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Abstract: The influence of genotype on defining the human gut microbiome has been extensively 
studied, but definite conclusions have not yet been found. To fill this knowledge gap, we leverage 
data from children enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) from 
6 months to 8 years old. We focus on a pool of 12 genes previously found to be associated with 
the gut microbiome in independent studies, establishing a Bonferroni corrected significance level 
of p-value < 2.29 × 10!". We identified significant associations between SNPs in the FHIT gene 
(known to be associated with obesity and type 2 diabetes) and obesity-related microbiome features, 
and the children’s BMI through their childhood. Based on these associations, we defined a set of 
SNPs of interest and a set of taxa of interest. Taking a multi-omics approach, we integrated plasma 
metabolome data into our analysis and found simultaneous associations among children’s BMI, 
the SNPs of interest, and the taxa of interest, involving amino acids, lipids, nucleotides, and 
xenobiotics. Using our association results, we constructed a quadripartite graph where each 
disjoint node set represents SNPs in the FHIT gene, microbial taxa, plasma metabolites, or BMI 
measurements. Network analysis led to the discovery of patterns that identify several genetic 
variants, microbial taxa and metabolites as new potential markers for obesity, type 2 diabetes, or 
insulin resistance risk.  
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1. Introduction 
Our understanding of human genetics through genomic sequencing has progressed immensely over 
the past decades and key advances in genome-wide association studies (GWAS) have played an 
important role in the development and improvement of treatments and medications  [1,2]. On the 
other hand, the human microbiome (i.e., trillions of microbes and their genes that coexist with us) 
is known to influence human health and diseases  [3,4]. In particular, many interactions between 
the gut microbiome and the immune system, inflammatory processes, and cardiovascular and 
mental health conditions have been found  [5]. Further, alterations to the healthy microbiome, also 
known as dysbiosis, have been associated with many conditions such as metabolic disease and 
obesity  [6–8].  
  
The gut microbiome has been thought to be acquired during birth [9] and shaped predominantly 
by the environment throughout the host’s life [10,11]. However, there is growing evidence that 
points towards the heritability of certain components of the gut microbiome [12] through 
microbiome-GWAS (mGWAS). Examples of heritable taxa associated with changes in BMI or 
obesity that these studies have identified are the species Christensenella minuta  [13], the archaeon 
Methanobrevibacter smithii, the genus Blautia, and Akkermansia muciniphila in the 
Verrucomicrobia phylum [14].  

Due to the very large number of variants in the human genome, and of microbial species found in 
the gut microbiome, statistical power is one of the biggest challenges in mGWAS. Although some 
efforts have been made to revisit (and relax) the significance threshold for GWAS  [15–17], the 
strict p-value < 5 × 10!#  introduced almost three decades ago  [18] is still widely used. 
Additionally, microbiome datasets are usually highly sparse  [19], and a high diversity among 
individuals has been found  [20]. As a result, only a small proportion of species is shared among 
individuals and, to a greater extent, among populations. This has led to very few mGWAS 
associations surviving multiple testing correction, and even less replication among different 
studies. However, genetic variants in a limited set of genes have been consistently found to be 
significantly associated with microbiome features in multiple independent studies. Examples of 
these are the associations of the lactase (LCT)  gene locus with the genus Bifidobacterium found 
in five independent studies, and microbiome associations of the alpha 1-3-N-
acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase (ABO) gene found in 
German, Dutch, and Finnish cohorts [21]. 

Multi-omics studies offer a unique opportunity to unravel the complex mechanisms that govern 
health and disease from an integral perspective, paving the way towards precision medicine  [22]. 
However, multi-omics data integration presents its unique set of challenges such as a further 
increase in the data dimensionality, and interpretability of the results  [23]. Metabolites are often 
seen as the output of many biological processes and have been called “the link between genotypes 
and phenotypes” [24]. Results of metabolomics studies have found associations with conditions 
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such as Alzheimer’s, type 2 diabetes, and obesity, making metabolites good biomarkers for these 
ailments  [25]. Yet, very few multi-omics studies have studied the individuals’ genotype, 
microbiome, and metabolome simultaneously. Notable examples aimed to understand the 
combined effect of the microbiome, diet, and genetics on individuals’ metabolome with a wide 
range of objectives such as designing a diet that promotes overall homeostasis [26], or 
understanding the mechanistic processes in colorectal cancer [27]. 
 
Early life physiology can have a long-term impact on human health. Changes that occur during 
childhood can predispose individuals to negative outcomes later in life. An accumulating number 
of studies have shown that factors that disrupt the gut microbiome of infants and young children 
can have implications for health outcomes such as asthma, allergies, obesity, and gastrointestinal 
conditions [28]. Similarly, it has been suggested that early life metabolomics could shed light on 
the mechanisms that lead to childhood obesity [29], autism  [30], and IBD [31], among other 
conditions.  The early-life microbiome and metabolome have been studied simultaneously a few 
times in recent years, often focusing on specific health outcomes such as inflammation  [32,33], 
asthma [34,35], or diet [36,37]; an effort to characterize the microbiome-metabolome relationship 
in early life found limited inter-omic concordance in children up to 12 months of age [38].  

Here, we performed a multi-omics study to reveal associations between the genotype, microbiome, 
and metabolome of a cohort of 676 children in the longitudinal Vitamin D Antenatal Asthma 
Reduction Trial (VDAART), a multi-site randomized, double-blind, placebo-controlled trial of 
vitamin D supplementation during pregnancy. VDAART is an ongoing study and the offspring of 
the women originally enrolled have been followed for 10 years; blood and fecal samples, and 
anthropometric measurements have been collected at several time points. To address the challenge 
of high dimensional data, we took a knowledge-based sequential approach to select the variables 
to include in our analysis. We first identified a subset of 10 SNPs in the FHIT gene, out of a pool 
of 12 genes known to be associated with microbiome features, that are significantly associated 
with microbiome richness and composition and children’s BMI, using a Bonferroni-corrected 
significance threshold. Then, we identified a set of 6 genera that are differentially abundant with 
respect to genotype in the set of 10 FHIT SNPs. Finally, we looked for simultaneous associations 
between the genera and FHIT SNPs of interest, and the children’s metabolome. This approach 
allowed us to select the variables to include in detailed analysis for every omics data type, therefore 
reducing the dimensionality of the data and the testing burden. Our main results include two triple 
and one quadruple associations (where variables of different omics are significantly associated in 
a coherent directional manner with each other). Notably, we found that a homozygous minor 
genotype in the rs34723559 locus is associated with the enrichment of the insulin inhibitor 
sphingomyelin, and increased BMI. This result could help expand the known genetic markers for 
obesity and obesity-related complications such as insulin resistance and type 2 diabetes.  
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2. Materials and methods 

2.1. VDAART and Children’s Characteristics 
We analyzed data from participants in the VDAART clinical trial [39]. VDAART is a randomized 
controlled trial of Vitamin D supplementation during pregnancy to prevent asthma in offspring 
conducted in the United States (St. Louis, Boston, and San Diego; NCT00920621). The study 
protocol was approved by the institutional review boards at each participating institution and at 
Brigham and Women’s Hospital. All participants provided written informed consent [40]. The 
stool and blood samples were collected at three different sites: Boston, MA; San Diego, CA; and 
St. Louis, MO. The available subjects’ characteristics from the initial enrollment questionnaire are 
the family household income, mother’s education level, and parents’ and children’s race and 
ethnicity. Race and ethnicity information was originally collected in VDAART, because they are 
determinants of the circulating 25-hydroxyvitamin D levels; the race and ethnicity of  parents was 
self-reported and that of every child participant was reported by their parent. Participants were 
asked to first categorize themselves and their child as either Hispanic or non-Hispanic, then to 
categorize their race into prespecified categories. Race/ethnicity (called “race” hereafter) groups 
were collapsed into 3 groups for the analysis: Black or African American (called “Black” 
hereafter), White, non-Hispanic (called “White” hereafter), and Hispanic and children of other 
races (called “Other race” hereafter).  

2.2. BMI measurements 
At every yearly visit from age 2 through 8 years, the weight and height of children participating in 
VDAART was recorded. Child BMI was then calculated as weight in kilograms divided by the 
square of height in meters. BMI percentiles were calculated using the R package childsds [41]. 
Children were classified according to their BMI Weight Status Categories (given by the Center for 
Diseases Control and Prevention  [42]), called BMI categories hereafter, as: underweight, with a 
BMI less than the 5th percentile; normal weight, with a BMI on the 5th percentile or more and less 
than the 85th percentile; overweight, with a BMI on the 85th percentile or more and less than the 
95th percentile; and obese, with a BMI equal or garter than the 95th percentile. Hereafter, we use 
the term BMI measurements to generically refer to either one of BMI percentiles or categories. 

2.3. Metabolome profiling 
Untargeted metabolomic profiling was performed on plasma collected at ages 1 and 3 years [43]. 
Metabolomic profiling, mass spectrometer platforms, sample extraction and preparation, 
instrument settings and conditions, and data handling were performed at Metabolon (Research 
Triangle Park, NC) [44]. Results were expressed as relative abundance. Based on the assumption 
that missingness is due to low signal intensity, missing values were replaced with half of the 
minimum relative abundance observed for the metabolite in question [45]. Finally, relative 
abundances were log 10 normalized and Pareto-scaled (mean-centered and divided by the square 
root of the standard deviation). 
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2.4. Stool samples 
At ages 0.5, 1, 3 and 4 years old, (n=256, n=436,  n=506, n=314, respectively) child participants 
of VDAART provided a stool sample. Their parents were asked to collect a 0.5 teaspoon-sized 
sample 1 to 2 days before a study visit and store the sample in a home freezer before transport with 
a freezer pack to the study site. Stool was not collected if participants had used antibiotics in the 
past 7 days. After delivery to the study site, stool samples were immediately stored at -80°C. 
Microbiome profiling was performed by sequencing the 16S rRNA hypervariable region 4 (V4 
515F/816R region) on the Illumina MiSeq platform at Partners Personalized Medicine (Boston, 
MA).  

2.5. Genotype principal components and minor allele count 
Genotyping was performed in VDAART participants using the Illumina Infinium 
HumanOmniExpressExome Bead chip. Imputation was performed using Minimac [46] on the 
Michigan Imputation Server with the 1000 Genomes reference panel  [47]. Genotype principal 
components analysis (PCA) was performed using LASER, which analyzes sequence reads of each 
sample and places the sample into a reference PCA space constructed using genotypes of a set of 
reference individuals [48]. Minor allele count of SNPs was obtained using PLINK version 
1.9  [49].  

2.6. Candidate genes 
We selected candidate genes for a targeted analysis based on a comprehensive literature review. 
The criteria for selection employed is that variants in every gene must have been associated with 
microbiome features in at least two independent previously published studies  [21]. This yielded a 
pool of 12 candidate genes: DMRTB1 in chromosome 1; LCT in chromosome 2; CNTN6, FHIT, 
and NMNAT3 in chromosome 3; LINC02226 and CTNND2 in chromosome 5; SH3BGRL2 in 
chromosome 6; TMEM106B in chromosome 7; ABO in chromosome 9; CD5 in chromosome 11; 
and TMEM132C in chromosome 12. References and details can be found in Table SIxx.  

2.7. Microbiome composition and principal components 
Microbiome samples were centered log-ratio transformed on only their non-zero values, and 
dimensionality reduction was performed through Robust PCA  using the Python package Gemelli, 
which implements a robust Aitchison PCA  [50]. We used the function auto-rpca, which reduced 
the microbiome composition to three principal components. 

2.8. Statistical analysis 
Unless specifically noted, we used a cut-off p-value of 0.05 to deem results statistically significant 
for all our analyses. All association analyses were adjusted for a priori selected potential 
covariates: participants’ race, sex, and study site, unless otherwise specified. 

2.8.1. Alpha diversity 
Alpha diversity measures are estimates of an individual sample’s taxonomic diversity. We 
computed the observed richness, Shannon, and Simpson indices using the Phyloseq package in 
R [51]. The observed richness simply counts the number of different taxa present in each sample. 
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The Shannon and Simpson indices incorporate the measures of richness and evenness of every 
sample.  

2.8.2. Genome-wide association studies 
Using PLINK’s association analysis functionality, we applied covariate-adjusted genome-wide 
association tests to the 21834 variants in the candidate genes, and the three principal components 
of microbiome composition at every available age, and alpha diversity measures. Accounting for 
the total number of variants in the candidate genes, a Bonferroni-corrected significance level was 
established at p-value < 2.29 × 10!", and a suggestive level at p-value < 10!$. 

2.8.3. Linear regression and mixed models 
We used covariate-adjusted linear regression models to search for associations between child 
genotype and BMI. We fit a linear model for every available BMI measurement (i.e., for BMI each 
year between ages 2 and 8 years), and deemed an association consistent and significant if it 
produced a p-value < 0.01 for five or more consecutive BMI timepoints, and the association 
maintained the same direction for all timepoints across both BMI measurements. We also used 
covariate-adjusted linear models to search for associations between the relative abundance of 
children’s metabolites and BMI, genotype, and genera relative abundance. We deemed 
associations significant if the fit model produced a p-value < 0.01. To search for longitudinal 
associations between the relative abundance of individual genera and BMI we fit linear mixed 
models introducing a random intercept for every subject. Linear models were implemented using 
the lm R function, and linear mixed models were implemented using the function lmer in the R 
package lme4.  

2.8.4. Differential abundance 
To search for associations between the subject genotype and BMI, and the abundance of specific 
taxa, we used  MaAsLin2 and its corresponding R package  [52], treating the minor allele 
frequency at a particular locus as a continuous variable.  MaAsLin is a multivariate association 
method that uses additive linear models to detect associations between specific groups and the 
abundance of taxa, simultaneously treating all the present taxa as outcomes. We used the false 
discovery rate (FDR) method to adjust the p-values for multiple comparisons. The association 
analyses were performed on genus-level data.  

2.8.5. Network integration 
Using the results of the association analysis, we built a network using the R package igraph where 
the weight of the edges or links (-1 or 1) represents the direction of the association, and every node 
or vertex is a variable used in the association studies. Here we use the term loop to refer to a 
connected component (a set of nodes where any of them can reach any other by traversing edges) 
with the minimal number of edges. We refer to a loop with congruent edge weights (representing 
directional associations) as meaningful. In a meaningful loop, an increase in one variable will lead 
to a congruent change in the other variables, as represented by the direction of the associations. 
Examples of meaningful loops are a three-node or four-node loop with all positive associations, or 
a three-node loop with two positive and one negative associations.  
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3. Results 

3.1. Correlations of children’s characteristics with BMI throughout childhood and 
genotype 

Out of the 650 children with genotype data, 310 (47.7%) are females and 340 (52.3%) are males. 
The parent-reported race/ethnicity is Hipanic, Latino or Other race for 261 children (40.2%), Black 
for 250 (38.5%), and White for 139 (21.4%). 231 (35.5%) of the participants were enrolled at the 
San Diego study site, 169 (26%) at the Boston study site, and 250 (38.5%) at the St. Louis study 
site (Table 1). The mean BMI across the participants is 17 for age 2; 16.6 for age 3; 16.4 for age 
4; 16.4 for age 5; 16.8 for age 6; 17.2 for age 7; and 18 for age 8. The median BMI percentile 
across the participants is 55.5 for age 2; 68.2 for age 3; 70.4 for age 4; 69.8 for age 5; 71.4 for age 
6; 69.1 for age 7; and 72.1 for age 8. The BMI distribution is skewed towards the overweight 
category (Figure 1). To define possible confounders for our downstream analysis, we looked for 
associations between the children’s BMI and genotype first five principal components and their 
sex, race and ethnicity. We found significant associations (p-value < 0.05) between several time 
points (ages 5, 6, and 7) of BMI percentiles and the children’s sex. We found a weak association 
between the children’s BMI at age 2 and their sex. However, sex is not significantly associated 
with any of the children’s first five genotype principal components. Children’s race and ethnicity 
are significantly associated with their BMI at ages 2, and 4, and weakly associated at ages 5, and 
8. On the other hand, race and ethnicity are significantly associated with the first four genotype 
principal components. The study site is associated with the children’s BMI at ages 1, 5, and 6, and 
weakly associated at age 8. Finally, the study site is significantly associated with the first four 
genotype principal components, and weakly associated with the fifth. Therefore, we adjusted our 
downstream analyses for race/ethnicity, sex, and study site.  
 

3.2. Association study of selected genes and gut microbiome identifies associations in 
the FHIT gene. 

To validate previously found genotype associations with the gut microbiome, we performed a 
targeted microbiome-genome association study on a pool of 12 genes and the alpha diversity and 
composition principal components of microbiome samples at ages 0.5, 1, 3, and 4 years. A 
Bonferroni-corrected significance level was established at p-value < 2.29 × 10!" , and a 
suggestive level at p-value < 10!$. We only found associations at the significant or suggestive 
level with variants in the FHIT gene (Figure 2.a). In total, four SNPs in the FHIT gene were 
associated with microbiome features: rs293602 is associated at the suggestive level with 
microbiome composition at age 0.5 PC1 (p-value < 4.5!"), and very close to the Bonferroni-
corrected significance level; rs6781046 and rs1040338 are significantly associated with 
microbiome composition at age 3 PC2 (p-value < 2.2!%and p-value < 1.8!", respectively; these 
two SNPs are located within 7430bp distance of each other and their minor allele count is highly 
correlated); and rs13086424 is significantly associated with microbiome richness at age 0.5 (p-
value < 2.2!"). Because the association of rs293602 with the microbiome composition PC1 at age 
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0.5 is very close to the significance level, and above the suggestive level, we include it in the set 
of SNPs of interest. These four SNPs constitute the first part of our set of SNPs of interest. All the 
SNPs of interest identified at this point are located around the region 60Mbp (within the FHIT 
gene in chromosome 3) (Figure 2.c). 
 

3.3. Loci in the FHIT gene are associated with children´s BMI throughout childhood.  
To identify additional candidate loci for our downstream analysis, we looked for SNPs in the FHIT 
gene that are associated with child BMI measurements throughout childhood. Therefore, we ran 
covariate-adjusted linear regression on the minor allele count of the FHIT gene SNPs with respect 
to the BMI measurements at every age. We call an association consistent when it is statistically 
significant (p-value < 0.05) for at least 5 consecutive time points of one BMI measurement (BMI 
categories or percentiles), and the association maintains the same direction for all time points 
across both measurements. In total, 5 consistent associations were found (Figure 2.b): The 
frequency of allele T in rs17061792, and of allele TAA in rs34799084 are positively and negatively 
associated with the children’s BMI percentiles, respectively (all p-values for ages 2 through 8 < 
0.05 and < 0.01 respectively); the frequency of allele C in  rs6767126 and of allele A in rs34723569 
are positively associated with the children’s BMI categories (p-values < 0.05 for ages 2 through 7, 
and 2 through 8 respectively); and the frequency of allele T and G in 3:61213993 and 3:61219865, 
respectively, is negatively associated with the BMI percentiles (p-values < 0.05 for ages 2 through 
6). Figure 2.c shows the locations of the FHIT gene SNPs consistently associated with child BMI 
which, along with SNPs associated with microbiome features, complete our set of SNPs of interest. 
Notably, the two SNPs consistently associated with the BMI percentiles are in very close proximity 
of those associated with microbiome composition and richness within the FHIT gene.  
 

3.4. The abundances of Blautia, Ruminoccocus gnavus and other genera are associated 
with variants in the FHIT gene. 

Next, we investigated how genetic variants in the FHIT gene SNPs of interest and child BMI relate 
to the relative abundance of individual taxa in their gut microbiome. To do so, we first looked for 
differentially abundant taxa with respect to the minor allele counts (MAC) of the SNPs of interest 
and with respect to the BMI measurements at every age through independent MaAsLin analyses 
at the microbiome genus level. Then, we fitted mixed models of the relationship between the 
genotype and BMI measurements, to keep track of the repeated measurements per child. 
 
We found that the relative abundance of six genera at three different time points are significantly 
associated (MaAsLin q-value < 0.05) with the minor allele count of 6 of the 10 SNPs of interest 
(Figure 3.a). Most of the associations are with taxa at age 3 years: we found positive associations 
(a specific genus is enriched in children with 2 minor alleles at a specific locus, and depleted in 
children with zero minor alleles at that same locus) between the abundance of Blautia and the 
minor allele counts of SNPs rs6781046 and rs1040338 (both previously associated with 
microbiome composition), and between the abundance of Collinsella and SNP rs6767126 
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(previously associated with BMI categories). The association between Blautia and rs1040338 is 
the strongest among all the differential abundance results; the minor allele counts of SNPs 
rs6781046 and rs1040338 are highly correlated (SI Figure). At age 3 years, we also found a 
negative association between the abundance of Allistipes and Agathobacter, and the minor allele 
counts of SNPs 3:61213993 and 3:61219865 (both previously associated with BMI categories); 
the minor allele counts of these two SNPs are also highly correlated (SI Figure). At age 4 years, 
we found that Ruminoccocus gnavus group is positively associated with the minor allele count of 
3:61213993 and 3:61219865; these are the second and third strongest associations that we found. 
The least strong association is between the abundance of UBA1819 at age 0.5 years and the minor 
allele count of SNP rs13086424 (previously associated with microbiome richness). Figure 3.b 
shows the relative abundance of the differentially abundant genera with respect to the minor allele 
count of the associated SNPs. All genera, except for Blautia, were absent in a large proportion of 
children at the significantly associated ages (87.4% of samples with zero values for UBA1819; 
0.6% for Blautia; 46.2% for Collinsella; 22.5% for Allistipes; 34.7% for Agathobacter; and 64.3% 
for Ruminoccocus gnavus group), but their relative abundance is substantial across the samples 
(0.002 mean relative abundance for UBA1819; 0.15 for Blautia; 0.012 for Collinsella; 0.021 for 
Allistipes; 0.014 for Agathobacter; and 0.008 for Ruminoccocus gnavus group) except for 
Collinsella at age 3 (0.075 maximum relative abundance) and UBA1819 at age 0.5 (0.068 
maximum relative abundance). We conclude that their associations with the corresponding SNPs 
are less robust than the others we observed, though statistically significant. The six genera 
identified in this step (UBA1819, Blautia, Collinsella, Allistipes, Agathobacter, and Ruminoccocus 
gnavus group) are referred to in the following as the genera of interest. 
 
Surprisingly, despite our prior finding of significant associations between BMI measurements and 
the minor allele count of SNPs linked to differential abundance in certain genera, we did not 
observe any associations between gut taxa at the genus level and BMI measurements (SI Figure). 
 

3.5. Metabolic pathways are associated with BMI measurements. 
To investigate the interconnections between the children’s genotype, microbiome and their 
metabolome in the context of BMI measurements, we looked for associations between the relative 
abundance of metabolites and child BMI measurements. We found a total of 25 plasma metabolites 
(9 amino acids, 2 carbohydrates, 9 lipids, 2 nucleotides and 3 xenobiotics) whose relative 
abundance is significantly associated (p-values < 0.01) with either BMI percentile, BMI category, 
or both (Figure 4.a). These 25 metabolites span 21 metabolic pathways that we carried forward in 
downstream analyses, in which we will refer to these pathways as pathways of interest. Two forms 
of Sphingolipid Sphingomyelin, and CMPF (a fatty acid in the dicarboxylate metabolism), are 
associated with both BMI measurements with similar significance. Most of the other associations 
are between plasma metabolite relative abundances and BMI percentiles; the two exceptions with 
the strongest associations are another form of sphingomyelin and the xenobiotic benzoate 4-
ethylphenyl sulfate, both of which are positively associated with BMI categories. The Xenobiotic 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.13.23298467doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.13.23298467


4-ethylphenyl sulfate, along with the amino acid Cysteine s-sulfate in the Methione, Cysteine, 
SAM and Taurine metabolism pathway (Sulfur Amino Acids) and the three forms of 
Sphingomyelin are the only metabolites to have positive associations with BMI measurements; all 
the other observed associations are negative. While we observed few associations between 
carbohydrates and BMI measurements, arabytol/xylitol has the strongest overall association that 
we found. This carbohydrate is in the pentose pathway and is negatively associated with BMI 
percentiles. Sphingolipid metabolism is the pathway with the higher number of associations (n=3).  
 
Using the 21 metabolic pathways of interest, we searched for associations between the relative 
abundance of all their metabolites and both the minor allele count of the SNPs of interest, and the 
relative abundance of genera of interest. Focusing on the metabolites that have a simultaneous 
association with at least one variable of interest in each of two different types of data  (BMI and 
genotype, genotype and microbiome, or microbiome and BMI), we find 20 matches with statistical 
significance (p-value < 0.01) among Amino acids (n=11), Lipids (n=5), Nucleotides (n=1), and 
Xenobiotics (n=3) (Figure 4.b). These 20 metabolites span 10 of the 21 metabolic pathways of 
interest. Most of them are associationed with genotype and microbiome (n=10), followed by BMI 
and genotype (n=7) and, lastly, with BMI and microbiome (n=3). 
 

3.6. Integrated network analysis 
Finally to analyze all the results that we obtained in the previous steps in an integrated manner, we 
built the network in Figure 4.c, where every node represents one metabolite, SNP, genera, or BMI 
measurement, and the links represent associations between them. We define a loop as a closed 
connection between three or four nodes of different omics types. We deem a loop as meaningful 
if the direction of the associations is coherent (an increase in one variable corresponds adequately 
to changes in others). For example, a three-node loop is meaningful if the three nodes are either 
connected by all positive links, or two negative and one positive link.  We found 9 three-node 
loops, and 7 four-node loops of which 3 and 1 were meaningful, respectively (highlighted in in 
Figure 4.c). The first three-node loop has all positive links and is formed by the association 
between BMI, SNP rs34723569 and two forms of sphingomyelin. The other two three node loops 
include the highly correlated SNPs 3:61219865 and 3:61213993, which have a negative 
association with prolyhydroxyproline and hydroxyproline respectively. These two amino acids are 
positively associated with the relative abundance of Allistipes, which is negatively associated with 
both 3:61213993 and 3:61219865. Importantly, 3:61213993 and 3:61219865 have a positive 
association with BMI. The meaningful four node loop is formed by the positive associations of the 
MAC in rs6767126 with both the relative abundance of Collinsella and the BMI, and the negative 
associations of the relative abundance of the amino acid aspartate and both Collinsella and BMI.  
 
4. Discussion 
Whether and to what extent genotype contributes to shaping the human microbiome is a long 
withstanding open question in the field. One major challenge in addressing it is the large multiple 
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testing burden associated with GWAS and the large cohorts required to draw significant 
conclusions. Similarly, the integration of multiple types of omics data presents the challenge of 
high dimensionality and the problem of selecting variables from a very large pool. We address 
these problems by reviewing existing results in the microbiome-GWAS literature and taking a 
knowledge-based targeted sequential approach to the variable selection process.  
 
By selecting a pool of 12 genes that are known to be associated with microbiome features  [21] for 
our microbiome-GWAS, we aim to test the validity of existing results in the developing infant and 
early childhood microbiome rather than find new associations. We can therefore establish a 
Bonferroni-corrected significance level of 2.29 × 10!", which allows for less stringent testing 
than classical GWAS. The alpha diversity measurements and the dimensionality reduction that 
robust Aitchison PCA [50] provides for the microbiome composition allowed us to narrow down 
our downstream analysis to 10 SNPs in the FHIT gene that are associated with either microbiome 
diversity, composition, or BMI. Variants in the FHIT gene have been iteratively found to be 
associated with obesity in adults and children [53–55] and with components of the fecal 
microbiome associated with visceral fat [56]. This knowledge, paired with our results, suggest that 
the identified variants might be implicated in determining BMI. Concordantly, the genus Blautia, 
which is known to be negatively associated with visceral fat and overweight/obesity in adults and 
children  [57–60], is the most heavily loaded on the principal component with the strongest 
association (PC2 at age 3). The downstream analysis included three more steps: 1) identification 
of 6 genera (UBA1819, Blautia, Collinsella, Allistipes, Agathobacter and Ruminoccocus gnavus) 
that are differentially abundant with respect to the children’s genotype in the identified SNPs; 2) 
identification of metabolic pathways that are significantly associated with child BMI; and 3) search 
for simultaneous associations of the relative abundance of individual metabolites in the identified 
pathways and the relative abundance of identified genera and the children’s genotype.  The main 
result of our analyses is the discovery of three closed-loop multi-omic associations: two 
interconnections between three variables each of a different omics type, and one between four 
variables of different omics types. These interconnections may shed some light on the role that a 
genotype-microbiome-metabolome axis plays in conditions such as obesity and type 2 diabetes.  
 
First, we found an association between a higher minor allele count in the FHIT SNP rs34723559, 
the enrichment of two forms of sphingomyelin, and increased BMI; higher BMI is also associated 
with a higher minor allele count in rs34723559. Because sphingomyelin has been found to inhibit 
insulin action in humans [61], and in mice a reduction in plasma sphingomyelin led to resistance 
to obesity when fed a high fat diet and  to higher sensitivity to insulin [62], this interconnection 
suggests that having a homozygous minor genotype at the rs34723559 locus might represent a 
higher risk of obesity and obesity related complications such as insulin resistance or type 2 
diabetes.  
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Second, we found a triple interconnection including a low minor allele count in the highly 
correlated FHIT gene SNPs 3:61213993 and 3:61219865 associated with the enrichment of two 
amino acids in the urea cycle: hydroxyproline and prolyhydroxyproline, and of the genus 
Allistipes; hydroxyproline, prolyhydroxyproline, and Allistipes are positively associated. 
Hydroxyproline is known to inhibit the degradation of incretin hormones by dipeptidyl peptidase 
(DPPIV)  [63,64] and, therefore, promote the maintenance of blood sugar at normal levels. Indeed, 
DPPIV inhibitors have been proven to be effective treatment against Type 2 diabetes without 
inducing weight gain or loss effects as other available treatments  [65,66]. On the other hand, the 
strain Allistipes putredinis has been found depleted in patients with obesity  [8], but other Allistipes 
strains have been found to have either protective or pathogenic effects in several cardiovascular 
and inflammation related conditions  [67]. Interestingly, we found that a low minor allele count in 
3:61213993 and 3:61219865 is also associated with increased child BMI. More in-depth studies 
are needed to establish more precise conclusions with respect to this interconnection, especially 
regarding the specific Allistipes strains involved in the associations. Metagenomic sequencing of 
stool samples could provide such detailed strain information. 
 
Third, the only interconnection that includes all four omics data types includes a homozygous 
minor genotype in the FHIT SNP rs6767126, which is associated with enrichment of Collinsella 
and increased child BMI. Collinsella is considered a pro-inflammatory genus and, consistent with 
our result, there is evidence of its relative abundance decreasing during a weight loss program  [68]. 
Moreover, an enrichment of Collinsella has been found to be associated with type 2 diabetes  [69] 
and compromised liver function  [70].  In our cohort, a higher child BMI and enriched Collinsella 
are simultaneously associated with a lower relative abundance of the amino acid aspartate. 
Interestingly, there is evidence of the heritability of aspartate aminotransferase [71], and it is 
classically considered a biomarker of liver disease  [72], though it is a higher abundance that is 
considered indicative of decreased liver function. However, in a study done in obese women, the 
significance of the BMI and aspartate relative abundance disappeared after correcting for dietary 
intake  [73]. Considering that many genome-wide associations of serum aspartate modified by 
BMI have been reported, but none on the FHIT gene [74], more investigations are necessary to 
determine the role of aminotransferase metabolites in the context of child obesity and diabetes risk.  
 
In summary, we have presented evidence that the genotype influences the gut microbiome and 
blood metabolome composition, with relevance to phenotypic characteristics such as BMI. 
Notably, we have validated the known association of genetic variants with microbial genera 
previously found in adults, in children whose microbiomes are in a developmental stage.  
Additionally, we have discussed the potential implications of these associations on negative health 
outcomes related to child obesity and its complications such as insulin resistance and type 2 
diabetes. The variables involved in the four closed loops that we found can be understood as new 
potential markers for tracking the risk of these conditions. Moreover, the interconnections between 
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them can be interpreted as redundancies that offer the possibility of more robust health screening 
that could help design early interventions and ensure healthy development of children.  
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    BMI PERCENTILES GENETIC PRINCIPAL 

COMPONENTS 

  N % of 
cohort Y2 Y3 Y4 Y5 Y6 Y7 Y8 PC1 PC2 PC3 PC4 PC5 

SEX 
Female 310 47.7 

. ns ns * * * ns ns ns ns ns ns 
Male 340 52.3 

RACE/ 
ETHNICITY 

Hispanic/Latino 
or Other 

261 40.2 
*** ns * . ns ns . *** *** * * ns 

Black 250 38.5 
White 139 21.4 

STUDY 
SITE 

San Diego 231 35.5 
*** ns ns * * ns . *** *** *** ** . Boston 169 26 

St. Louis 250 38.5 
Table 1 ***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05;  .: p-value < 0.1. 
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Figure 1 Children’s characteristics. a. Longitudinal data availability. Quantities in the panel represent the number of available 
samples of each different data type, at every timepoint between 0.5 to 8 years old. b. Distribution of child BMI per age (left), and 
of BMI percentiles per age (right). Black dots in the left panel represent the mean BMI per age, and black dotted line in the right 
panel represents the mean BMI percentile of all children at all ages available Vertical thin dotted lines on the right panel delimit 
the BMI categories regions: BMI under the 5th percentile is considered underweight; between the 5th and 85th percentiles is 
considered normal weight; between the 85th and 95th percentiles is considered over-weight; above the 95th percentile is considered 
obesity. For all ages, the BMI is skewed towards the right and peaks at the overweight region. c. Metabolites abundance at ages 1 
and 3. Colors represent the sum of the relative abundance of all metabolites in each of the 8 metabolite classes. Every vertical bar 
represents an available sample of plasma metabolites for the corresponding age. The metabolite composition is dominated by lipids 
and amino acids. Children’s metabolome tended to be relatively stable between the two timepoints with the difference that slightly 
more Xenobiotics were present at age 3 relative to age 1. d. Microbiome composition of children at different ages. The colors 
represent the 10 genera with highest mean relative abundance per age group across all children. Every vertical bar represents an 
available stool for the corresponding age. As children grow, their microbiomes tended to be richer, and the composition tended to 
be more even. The infant’s microbiome at age 0.5 tended to be dominated by the genus Bifidobacterium, and by Blautia at age 1. 
At age 3 and 4 the microbiome was dominated by Bacteroides and, was more similar than between any other two timepoints. 
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Figure 2. SNPs in the FHIT gene are associated with microbiome features and BMI. a. Four SNPs in the FHIT gene are 
associated with microbiome features. At the suggestive level(p-value < 10!"), rs293602 is associated with microbiome 

composition at age 0.5 PC1. At the adjusted GWAS significant level (p-value < 2.29 × 10!#), rs6781046 and rs1040338 are 
associated with microbiome composition at age 3 PC2, and rs13086424. b. Six additional SNPs in the FHIT gene are 

significantly (p<0.01) and consistently (for at least 5 consecutive timepoints) associated with BMI measurements (percentiles and 
categories). Heatmap shades represent covariate adjusted linear models coefficients. BMI categories are positively associated 

with the minor allele frequency in rs17061792, and negatively with that of rs34799084.  BMI percentiles are positively associated 
with the minor allele frequency in rs6767126 and rs34723569, and negatively with that of 3:61213993 and 3:61219865. c. 

Locations of the SNPs associated with microbiome features and BMI measurements in the FHIT gene. Colors represent different 
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SNPs, and shapes represent the associated variable. A small region around 60Mbp includes SNPs associated with microbiome 
features and a BMI measurement.  
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Figure 3 Six microbiome genera at ages 0.5, 3, and 4 are differentially abundant with respect to the minor allele count (MAC) of 
the selected SNPs (Maaslin2 q-val < 0.05, MAC (0,1,2) is treated as a continuous variable). a. The strongest associations is between 
rs6781046 and rs1040338 and Blautia at age 3, the first having the also the strongest statistical significance, followed by 
3:61213993 and 3:61219865 and Ruminococcus gnavus group at age 4. These associations have a positive coefficient. The rest of 
the associations are between UBA1819 at age 0.5 and rs13086424, Collinsella at age 3 and rs6767126, and   Allistipes and 
Agathobacter at age 3. The first two have positive coefficients while the latter two have negative coefficients. b. The relationship 
between the relative abundance of the differentially abundant bacteria and the minor allele count of the corresponding SNPs follows 
the coefficient sign pattern showed in panel a. Colors in this panel correspond to the SNPs in panel a. Highly correlated pairs of 
SNPs (rs6781046 and rs1040338, and rs6781046 and rs1040338) show almost identical patterns. All genera, except for Blautia, 
have an important number of zero values. However, only UBA1819 at age 0.5, and Collinsella at age 3 have overall low relative 
abundance. Out of the 6 genera associated with genotype, UBA1819 presents the least robust association.  
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Figure 4 Pathways in the plasma metabolome are simultaneously associated with BMI measurements and selected microbiome 
and genotype features. Linear models are used to establish associations between the metabolites’ abundance and the different omics 
variables (BMI percentiles or categories, genotype, or microbiome features). The coefficient is standardized as β*sd(explanatory 
variable measurement in all children)/sd(metabolite abundance in all children) to allow magnitude comparison (std. effect in the 
panels). a. Metabolome associations with BMI measurements. Associations with BMI percentiles are more prevalent than with 
BMI categories, but two lipids have significant associations with both. Amino acids and Lipids are the metabolite classes with most 
significant associations (n = 9, respectively). Cysteine s-sulfate in the Methione, Cysteine, SAM and Taurine metabolism pathway 
(Sulfur Amino Acids) is the only amino acid to have a positive association with BMI (categories), while all the other found 
associations are negative. The overall strongest association (negative) is between the carbohydrate arabitol/xylitol in the pentose 
pathway, and BMI percentiles, while the most consistent pathway association is between three lipids in the Sphingolipid pathway 
and both BMI measurements. In total, we identified 21 metabolic pathways, in 5 metabolite classes associated with BMI 
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measurements. b.   Metabolites simultaneously associated with two other data types (BMI measurements, genotype, or microbiome 
features). In total, we found 20 metabolites in 10 pathways and 4 metabolite classes that are associated with features in two other 
types of data. The most recurrent are associations between metabolites, genotype, and microbiome (n=9) and, in particular, with 
metabolites in the Urea cycle and Arginine and proline metabolism (n=4). Many of the metabolite associations with genotype 
features involve more than one SNP per metabolite. This is also observed in the metabolite microbiome associations where at least 
2 genera are associated with each metabolite. c. Network representation of all the associations found. Nodes are genetic, 
metabolome, microbiome or BMI variables, and links represent significant associations (red for positive and blue for negative).  
This undirected network representation allows to analyze the interconnections simultaneously. We found two three-node and one 
four-node interconnections with coherent directional association i.e., an increase in one variable corresponds adequately to changes 
in others: 1) SNPs 3:61213993 and 3:61219865, amino acids  hydroxyproline and prolyhydroxyproline, and genus Allistipes; 2) 
SNP rs34723559, lipid sphingomyelin, and BMI; and 3) SNP rs6767126, genus Collinsella, BMI, and aspartate aminotransferase.  
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