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Abstract 
Objective: To establish an automatic method to quantify thymic involution and hyperplasia 
based on plain chest computed tomography (CT). 
Methods: We defined the thymic region for quantification (TRQ) as the target region. We 
manually segmented the TRQ in 135 CT studies, followed by construction of segmentation 
neural network (NN) models based on the data. We developed the estimator of thymic 
volume (ETV), a measure of the thymic tissue volume in the segmented TRQ. The 
Hounsfield unit (HU) value and volume of the TRQ were measured, and the ETV was 
calculated in each CT study from 853 healthy subjects. We investigated how these measures 
were related to the age and sex using quantile additive regression models. We defined the 
ETV z-score, an age- and sex-adjusted version of ETV, to distinguish between subjects with 
thymic hyperplasia (18 cases) and healthy subjects. A receiver operating characteristic (ROC) 
curve analysis was conducted. 
Results: A significant correlation between the NN-segmented and manually segmented 
TRQ was seen for both the HU value and volume of the TRQ (r = 0.996 and r = 0.986 
respectively). The ETV could detect age-related decline in the thymic tissue volume (p < 
0.001). No statistically significant difference was detected between male and female subjects 
(p = 0.19). The ETV was significantly higher in the thymic hyperplasia group as compared 
with that in the healthy control group (p < 0.001). The ETV z-score could distinguish 
between subjects with thymic hyperplasia and healthy subjects, with the ROC curve analysis 
revealing an area under the curve (AUC) of 0.88 (95% CI: 0.75-1.0). 
Conclusion: Our method enabled robust quantification of thymic involution and 
hyperplasia. The results were consistent with the trends found in previous studies. 
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Clinical Relevance Statement 

Our method allows reliable and automatic measurement of thymic involution and hyperplasia 

on CT images. This may aid in the early detection and monitoring of pathologies related to 

the thymus, including autoimmune diseases. 

Key Points 

- We defined the thymic region for quantification (TRQ) to fully automate the evaluation of 

thymic involution and hyperplasia. The neural networks could identify the TRQ with 

sufficient accuracy. 

- We developed the estimator of thymic volume (ETV) to quantify the thymic tissue in the 

TRQ. ETV captured age-related thymic involution and thymic hyperplasia. 

- The ETV could prove useful in the management of pathologies associated with involution 

or hyperplasia of the thymus. 

MeSH terms 

X-Ray Computed Tomography, Thymic Hyperplasia, Immunosenescence, Neural Network 

Models, Mathematical Model 
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Introduction 

Thymus is one of the most important organs comprising the human immune system, where T 

cells mature, and harmful self-reactive T cells are eliminated [1]. In children, the thymus is 

visualized on chest computed tomography (CT) as a soft tissue density in the anterior 

mediastinum. As one ages, it is gradually replaced by fat density reflecting age-related 

involution. Finally, some residual thymic tissue remains as scattered spots in the mediastinal 

adipose tissue [1, 2]. Thymic involution and loss of thymic function are associated with a 

higher mortality and a higher risk of cancers and autoimmune diseases in human adults [3–5]. 

 Thymic hyperplasia is observed when aberrant cell proliferation occurs due to various 

pathologies such as infections, autoimmune diseases, steroid usage, and serious stress. 

Identification of thymic hyperplasia could lead to an accurate diagnosis of these underlying 

pathologies [6, 7]. In clinical practice, visual inspection or measurement of the thymus 

thickness is often used for radiological diagnosis of thymic hyperplasia [8, 9]. Detection of 

thymic hyperplasia is not easy, since the normal thymic tissue volume differs greatly by age. 

As a result, the early stages of thymic hyperplasia can often be overlooked. 
 Previous studies have used visual scoring or Hounsfield unit (HU) value inside the 

region of interest (ROI) for roughly estimating the thymic tissue volume [2, 10–13]. 

However, these methods are only semi-quantitative and cannot directly estimate the quantity 

of thymic tissue. They are also too time-consuming for daily clinical use or large-scale 

clinical studies. One of the most effective solutions for these problems is a neural network 

(NN)-based system to automatically segment and quantitatively evaluate the thymic region. 

Such tasks present challenges, because of the small volume and indistinct borders of the 

thymic region. 
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 The purpose of this study was to develop a method to automatically identify the 

thymic region on chest CT images and to quantify the thymic tissue volume to evaluate 

thymic involution and hyperplasia. 
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Materials and methods 

Study design and datasets 

This retrospective study was conducted with the approval of the institutional review boards of 

Asahi General Hospital and Keio University. CT images and other clinical data were 

collected from April 2006 to March 2022. Three datasets were prepared to develop and 

evaluate the system. 

 The development dataset consisted of CT studies from 135 subjects, that were used 

for training, validation, and testing of the segmentation NN. The chest CT images were 

selected randomly and were derived from subjects with a wide range of demographic 

backgrounds, in order to achieve a high generalizing performance. The inclusion criteria for 

the images were as follows: (1) axial CT images without contrast media, (2) slice thickness of 

1-3 mm, (3) no lesions in the mediastinum, such as thymoma, lymphadenopathy, or thoracic 

aortic aneurysm, (4) no pulmonary or pleural lesions adjacent to the frontal or upper 

mediastinum, and (5) no history of sternotomy. The same inclusion criteria were also applied 

for the following datasets.  

 The healthy dataset consisted of CT studies from 853 subjects who underwent CT for 

investigation of abnormal chest X-ray findings. This dataset was used for the evaluation of 

age-related thymic involution. The CT studies revealed negative or benign findings in all the 

subjects. Subjects with signs of acute illness, a history of systemic corticosteroid or anabolic 

steroid use, a history of thymus-related diseases, or a history of systemic diseases associated 

with major chronic inflammation were excluded. 

 The thymic hyperplasia dataset consisted of CT studies from 18 subjects, which 

radiologists had interpreted as showing thymic hyperplasia. 
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 Every dataset included one study per subject. All CT images were acquired using one 

of the multi-detector CT scanners at our hospital. See the Supplementary Methods for more 

details. 

Automatic segmentation of the thymic region for quantification (TRQ) 

Since accurate and robust segmentation is needed for appropriate evaluation of the thymic 

region, we defined the thymic region for quantification (TRQ) as a three-dimensional region 

in the anterior mediastinum (Fig. 2) bordered by the following structures:  

 

 Superior border: the level at which the left brachiocephalic vein passes in front of the aorta 

or the brachiocephalic artery. 

Inferior border: the level at which the anterior wall of the aorta and the main pulmonary 

artery line up right-to-left. 

 

In each study in the development dataset, manual segmentation of the TRQ was performed by 

consensus between one physician and one radiologist, using the ITK-SNAP software [14]. 

First, the airways were labeled using the snake tool of ITK-SNAP, with an upper threshold of 

-300 HU. Next, the TRQ was identified manually according to the abovementioned 

definition. The TRQ HU value histogram of the segmented TRQ for each image was visually 

inspected. 

 For automatic identification of the TRQ in CT images, NN models (DeepLabV3 NN 

with a ResNet-50 backbone) [15] were trained and validated (Fig. S1). Each axial slice in a 

CT study was used as an input to the NN. The NN models were implemented in Python (v 

3.9), using PyTorch (v 1.10). The development dataset was split randomly into six subsets. 

One subset was kept as the test set, while the remaining five subsets (training set) were used 
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for NN training and five-fold cross validation. Five NN models were generated as a result of 

this five-fold cross validation step. See the Supplementary Methods for more details. 

Evaluation of the segmented TRQ 

The performance of the segmentation NN models was assessed using the test set. Each CT 

study in the test set was processed by the five NN models generated in the five-fold cross 

validation step, and the five segmentation results were processed separately. We 

comparatively evaluated the segmentation accuracy between automatic segmentation and 

manual segmentation by determining the Dice similarity coefficient (DSC) [16]. We created 

yy plots and Bland-Altman plots to compare the HU values and volumes between the NN-

segmented and manually segmented TRQ. We used the mode value as the representative 

TRQ HU value. If the mode value was impossible to calculate, the segmentation result was 

discarded as invalid. See the Supplementary Methods for more details on estimation of the 

TRQ HU value. The median of the five values calculated from the five segmentation results 

was used as the representative value for each CT study, for DSC, TRQ HU value and volume. 

We also calculated Pearson correlation coefficients and intraclass correlation coefficients 

(ICC; two-way random, single measures, absolute agreement) for the TRQ HU values and 

volumes. The ICC was calculated using the psych package on R. The DSC obtained from the 

five-fold cross-validation is also reported. 

 In order to eliminate low-quality segmentation results, we attempted to conduct 

quality control after the TRQ segmentation. In the process of quality control, we needed to 

predict the segmentation quality using measures that are computable based on the five 

automatic segmentation results. To establish the criteria for this process, several measures 

including the HU value variance and mean pairwise Jensen-Shannon divergence (JS 

divergence) were calculated. Pairwise correlation analysis between the segmentation quality 
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and these measures were performed in the test set. The TRQ volume estimation error, HU 

value estimation error, and DSC were used as indicators of the segmentation quality. We 

determined the quality control criteria based on the correlation analysis results, and all the 

images that did not satisfy the criteria were excluded from the subsequent analyses. See the 

Supplementary Methods for more details. 

Quantifying the thymic tissue volume 

While the TRQ HU value reflects the thymic tissue volume, the HU value could also be 

affected by the volume of the adipose tissue contained in the TRQ. To evaluate the thymic 

region with adjustment for this effect, we developed the estimator of thymic volume (ETV), 

which is a statistical estimator of the thymic tissue volume. ETV is defined as 

ETV (𝐴′
𝑇𝑅�̂�𝑖

 , 𝑣𝑇𝑅�̂�𝑖
) ≝

𝐴′
𝑇𝑅�̂�𝑖

− 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒

𝐴𝑡ℎ𝑦𝑚𝑖𝑐 − 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒
𝑣𝑇𝑅�̂�𝑖

  

where 𝐴𝑡ℎ𝑦𝑚𝑖𝑐 and 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 are predetermined constant HU values of thymic and adipose 

tissue, 𝐴′
𝑇𝑅�̂�𝑖

 is the adjusted TRQ HU value, and 𝑣𝑇𝑅�̂�𝑖
 is the TRQ volume for CT study 𝑖. 

We examined the relationship between the TRQ volumes and HU values in the healthy 

dataset, to validate the theory of ETV. The derivation of the ETV is included in the 

Supplementary Methods. The theory of ETV is shown in Fig. S2. 

 To assess the capability of ETV for evaluating thymic involution and hyperplasia, 

images from the healthy dataset and thymic hyperplasia dataset were processed as shown in 

Fig. 1. Chest CT images were given as input to the five independent segmentation NN 

models generated in the five-fold cross validation step, to automatically identify the TRQ. 

The mode HU value and volume of the TRQ, as well as the ETV, were calculated for each of 

the five segmentation results. If any of the segmentation results were invalid among the five, 

the CT study was excluded from the analysis. Quality control was performed to remove low-
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quality segmentation results. Finally, the median value of the five calculated ETV values was 

considered as the representative ETV value.  

Measuring age-related changes of the thymic region 

Age-related changes of the TRQ HU value, volume, and ETV were investigated in the 

healthy dataset. Differences in the values between male and female subjects were also 

assessed. To cope with the expected nonlinearity and unequal variances of the data, we chose 

the additive quantile regression model for the analyses (see the Supplementary Methods for 

more details). 

Evaluation of thymic hyperplasia 

To make the ETV value understandable in comparison with the healthy subjects, we 

introduced the ETV z-score, an age- and sex-adjusted version of the ETV. A detailed 

explanation of the ETV z-score is provided in the Supplementary Methods. Briefly, the ETV 

z-score shows how much larger or smaller the ETV in each subject is, in comparison with 

that in the age- and sex-matched population from the healthy dataset. An ETV z-score of zero 

is defined by a value equal to the median value in the matched population. In subjects with 

ETV values higher or lower than the median, the ETV z-score will be a positive or negative 

number, respectively. The ETV z-score was calculated for each subject of the thymic 

hyperplasia dataset. 

 One sample two tailed t test was performed to verify if the mean ETV z-score of the 

thymic hyperplasia dataset was higher than zero. A Receiver operating characteristic (ROC) 

curve analysis was conducted to determine the ability of the ETV z-score to differentiate 

subjects with thymic hyperplasia from healthy subjects. The cutoff value was determined 

based on Youden’s index. 
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Statistical analysis 

All the statistical analyses were performed using R (v4.2.1). p < 0.05 was considered as 

denoting statistical significance in all the analyses. 
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Results 

Characteristics of the patients and images 

The development dataset, healthy dataset, and thymic hyperplasia dataset consisted of CT 

studies from 135, 853, and 18 subjects, respectively. The demographic features of these 

datasets are shown in Table 1, Table 2, and Table 3. 

Performance of the segmentation neural networks 

We performed manual segmentation of the TRQ for the development dataset in accordance 

with the definition of the TRQ. Fig. 2a and 2b show an example of manual segmentation. All 

the segmented areas showed unimodal HU value distribution. The development dataset was 

divided into the training set and the test set. NN training and validation were performed using 

the training set. 

 Automatic segmentation by NN models was conducted for the test set. Fig. 2c and 2d 

show an example of automatic segmentation by a NN. There were no invalid segmentation 

results. The median and interquartile range (IQR) of the DSC between the NN-segmented and 

manually segmented TRQ was 0.73 (IQR: 0.64-0.79) for the validation sets, and 0.76 (IQR: 

0.67-0.82) for the test set. The Pearson correlation coefficients for the TRQ HU values and 

volumes were r = 0.996 and r = 0.986, and the ICCs were 0.996 and 0.985, respectively. 

Bland-Altman analysis revealed an acceptable level of bias for the TRQ HU values and 

volumes (mean difference: +0.43 HU and −0.14×104 voxels, respectively). The yy plots and 

Bland-Altman plots are shown in Fig. 3. 
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Determination of the quality control criteria 

Several measures correlated with the TRQ volume estimation error, HU value estimation 

error, and DSC (Fig. S3). The mean pairwise JS divergence, mean pairwise DSC, and HU 

value variance were the top three predictors of the TRQ volume estimation error and DSC. 

We selected these three as the quality control parameters. These parameters also predicted the 

TRQ HU value estimation error. In regard to the worst values of these parameters in the test 

set, we defined the quality control criteria as having been met when all of the following 

conditions were fulfilled: mean pairwise JS divergence < 0.1, mean pairwise DSC > 0.7, and 

HU value variance < 20. In the subsequent analyses, we excluded all the images that did not 

satisfy these criteria. 

Testing the theory for ETV calculation 

The graphs and the regression analyses showed that the results were in complete agreement 

with the theoretical predictions (Supplementary Results, Fig. S4 and S5). This shows that our 

theory was applicable to actual data, and that the assumptions for calculation of the ETV 

were met. A strong correlation was found between the TRQ volume and TRQ HU value, 

underscoring the need to adjust for the effect of the adipose tissue volume. Based on the 

results, 𝐴𝑎𝑑𝑖𝑝𝑜𝑠𝑒 = −110 HU was assumed for the subsequent analyses. 𝐴𝑡ℎ𝑦𝑚𝑖𝑐 was 

assumed to be +80 HU, which is the reported approximate HU value of the newborn thymus 

[17]. 

Age-related changes in the TRQ 

The TRQ HU value, volume, and the ETV were calculated from 853 CT studies in the 

healthy dataset. There were no invalid segmentation results. In 30 CT studies (3.5 %), the 

automatic segmentation results failed to pass the quality control criteria. Age-related changes 
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in the values are shown in Fig. 4 (page < 0.001 for all). The TRQ HU value decreased with 

age and converged to around -110–-100 HU in the elderly. The TRQ volume increased with 

age, while the ETV decreased with age, which appeared mostly linear on a log scale. This 

suggests exponential decline of the thymic tissue volume with age. Female subjects showed 

significantly higher HU values and lower TRQ volumes (psex < 0.001 for both), while no 

statistically significant difference in the ETV was noted between the male and female 

subjects (psex = 0.19). 

ETV change in thymic hyperplasia 

 Among the 18 CT studies in the thymic hyperplasia dataset, one showed invalid 

segmentation results, and two failed to pass the quality control. The remaining CT studies 

with thymic hyperplasia showed ETV z-scores of significantly higher than zero (p < 0.001, 

Fig. 5a), suggesting that the ETV values in these subjects were higher as compared with those 

in age- and sex-matched healthy counterparts. The results of the ROC curve analysis, which 

yielded an AUC of 0.88 (95% CI: 0.75-1.0, Fig. 5b), showed that the ETV z-score could 

effectively differentiate between the thymic hyperplasia group and the healthy group. The 

cutoff value of the ETV z-score for this discrimination was estimated as 0.85 (sensitivity = 

0.87, specificity = 0.86). 
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Discussion 

In this study, we could measure the volume and HU value of the thymic region with high 

robustness, using the neural networks. We established a quality control procedure to 

eliminate low-quality segmentations. Furthermore, we developed the ETV to estimate the 

thymic tissue volume. Our methodology could capture thymic tissue volume changes in age-

related thymic involution and suspected thymic hyperplasia. 

 The segmentation quality as measured by DSC was not as high as the values reported 

for larger organs [18], reflecting the difficulty in automatic identification of the thymic 

region. Despite this, the volume and HU value of the NN-segmented TRQ showed a 

considerable degree of precision, indicating the effectiveness of our post-processing method. 

 ETV, a statistical estimator of the thymic tissue volume, was derived from a 

mathematical model based on simple assumptions. Although our theory ignored factors such 

as heterogeneity in the adipose and thymic tissues, the analyses strongly lent support to our 

theory in actual images, at least in healthy subjects. Furthermore, the ETV underwent an 

exponential decline with age. This is in line with the previously reported change of T-cell 

receptor excision circles (TREC), a biochemical indicator of thymic output, which also 

showed an exponential decline with age [19]. 

 Whether the thymic tissue volume in adults differs between male and female subjects 

has been a matter of debate. Studies using HU value as a measure of thymic involution have 

mostly reported higher values in females [2, 10–12], while studies utilizing TREC [20–24] 

have reported a relatively small or non-significant difference. In line with this, we observed 

clearly higher HU value of the TRQ in female subjects. However, we did not observe a 

statistically significant difference in the ETV between male and female subjects. Conversely, 

the TRQ volume was significantly higher in male subjects. These data indicate that the sexual 
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difference in the thymic region HU value is more dependent on the adipose tissue volume in 

the thymic region, rather than on the thymic tissue volume itself. Taken together with the 

significant effect of the TRQ volume on the HU value we observed, we think that the HU 

value alone cannot be used as a reliable indicator of thymic involution. The thymic visual 

scoring system may also not be appropriate, because it does not take the effect of adipose 

tissue volume into account. 

 Since no method existed to quantify the thymic tissue volume, the clinical 

significance of measuring the thymic tissue volume has not yet been established. Our thymic 

hyperplasia dataset contained several cases of autoimmune diseases such as rheumatoid 

arthritis and interstitial pneumonia. Our method might contribute to early detection of thymic 

hyperplasia and the underlying autoimmune disorders. It could also aid in evaluating the 

disease status and tracking the disease course. Further research is needed to explore these 

benefits of measuring/monitoring the thymic tissue volume. 

 This study had several important limitations. First, since homogeneity of the HU 

values within the TRQ is assumed, our method cannot evaluate heterogeneous changes in the 

thymic region, such as thymic tumors and nodular hyperplasia. Second, we could not obtain 

pathological evidence to determine how reliably the ETV predicted the actual thymic tissue 

volume. Importantly, since our thymic hyperplasia dataset did not include pathologically 

proven cases, we remain unable to make definitive statements regarding the diagnostic 

precision of our method. Third, our datasets included CT images acquired by different 

scanners and protocols, which could potentially have biased our results. Fourth, although we 

employed several strategies to control errors arising from mis-segmentation and obstacles, 

our data do not directly demonstrate their effectiveness. 

 In conclusion, our method enables robust quantification of thymic involution and 

hyperplasia, and our observations were consistent with previous reports. Our technique might 
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prove useful in the management of diseases, including autoimmune disorders, which remains 

to be explored in future studies. 
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Tables 

Table 1 

Demographic information of the development dataset.  

 Development dataset (135 subjects) 

  Training set 
(113 subjects) 

Test set 
(22 subjects) 

Age (years)     

-19 12 3 

20-29 14 3 

30-39 8 2 

40-49 8 1 

50-59 11 3 

60-69 27 2 

70-79 21 7 

80- 12 1 

Sex, female 50 (44 %) 14 (64 %) 
 

Table 2 

Demographic information of the healthy dataset. 

 Healthy dataset (853 subjects) 

Age (mean±SD) (years) 53.6 ± 15.9 

Sex, female 413 (48 %) 
SD: standard deviation. 
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Table 3 

Demographic information of the thymic hyperplasia dataset. 
  Thymic hyperplasia dataset (18 subjects) 

Age (mean±SD) (years) 48.6 ± 14.1 

Sex, female 11 (61 %) 

Background pathology  

Connective tissue disease 
(Rheumatoid arthritis, Sjögren's 
syndrome, Mixed connective tissue 
disease) 

10 

Interstitial pneumonia 5 

Lymphoma 1 

Nephrosis 1 

Bacterial pneumonia 1 
SD: standard deviation. 
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Figures 

 
Fig. 1 Workflow of the image processing. NN, neural network; TRQ, thymic region for 
quantification; HU, Hounsfield unit; ETV, estimator of thymic volume. 
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Fig. 2 Example images of a TRQ segmented manually (a and b, the yellow region) and by a 
neural network (NN) model (c and d, the green region).  
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Fig. 3 Evaluation of the TRQ segmentation quality. a and b, yy plots comparing the HU 
values and volumes obtained from the manually segmented and NN-segmented TRQs. r 
indicates the Pearson correlation coefficients. ICC indicates the intraclass correlation 
coefficients. The dashed lines are identity lines. c and d, Bland-Altman plots showing 
prediction errors of the TRQ HU values and volumes. The red lines indicate the mean 
difference, and the red dashed lines indicate the limits of agreement (LOA), calculated as 
mean±1.96× standard deviation. The error bars in the plots show the maximum and 
minimum values calculated from five TRQ segmentation results. 
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Fig. 4 Age-related changes in the thymic region. Thick lines depict medians and thin lines 
depict interquartile ranges, estimated by quantile additive regression. The rightmost figures 
show an overlay of the median values in the male and female subjects. page and psex indicate 
the p values of the age and sex effects, respectively. TRQ volume and ETV are presented in 
log scale. 
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Fig. 5 Evaluation of thymic hyperplasia using the ETV z-score. a, ETV z-scores of the 
thymic hyperplasia group, which were significantly higher than zero (***p < 0.001). The 
error bars indicate the maximum and minimum values. b, ROC curve analysis of the ETV z-
score for differentiating between the group with thymic hyperplasia and the healthy group. 
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