilistically labeled by the label model were then used to fine-tune a

large, NLP-based classifier, Clinical-Longformer[12] (see Figure 1(b)). The resulting classifier

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298488doi: medRxiv preprint 

https://paperpile.com/c/DY0oNE/day4
https://paperpile.com/c/DY0oNE/AiAE
https://paperpile.com/c/DY0oNE/ZkpQ
https://paperpile.com/c/DY0oNE/rF0n
https://doi.org/10.1101/2023.11.14.23298488
http://creativecommons.org/licenses/by/4.0/


takes plain note text as the input, and classifies the note as positive (i.e., includes mention of a

patient receiving an AF notification, or a patient-initiated on-demand cardiac testing/ECG

resulting in AF pre-diagnosis) or negative. When a classifier is trained on the label model output,

it enables generalizing beyond the labeling heuristics that were encoded in the labeling functions

themselves, such that the classifier can recognize more patterns than those that were expressed in

labeling functions.

For each clinical note in the training set we formed a pair of note text and its label, and presented

a sequence of those pairs as the input to the pretrained Clinical-Longformer while fine-tuning it

for a sequence classification task. Clinical-Longformer uses sub-word tokenization, and 94% of

our notes analyzed had fewer tokens than the Clinical-Longformer’s maximum input length of

4,096 tokens. Notes with more tokens were trimmed.

We fine-tuned multiple classifiers with varying training set sizes, and used the test set to assess

their performance. Specifically, for a single fine-tuning run, we took regular snapshots of the

classifier and chose the snapshot with the best F1 score on the test set as the representative

snapshot of the run. Adam optimizer was used, with learning rate ramping up to 1e-5 followed by

linear decay over three epochs.

The test set was never presented to the model during the fine-tuning process. Since our dataset

was highly skewed towards negative samples, we stratified the training set to maintain a 1:2 ratio

between the positive and negative samples. All samples in the training set were chosen randomly.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.14.23298488doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.14.23298488
http://creativecommons.org/licenses/by/4.0/


The classifier with the best F1 score was then run across the entire 56,924 clinical notes to

identify all AF pre-diagnosis incidents.

Retrospective Cohort Study

Using the pre-diagnosis mentions flagged by the classifier, we identified patients who received

AF pre-diagnosis, and performed a retrospective descriptive cohort study comparing the

characteristics of the patients who received pre-diagnosis to those who did not, utilizing the same

STARR dataset.

First we considered all the patients in the cohort regardless of their prior AF diagnosis. We

compared the demographics, CHA2DS2-VASc[24] score, and its related comorbidities on the date

the index note was created. When a patient had received one or more AF pre-diagnosis from a

wearable, we defined the oldest note with pre-diagnosis as the index note since it is the most

likely to drive downstream medical intervention. When a patient had not received any

pre-diagnosis, the oldest note with mention of a wearable was chosen as the index note.

We then focused on those patients who did not have prior AF diagnosis. A patient was filtered

out if the patient had received AF diagnosis, defined as an ambulatory or inpatient encounter

with SNOMED code 313217, prior to the index note. We then compared the same demographics

and comorbidities between those who received pre-diagnosis and those who did not, on the date

the index note was created.
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Lastly, we further confined the analysis to the patients who received clinician AF diagnosis

within 60 days of the index note. Same as before, we excluded patients who had prior AF

diagnosis before the index note. Patients were then grouped based on whether they had received

AF pre-diagnosis from a wearable, and characterized on the date they received index AF

diagnosis. In addition to the demographics and comorbidities, we also compared warfarin and

Direct Oral Anticoagulant (DOAC; i.e., apixaban, dabigatran, edoxaban, rivaroxaban)

prescription rates between the two groups of patients.

Statistical Analysis

Throughout the analysis, when compiling patient race information, we used the 5 categories of

race defined by the U.S. Census, and cast hispanic as a dedicated ethnicity. 10% of the patients

were missing race information, so we categorized them as belonging to undisclosed race. Five

patients were missing sex information, and were not included in the analysis. The Stanford

Institutional Review Board (Stanford, CA) approved this study.

For hypothesis testing, we used 1-tailed Welch’s t test for continuous variables, and chi-squared

test for categorical variables. Statistical analysis was performed using Pandas[25] 1.3.0 and

SciPy[26] 1.7.0, running on Python 3.9.6 configured through Conda 4.5.11.
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RESULTS

Label Model Performance 1: Code-Based Labeling Functions

In total, eight code-based labeling functions were authored over the course of two weeks. Most

labeling functions utilized the grammatical information present in the metadata, while one used

simple dictionary-based lookup. Table 1 provides the performance of each labeling function,

followed by the combined label model.

Table 1. Label model performance with code-based labeling functions.

Target Pattern Precision Recall F1

LF1 Simple dictionary lookup
- “AF” & “wearable” & “notification”

0.90 0.33 0.51

LF2 AF + verb + prep + wearable
- “AF noted on wearable”

0.78 0.12 0.24

LF3 Wearable + verb + AF
- “Wearable notified AF”

0.91 0.42 0.55

LF4 Verb + wearable + verb + AF
- “Observed wearable showing AF”

0.85 0.14 0.29

LF5 Verb + AF + prep + wearable
- “Received AF from wearable”

0.81 0.15 0.31

LF6 Verb + event + prep + wearable + AF
- “Got notification from wearable of AF”

0.67 0.02 0.20

LF7 Event + prep + wearable + AF
- “Notified on wearable of AF”

0.74 0.10 0.27

LF8 Wearable + subject + verb + AF
- “Per wearable, patient had AF”

0.96 0.22 0.38

Label Model 0.84 0.72 0.77
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Averages taken from 10-fold cross validation on 600 manually labeled test set. Bold numbers
indicate the best observed performance for each metric. LF = Labeling Function. Prep =
Preposition. Precision = true positive / (true positive + false positive). Recall = true positive /
(true positive + false negative). F1 = 2 * precision * recall / (precision + recall).

Since each labeling function is geared towards identifying positive samples that follow a specific

pattern, each labeling function exhibits precision that is significantly higher than recall. By

combining these labeling functions into one generative label model, we were able to improve

recall. Running the label model on the 56,924 clinical notes flagged 5,829 notes as positive

samples, compared to the 105 positive samples in the test set identified through manual labeling.

Label Model Performance 2: Prompt-Based Labeling Functions

In a day, three prompt-based labeling functions were developed. They were structured so that the

notes are presented to the LLM in a zero-shot fashion. Identical prompts were then presented to

both LLMs: T0++ and FLAN-T5-XXL. Table 2 shows the performance of each labeling function

and the resulting label model.

Table 2. Label model performance with prompt-based labeling functions.

Prompt Precision Recall F1

T0++ LF1 “Imagine you are a doctor.
Based on the clinical note,
did the wearable give a
notification for AF?”

0.66 0.83 0.73

LF2 “Imagine you are a doctor.
Based on the clinical note,
was the wearable able to
capture an instance of AF?”

0.66 0.82 0.73

LF3 “Imagine you are a doctor.
Based on the clinical note,

0.59 0.84 0.69
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did the patient use a wearable
to detect AF?”

Label Model 0.58 0.86 0.69

FLAN-T5-
XXL

LF1 Same as T0++ 0.81 0.69 0.74

LF2 Same as T0++ 0.76 0.71 0.75

LF3 Same as T0++ 0.66 0.69 0.67

Label Model 0.67 0.83 0.74

10-fold cross validation on 600 manually labeled test set. Averages taken from 3 runs. For each
LLM, bold numbers indicate the best performance observed for each metric. LF = Labeling
Function. Precision = true positive / (true positive + false positive). Recall = true positive / (true
positive + false negative). F1 = 2 * precision * recall / (precision + recall).

It can be seen that the prompt-based approach, which was developed in one day, manages to

attain a comparable portion of the performance achieved through a code-based approach, which

was developed with an unbounded amount of time. Specifically, the label model derived by using

FLAN-T5-XXL captures ~96% performance of the label model derived from code-based

labeling functions (see Table 1).

Unlike code-based labeling functions, however, prompt-based labeling functions already achieve

high recall, due in part to the generalizability of the underlying LLM. Due to this, combining

multiple labeling functions with overlapping recall results in interference, and usually ends up in

a worse F1 score. In such a case, a single, best-performing label function could be used as a label

model instead (a.k.a., distillation).
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Classifier Performance

Since the label model derived from code-based labeling functions exhibited better absolute

performance (see Table 1) over prompt-based (see Table 2), we report the performance of the

classifier that was fine-tuned using the clinical notes labeled by the label model derived from

code-based labeling functions. Table 3 shows the average performance of the classifier on the

test set, across varying training set sizes. Training set size was capped at 15,000, since the label

model had labeled 5,829 notes as positives. Regardless of the training set size, the test set was

held out from the input to the fine-tuning process.

Table 3. Classifier performance across varying training set sizes.

Training Set Precision Recall F1

600 0.37 0.68 0.48

5,000 0.79 0.85 0.81

10,000 0.84 0.81 0.83

15,000 0.85 0.81 0.83

For each training set, average values are reported across 3 runs with different random seeds.
For each run, the best performing classifier snapshot was used. Bold numbers indicate the best
performance observed for each metric. Precision = true positive / (true positive + false positive).
Recall = true positive / (true positive + false negative). F1 = 2 * precision * recall / (precision +
recall).

Table 3 readily demonstrates how end model performance benefits from the weakly supervised

approach. In particular, input data set size 600 emulates the hypothetical scenario where the size

of the training set is limited due to manual labeling overhead. Such a small dataset is not enough

to adequately fine-tune a large NLP classifier such as Clinical-Longformer (F1 = 0.48).
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As training set size is increased, the classifier obtains better performance, reaching the best

average F1 score of 0.83 (precision = 0.85, recall = 0.81). When compared to the label model in

Table 1 (precision = 0.84, recall = 0.72), the classifier significantly improves recall,

demonstrating that the classifier manages to generalize beyond those rules specified by the

labeling functions.

Figure 2. Best performing classifiers across different training set sizes. For each training set,
the best performing run was chosen among 3 runs with different random seeds. For each run, the
best performing classifier snapshot was chosen.

Figure 2 then compares the best performing classifier from each training set size. Again, ROC

curve (Figure 2, left) shows that even the best classifier with training set size of 600 performs

worse than classifiers from larger dataset sizes. Specifically, in the precision-recall curve (Figure

2, right), the classifier loses significant precision for small gains in recall, further hinting that the

classifier is not properly trained. In contrast, comparing the precision-recall curve of larger

datasets shows precision increasing with larger training set sizes.
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Across all training set sizes and runs, the best performing classifier achieved F1 = 0.85. Running

this classifier on 56,924 clinical notes identified 6,515 notes as containing AF pre-diagnosis

events, across 2,279 unique patients.

Characteristics of Patients

Table 4 compares the summary characteristics of those patients who received AF pre-diagnosis

from a wearable device against those who did not. All the patients in the cohort were included,

regardless of their prior AF diagnosis.

Table 4. Characteristics of patients.

With
pre-diagnosis

Without
pre-diagnosis

P-value

Number of patients 2,279 19,048

Demographics

Age 63.85 (14.21) 53.53 (16.70) *< 0.001

Race
Undisclosed 9.17% 11.35% *< 0.001

Asian 12.94% 16.50%

Black 2.33% 3.25%

White 70.78% 59.01%

Hispanic 4.21% 9.09%

Others 0.57% 0.80%

Sex Male 60.73% 40.63% *< 0.001

Female 39.27% 59.37%

Comorbidities
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Congestive heart failure 14.96% 7.53% *< 0.001

Hypertension 55.59% 35.68% *< 0.001

Diabetes mellitus 4.43% 5.34% 0.072

Vascular disease 11.01% 8.31% *< 0.001

CHA2DS2-VASc score 2.12 (1.55) 1.61 (1.35) *< 0.001

Measured on the date of the index note. Mean and standard deviation are reported for
continuous variables. * = statistically significant at ɑ = 0.05. CHA2DS2-VASc = Congestive
heart failure, Hypertension, Age ≥ 75 years, Diabetes, Stroke, Vascular disease, Age 65-74 years,
Sex category.

Patients who received AF pre-diagnosis tend to be older, with more comorbidities except for

diabetes mellitus. Race and sex composition are different, with White and male individuals

assuming a larger portion of patients who received pre-diagnosis from a wearable. Patients who

received pre-diagnosis also exhibit higher CHA2DS2-VASc scores.

Characteristics of Patients Without Prior AF Diagnosis

Table 5 then compares the characteristics of patients who had no AF diagnosis prior to index

note.

Table 5. Characteristics of patients without prior AF diagnosis.

With
pre-diagnosis

Without
pre-diagnosis

P-value

Number of patients 1,090 16,628

Demographics

Age 60.24 (15.64) 51.56 (16.28) *< 0.001

Undisclosed 10.37% 11.94% *< 0.001
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Race Asian 12.94% 17.36%

Black 2.48% 3.35%

White 69.17% 56.86%

Hispanic 4.77% 9.66%

Others 0.28% 0.83%

Sex Male 58.90% 37.72% *< 0.001

Female 41.10% 62.28%

Comorbidities

Congestive heart failure 6.79% 4.13% *< 0.001

Hypertension 41.65% 30.62% *< 0.001

Diabetes mellitus 3.76% 4.82% 0.130

Vascular disease 8.07% 6.50% *0.049

CHA2DS2-VASc score 1.73 (1.44) 1.45 (1.23) *< 0.001

Measured on the date of the index note. Mean and standard deviation are reported for
continuous variables. * = statistically significant at ɑ = 0.05. CHA2DS2-VASc = Congestive
heart failure, Hypertension, Age ≥ 75 years, Diabetes, Stroke, Vascular disease, Age 65-74 years,
Sex category.

Patients without prior AF diagnosis exhibit similar characteristics to the overall cohort, where

those who received AF pre-diagnosis tend to be older, White, and male, with more comorbidities

except for diabetes mellitus. In particular, 48.07% of the patients who received pre-diagnosis had

CHA2DS2-VASc score 2 or higher, warranting anticoagulation therapy[27]. In contrast, 35.81%

of the patients who had not received pre-diagnosis had CHA2DS2-VASc score 2 or higher.
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Characteristics of Patients with Clinician AF Diagnosis

Among those patients who received pre-diagnosis from a wearable, 12.55% received a clinician

AF diagnosis within 60 days from the index pre-diagnosis. Average duration from pre-diagnosis

to diagnosis was 7.65 days. Among those patients who never received pre-diagnosis, 1.34%

received AF diagnosis within 60 days from the index note.

Table 6 compares clinical characteristics of those patients who received AF diagnosis, based on

whether they had received AF pre-diagnosis prior to the diagnosis.

Table 6. Characteristics of patients with clinician AF diagnosis.

With
pre-diagnosis

Without
pre-diagnosis

P-value

Number of patients 286 256

Demographics

Age 64.32 (14.28) 64.11 (14.83) 0.567

Race
Undisclosed 10.14% 10.55% *0.018

Asian 10.49% 10.16%

Black 1.05% 3.91%

White 74.83% 66.80%

Hispanic 3.15% 7.03%

Others 0.35% 1.56%

Sex Male 67.48% 64.45% 0.514

Female 32.52% 35.55%

Comorbidities
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Congestive heart failure 6.99% 12.50% *0.043

Hypertension 41.96% 45.70% 0.429

Diabetes mellitus 3.15% 3.52% 1.000

Vascular disease 10.14% 10.94% 0.871

CHA2DS2-VASc score 1.80 (1.52) 1.95 (1.55) 0.119

Medications

Warfarin 0.35% 2.34% 0.095

DOAC Apixaban 47.55% 33.59% *0.001

Dabigatran 1.05% 0.78% 1.000

Rivaroxaban 15.73% 16.41% 0.924

Measured on the date of index AF diagnosis. Mean and standard deviation are reported for
continuous variables. * = statistically significant at ɑ = 0.05. CHA2DS2-VASc = Congestive
heart failure, Hypertension, Age ≥ 75 years, Diabetes, Stroke, Vascular disease, Age 65-74 years,
Sex category.

None of the patient characteristics reported in Table 6 differ significantly between those with AF

pre-diagnosis and those without, except for the racial composition (p-value = 0.018) and

congestive heart failure (p-value = 0.043).

Despite similarities in clinical characteristics, however, patient prescriptions differed based on

AF pre-diagnosis. Table 6 shows that those patients with pre-diagnosis tend to be prescribed

more with DOAC, with apixaban being the most prescribed.
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DISCUSSION

In this study we apply weak supervision-based approaches to demonstrate feasibility of

developing a post-market surveillance system for medical wearable devices that render AF

pre-diagnosis. We first compared two approaches to note labeling, and demonstrated that a label

model derived from prompt-based labeling functions using LLMs (precision = 0.67, recall =

0.83, F1 = 0.74) nearly achieved the performance of code-based approach (precision = 0.84,

recall = 0.72, F1 = 0.77). We then fine-tuned a classifier on label model output, to accurately

identify AF pre-diagnosis (precision = 0.85, recall = 0.81, F1 = 0.83).

Further, by linking the classifier output with structured data in the EHR, we identified patients

who were notified via wearables, and conducted a retrospective analysis to compare the baseline

characteristics and subsequent clinical treatment of these patients against those who did not

receive AF pre-diagnosis. Across the cohort, patients who received pre-diagnosis from a

wearable are older with more comorbidities. Race and sex composition of these patients also

differ from those who did not receive pre-diagnosis.

We identified a subgroup of patients without prior AF diagnosis, where a higher percentage of

patients who received AF pre-diagnosis (48.07% vs. 35.81%) exhibited CHA2DS2-VASc scores

that satisfy anticoagulation recommendation[27]. This enrichment for anticoagulation could be

attributed to early pre-diagnosis from the wearable device.

Patients who received pre-diagnosis were 9.37x more likely to receive a clinician assigned AF

diagnosis than those who did not. Existence of pre-diagnosis was not correlated with patient
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demographics or comorbidities at the time of index AF diagnosis, but did correlate with

anticoagulation prescription, where patients with AF pre-diagnosis were more frequently

prescribed apixaban.

Given that more wearables will be introduced with increasing pre-diagnostic capabilities, and

that they have the potential to affect downstream healthcare[3,4], a surveillance framework for

wearable devices is urgently needed. However, publications sponsored by wearable vendors so

far have focused mostly on ascertaining the accuracy of the pre-diagnostic algorithm itself[1,2].

On the other hand, those publications that sought to conduct post-market surveillance relied

solely on manual chart review[3,4], which is hard to scale. In a prior study on wearable

notifications, clinician chart review of 534 notified patients yielded only 41 patients with AF

pre-diagnosis[3]. In our study, with a weakly-supervised approach, effort spent on clinician

review of notes from 600 patients (i.e., the test set) allowed subsequent identification of 2,279

patients with pre-diagnosis.

Approaches that apply various methods of weakly supervised learning to some form of medical

surveillance[15,17,28–30] already exist. Most relevant to our work, Callahan et al.[28] apply a

weakly supervised approach to implement a surveillance framework for hip implants, and Sanyal

et al.[30] for insulin pumps. To the best of our knowledge, however, our work is the first to apply

a weakly supervised method using prompting to reduce labeling function authoring burden.

Our results show that the prompt-based approach holds significant potential. While achieving

similar performance, the prompt-based labeling functions required only one day of data scientist
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time, compared to two weeks of data scientist time and three days of clinician time for

code-based. In addition, comparing the performance of the label model derived using

FLAN-T5-XXL against that of T0++ in Table 2 shows that the same prompt can achieve better

performance simply by swapping in a newer, better performing LLM. However, we expect that

some extraction tasks are better suited for code-based approaches (e.g., simple dictionary

lookup), thus combining code-based and prompt-based approaches is a natural next step.

Limitations

We acknowledge that the STARR dataset[13] is confined to only two hospitals in a small health

care system in a single geographic region. However, our methodology of using a weakly

supervised approach to develop a surveillance framework could be readily applied to other

institutions. In fact, work is already underway to adapt this approach for use at the Palo Alto VA.

Our results demonstrate that patients who are older, with more comorbidities, White, and male

have higher likelihood of receiving AF pre-diagnosis from a wearable. Causality between

pre-diagnosis and patient characteristics, however, could not be established. It may very well be

that the specific subgroup tends to be health conscious and use wearables more frequently.

CONCLUSION

By providing pre-diagnosis, medical wearables have the potential to affect subsequent diagnosis

and the level of care in the healthcare delivery setting. Post-market surveillance of wearables is

necessary to understand the impact of wearables on patient outcomes and health care utilization,

but is hindered by the lack of codified terms in EHR to capture wearable use. By applying a
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weakly-supervised methodology to efficiently detect wearable device AF pre-diagnosis mentions

from unstructured EHR data, we demonstrate that such a surveillance system could be built.

Analyzing the AF pre-diagnosis cases in our cohort shows that those patients who received

pre-diagnosis exhibit different demographic and comorbidity characteristics from those who did

not. We also find that pre-diagnosis from a wearable indeed enriches for anticoagulation and

eventual diagnosis of AF. At the index diagnosis, existence of pre-diagnosis from a wearable did

not stratify patients on clinical characteristics, but did correlate with the patient anticoagulant

prescription.

Our work establishes the feasibility of implementing an EHR-based surveillance system for

wearable devices. Further work is necessary to generalize these findings for patient populations

at other sites.
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