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ABSTRACT 23 

Background:  24 

Cesarean section delivery is associated with altered early-life bacterial colonization and later 25 

adverse inflammatory and immune health outcomes. Although gut bacteriophages can alter gut 26 

microbiome composition and impact host immune responses, little is known about how delivery 27 

mode impacts bacteriophage colonization over time. To begin to address this we examined how 28 

delivery mode affected bacteriophage colonization over the first two years of life. 29 

Results:  30 

Shotgun metagenomic sequencing was conducted on 272 serial stool samples from 55 infants, 31 

collected at 1-2 days of life and 2, 6, 12 and 24 months. 33/55 (60%) infants were born by 32 

vaginal delivery. DNA viruses were identified, and by host inference, 94% of the viral sequences 33 

were found to be bacteriophages. Alpha diversity of the virome was increased in vaginally 34 

delivered infants compared to cesarean section delivered infants at 2 months (Shannon index, 35 

p=0.022). Beta diversity significantly differed by delivery mode at 2, 6, and 12 months when 36 

stratified by peripartum antibiotic use (Bray–Curtis dissimilarity, all p<0.05). Significant 37 

differentially abundant predicted bacteriophage hosts by delivery mode were seen at all time 38 

points. Moreover, there were differences in predicted bacteriophage functional gene abundances 39 

up to 24 months by delivery mode. Many of the functions considered to play a role in host 40 

response were increased in vaginal delivery. 41 

Conclusions:  42 

Clear differences in bacteriophage composition and function were seen by delivery mode over 43 

the first two years of life. Given that phages are known to affect host immune response, our 44 
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results suggest that future investigation into how delivery mode may lead to adverse 45 

inflammatory outcomes should not only include bacterial microbial colonization but also the 46 

potential role of bacteriophages and transkingdom interactions. 47 

Keywords: bacteriophages; virome; infant; delivery mode; cesarean section; vaginal delivery; 48 

microbiome 49 
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BACKGROUND 64 

Infancy represents a key window for gut microbiome establishment and plays a critical role in 65 

immune and metabolic education [1-3]. Disturbing the timing and order of microbial 66 

colonization can have lasting immune and inflammatory consequences [4, 5]. Cesarean section 67 

(CS) delivery represents an important factor perturbing the bacterial colonization of an infant and 68 

has been associated with later risk of several inflammatory conditions [6-8]. We read with 69 

interest the recent work of Shah et al, revealing previously unappreciated virome diversity in the 70 

infant gut microbiome at 1 year of age, and uncovering unknown viral species and virus family-71 

level clades [9]. Although gut bacteriophages can alter microbiome composition and function 72 

and directly affect host immune responses [10-13], the effect of delivery mode has largely been 73 

limited to investigation of bacterial taxa. Transmission of the gut virome from mother to infant 74 

has shown lower transmission of viral communities than bacterial communities, and that virome 75 

colonization was determined more by dietary and environmental factors rather than direct 76 

maternal acquisition [14, 15]. In the first week of life, delivery mode did not determine how 77 

much of the virome was shared between mother and infant but some effect of delivery mode on 78 

bacteria-bacteriophage interaction was seen [14]. However, how delivery mode affects virome 79 

colonization longitudinally in infancy and early childhood has not been studied. Therefore, 80 

building on this previous work, we aimed to assess the impact of delivery mode on the infant gut 81 

virome over the first two years of life. 82 

METHODS 83 

Subjects, sample, and clinical data collection: Mothers were enrolled prenatally with informed 84 

consent in an Institutional Review Board approved longitudinal, prospective cohort study “The 85 

First 1000 Days of Life and Beyond” (Inova protocol #15-1804, WCG protocol #20120204). 86 
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Serial stool samples were collected from infants at 1-2 days after birth and at around 2, 6, 12, and 87 

24 months of age as previously described [16, 17]. All samples except for the 1-2 day samples 88 

were collected at home and mailed back to the lab, using previously validated methods and 89 

stored at -80°C until analysis [18]. Subjects for this current study were chosen from the larger 90 

cohort if stool samples were available at all time points. Demographic information, pregnancy 91 

details including mode of delivery mode and maternal antibiotic use, and infant data including 92 

feeding mode and antibiotic use were collected through a questionnaire, review of electronic 93 

medical records and serial surveys. Correlation between clinical and demographic factors with 94 

delivery mode was evaluated using the Chi-square test and two-sample t-test for categorical and 95 

continues variables respectively.   96 

DNA extraction and Shotgun metagenomic sequencing: DNA was extracted from stool 97 

aliquots using the DNeasy PowerSoil Pro kit (Qiagen, Valencia, CA) following manufacturer’s 98 

instructions. Shotgun metagenomic sequencing was performed on the Novaseq platform 99 

(Illumina, CA, USA). Positive controls (DNA sequences) and negative controls (DNA free 100 

water) were used. 101 

Virome and bacteriome analysis: Read pairs were trimmed with BBDuk v38.0.1 and then 102 

assembled using metaSPAdes. Contigs were then processed following a standardized protocol 103 

using VirSorter, CheckV, and DRAM-v to identify viral sequences [19]. These sequences were 104 

then clustered using VContact. Bacterial hosts of phage sequences were identified using Phist.  105 

Putative genes identified by DRAM-v were annotated by aligning to NCBI's nr database using 106 

DIAMOND [20]. DRAM-v was also used to identify viral auxiliary metabolic genes (vAMGs).  107 

Taxonomic classification of the whole microbiota, including the bacteriome was done using 108 

Kraken v2. Beta diversity was compared between groups using PERMANOVA with the adonis 109 
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function from the vegan R package. All other statistics were done with linear mixed effects 110 

models using the lmerTest R package on its own and through the MaAsLin2 R package with log 111 

transformation to assess differential abundances of virome features. 112 

RESULTS AND DISCUSSION 113 

Shotgun metagenomic sequencing was conducted on 272 serial stool samples from 55 infants, 114 

collected at 1-2 days of life and 2,6,12, and 24 months. 33/55 (60%) infants were born by vaginal 115 

delivery (VD). CS delivered infants were more likely to have exposure to maternal peripartum 116 

antibiotics (p<0.001). There were no differences by delivery mode in sex, ethnicity, race, breast 117 

feeding and infant antibiotic use (Table S1). 118 

From the virome analysis of the sequence data, we identified DNA viruses and attempted to 119 

resolve taxonomies. 9745 unique viral clusters were identified. Of these, only 2.2% could be 120 

identified, which were mainly bacteriophages. Clusters from the Siphoviridae family were the 121 

most common (64%), followed by Myoviridae (28%) and Podoviridae (8%). After aligning the 122 

putative gene sequences to NCBI's nr database, we had an increased classification of 94% of 123 

putative gene sequences on average for each time point. The number of putative viral genes 124 

increased over time (p=5.05e-71, Fig. S1).  125 

We then assessed the alpha and beta diversity of the virome by delivery mode and time. Alpha 126 

diversity (Shannon index) increased over time (p=0.022, Fig. 1A). This differs from some 127 

previous studies which report decreasing bacteriophage diversity over the first few years of life, 128 

possibly due to differences in preparation of the samples and updated bioinformatics tools and 129 

databases utilized in our study [15, 21]. However other reports concur with our study and show 130 

an increasing diversity of bacteriophages in infancy [22, 23]. There was increased alpha diversity 131 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.13.23298307doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.13.23298307


7 

 

in VD compared with CS at birth (p= 0.0028) and 2 months (p=0.009), with significance 132 

remaining after adjusting for peripartum antibiotic use. No difference in alpha diversity by 133 

delivery mode was seen at later timepoints. Interestingly, the only other study examining the 134 

virome by delivery mode later in infancy in 20 infants at a single time point of 12 months, still 135 

found increased alpha diversity in those vaginally delivered at 1 year [24]. In our study the 136 

analysis at birth is somewhat limited as fewer CS samples could be used (n=6) due to poor 137 

quality reads and/or no identifiable viral sequences. Mother-infant vertical transmission of the 138 

virome is thought to be lower than the bacteriome [14]; our results suggest this may be further 139 

lowered by CS. No differences were seen in alpha diversity by other clinical factors including 140 

breast feeding and infant antibiotic use, although others have reported that breast feeding can 141 

alter infant virome colonization [23]. Beta diversity (Bray-Curtis) differed by timepoint (p< 142 

0.005, Fig. 1B) but not overall by delivery mode. However, within each time point, beta diversity 143 

was significantly different by delivery mode when stratified by peripartum antibiotic use at 2 144 

(p=0.038), 6 (p=0.002), and 12 months (p=0.039). 145 

We also assessed the phage abundances and putative host bacterial taxa abundance over time and 146 

delivery mode. The vast majority of viral clusters were from bacteriophages (94%). 10 identified 147 

phages were shown to significantly differ by delivery mode (FDR < 0.1) at 2 months (Fig. 2A), 148 

but not at later timepoints; all were higher in VD than CS. Certain predicted host bacterial 149 

species differed significantly in abundance by delivery mode at each time point after birth, with 150 

an increased number of significantly differentially abundant hosts identified in VD compared 151 

with CS up to 12 months (Fig. 2B). Notably, phages belonging to the Bacteroidaceae hosts were 152 

increased in VD at 2 and 6 months, with the bacterial taxa Bacteroides known to be increased in 153 

VD compared to CS infants in early life [25]. At 24 months, there were more differentially 154 
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abundant phage hosts predicted in CS compared to VD. The predicted host bacterial taxa 155 

correlated closely with the bacterial abundance of the whole microbiome at all timepoints (Fig. 156 

S2). 157 

We then attempted to assess the predicted functional genes and pathways of the identified virome 158 

over time and by delivery mode. Very few functional pathways were identified and did not differ 159 

by delivery mode. However, when looking at vAMGs, differences were found by delivery mode 160 

at birth, 2, 6, and 24 months. Of the differentially abundant gene sequences, only fabG, 161 

associated with sugar metabolism in pathogenic bacteria, was found to be in higher abundance in 162 

CS than VD at 2m [26]. All others were higher in abundance in VD compared to CS and 163 

included ENO, tkA, Glycos_transf_2, PGD, UGDH, ABC.CD.A and RPL19, genes associated 164 

with human host response. Others of note, essential to bacteria, included SusC, iroN, DNMT1 165 

and UGP2. Full results are shown in Figure S3 and Table S2. 166 

The reasons for the difference in bacteriophage colonization and function by delivery mode up to 167 

24 months is still yet to be determined. While differential acquisition of the maternal virome is 168 

possible, as infants delivered by CS bypass the birth canal and maternal vaginal and perineal 169 

microbiome exposure, studies suggest that maternal to infant transmission of the virome in early 170 

life is already very low [14, 15]. It has been suggested dietary factors such as breastfeeding 171 

contribute to early life virome colonization, however there were no differences in breastfeeding 172 

by delivery mode in our study (Table S1). It is likely that the differential bacterial colonization 173 

known to occur by delivery mode also affects bacteriophage differences, as evidenced by 174 

predicted bacteriophage hosts closely resembling whole microbiome bacterial composition (Fig. 175 

S2) [6, 27-29]. In addition, peripartum antibiotic exposure, which is higher in CS delivery, may 176 
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play a role in bacteriophage colonization as suggested by a difference in virome composition 177 

(beta diversity) by delivery mode when stratified by peripartum antibiotic use.  178 

Although to our knowledge, our study is the first to examine the impact of delivery mode on 179 

infant virome colonization over the first 2 years of life, there are several limitations. Only DNA 180 

viruses were examined and so how delivery mode may impact gut RNA viruses remains 181 

unknown. Additionally, maternal vaginal and stool virome were not assessed and so maternal to 182 

infant transmission by delivery mode cannot be assessed.   183 

CONCLUSIONS 184 

Clear differences in bacteriophage composition and function were seen by delivery mode over 185 

the first two years of life. Given that phages are known to affect host immune response, our 186 

results suggest that future investigation into how delivery mode may lead to adverse 187 

inflammatory outcomes should not only include bacterial microbial colonization but also the 188 

potential role of bacteriophages and transkingdom interactions. 189 

AVAILABILITY OF DATA AND MATERIALS 190 

The data sets generated and/or analyzed in the current study are available in the NCBI SRA 191 

repository 192 

(https://dataview.ncbi.nlm.nih.gov/object/PRJNA988496?reviewer=usujv2ng73h0ftdbiavm8soe9193 

8) under BioProject number: PRJNA988496. 194 

ABBREVIATIONS 195 

CS: Cesarean section 196 

VD: Vaginal delivery 197 

FDR: False discovery rate  198 
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vAMGs: Viral auxiliary metabolic genes  199 

fabG: 3-oxoacyl-[acyl-carrier-protein] reductase FabG 200 

ENO: Enolase 201 

tkA: Transketolase 202 

Glycos_transf_2: Glycosyl transferase family 2 203 

PGD: 6-phosphogluconate dehydrogenase 204 

UGDH: UDP-glucose 6-dehydrogenase 205 

ABC.CD.A: Putative ABC transport system ATP-binding protein  206 

RPL19: Large subunit ribosomal protein L19 207 

SusC: TonB-dependent starch-binding outer membrane protein SusC 208 

iroN: Iron complex outermembrane recepter protein 209 

DNMT1: DNA (cytosine-5-)-methyltransferase 210 

UGP2: UTP--glucose-1-phosphate uridylyltransferase 211 

 212 
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Figure Legends 356 

Figure 1:  A: Alpha diversity (Shannon index) of the virome over time and by delivery mode. B: 357 

Beta diversity (Bray–Curtis dissimilarity) of the virome over time. 358 

Figure 2: A: Significantly differentially abundant bacteriophages by delivery mode at 2 months. 359 

B: Significantly differentially abundant predicted bacterial hosts over time and by delivery 360 

mode. 361 

SUPPLEMENTARY INFORMATION: 362 

Table S1: Demographic and clinical factors stratified by delivery mode. 363 

Table S2: Functions of differentially abundant viral auxiliary metabolic genes (vAMGs) by 364 

delivery mode  365 

Figure S1: Identified viral genes over time. 366 

Figure S2: Predicted host bacterial abundance and whole microbiome bacterial abundance at a 367 

phylum level 368 

Figure S3A-D: Differentially abundant viral auxiliary metabolic genes (vAMGs) by delivery 369 

mode and timepoint. 370 
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