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Abstract

Vaccination coverage estimates are crucial inputs to decisions about investments in vaccination,
yet they can be prone to inaccuracies. At the individual level, inaccuracies can be described
in terms of the sensitivity and specificity of vaccination status. We estimated these quantities
using a hierarchical Bayesian analysis of data from a test-negative study design with reported
yellow fever vaccination status as the exposure. Our analysis accounted for the possibility of
misclassification of both the exposure and the test at the country level. Across all countries, our
median estimates of the sensitivity and specificity of vaccination status were 0.69 (95% credible
interval [CrI]: 0.21-0.98) and 0.70 (95% CrI: 0.21-0.98), respectively. Median estimates at the
country level ranged from 0.06 (95% CrI: 0.04-0.09) to 0.96 (95% CrI: 0.94-0.98) for sensitivity,
and from 0.15 (95% CrI: 0.09-0.23) to 0.98 (95% CrI: 0.90-1.00) for specificity. This suggests that
there is substantial misclassification of yellow fever vaccination status in general and extensive
variation in misclassification across countries. Taking into account misclassification in vaccination
status, we made adjustments to reported vaccination coverage and showed that reported coverage
may be significantly underestimated in 10 out of 20 countries and significantly overestimated in 5
out of 20.

Introduction

Vaccination coverage—defined as the proportion of a population that is vaccinated—is a critically
important piece of information for public health. This information can be used to monitor vaccination
efforts, identify areas where coverage is lower than desired, and determine potential barriers to vacci-
nation. For example, knowing that certain age groups or regions have lower coverage can be used as a
basis for prioritizing those populations for vaccination [1]. Additionally, vaccination coverage is useful
for assessing the effectiveness of vaccination programs at reducing the burden of vaccine-preventable
diseases [2]. It is also used as a standard to assess the strength of vaccination programs, to evaluate
the accessibility of healthcare systems [3, 4], and as a criterion for financial support for vaccination
programs in underresourced settings [5].

Despite its importance, there is considerable potential for error in vaccination coverage estimates.
In some countries, these estimates are derived from computer-based systems [4, 6]. Though considered
to be more advanced, errors in these systems can arise from mistakes in recall, recording, compil-
ing records, or not taking into account human migration. In most low- and middle-income countries
(LMICs), vaccination coverage is usually reported as an “administrative coverage estimate” [4], which
is defined as the number of vaccine doses that were administered divided by the size of the target pop-
ulation. Errors may arise from this approach as a result of duplicated vaccination records, doses being
administered but not recorded, or inaccurate estimates of the target population size [7]. Household sur-
veys can be conducted to address these issues but may suffer from selection bias (i.e., unrepresentative
households) and information bias (i.e., inaccurate data transcription or recall) [4, 8, 9].

One disease for which vaccination coverage estimates are particularly important is yellow fever.
Although most contemporary cases are thought to result from zoonotic spillover [10], yellow fever is

1

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.12.23298434doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.12.23298434
http://creativecommons.org/licenses/by/4.0/


capable of large outbreaks with high mortality [11, 12]. As a result, the World Health Organization
(WHO) has dedicated an initiative to the elimination of yellow fever epidemics [13]. Because there is
a highly efficacious vaccine for this disease and few other effective tools for prevention [14], achieving
high vaccination coverage in at-risk populations is essential. Understanding of vaccination coverage
for yellow fever may be impaired by the fact that it poses the greatest risk to rural populations in
Africa and South America, where accurate estimation of vaccination coverage is challenging [7, 15].
This emphasizes the need for accurate estimates of yellow fever vaccination coverage.

In this study, we estimated the sensitivity and specificity of vaccination status using a test-negative,
case-control study design involving surveillance data on yellow fever in Africa. Similar approaches have
been taken previously to estimate vaccine effectiveness in light of diagnostic inaccuracy [16, 17, 18, 19],
exposure inaccuracy [20], or both [21]. Our analysis allowed for the possibility of inaccuracy in both
the exposure (vaccination status) and the test (infection status), not to adjust estimates of vaccine ef-
fectiveness but to obtain estimates of vaccination misclassification in a real-world setting. Additionally,
we assessed the extent of geographic variability in misclassification by comparing alternative models
with differing assumptions about geographic variability in the sensitivity and specificity of vaccina-
tion status, the sensitivity and specificity of diagnostic testing, the proportion of infections that were
reported, and the force of infection. Finally, we showed how estimates of sensitivity and specificity
of vaccination status can be used to adjust vaccination coverage estimates to account for vaccination
status misclassification.

Methods

Data

We used a database of yellow fever surveillance records from Africa collated by the World Health
Organization. This database consists of suspected cases of yellow fever (based primarily on a case
definition of fever and jaundice [22]), of which there were approximately 15,000 in the database from
20 African countries between 2005 and 2011. Suspected cases who tested positive for yellow fever
virus immunoglobulin M were classified as confirmed cases of yellow fever. Each individual’s age and
reported history of vaccination against yellow fever were also recorded. We used spatial information
about each case at the first administrative level (adm1). Use of this database for this analysis was
deemed not human subjects research by the University of Notre Dame Institutional Review Board
(Protocol 22-04-7193). For our main analysis, we used yellow fever vaccination coverage estimates by
age and year [23]. These estimates span 1950 to 2050 and provide information on vaccination coverage
at the adm1 level.

Model

Each suspected case of yellow fever in the database was classified according to two observed states: C
(1 = test-positive, 0 = test-negative) and R (1 = reported vaccinated, 0 = reported non-vaccinated).
Our model also considered two latent states for each suspected case: I (1 = truly infected, 0 = truly
not infected) and T (1 = truly vaccinated, 0 = truly not vaccinated). These states are related in our
model according to causal dependencies that describe how the data were generated (Fig. 1).

First, T → R is determined by the sensitivity and specificity of reported vaccination status in each
country k, which we represent with Sevac,k and Spvac,k, respectively. Specifically,

Pr(R = 1|T = 1) = Sevac,k (1)

Pr(R = 0|T = 1) = 1− Sevac,k (2)

Pr(R = 0|T = 0) = Spvac,k (3)

Pr(R = 1|T = 0) = 1− Spvac,k (4)

describe the relationships among all combinations of T and R. We enforced a constraint on Sevac,k
and Spvac,k to ensure that Sevac,k+Spvac,k > 1, because the alternative would imply that vaccination
status is, on average, misclassified more often than not. To implement this constraint, we modeled
1 − Sevac,k, 1 − Spvac,k, and Sevac,k + Spvac,k − 1 as random effects across countries k following a
Dirichlet distribution. In other words, we assumed that the country-specific values of these parameters
follow a global Dirichlet distribution with concentration parameters αvac,1, αvac,2, and αvac,3.
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Figure 1: Vaccination status misclassification model. The diagram shows the causal relation-
ships among four states for each individual in the database: R, reported vaccination status; T , true
vaccination status; I, true infection status; and C, reported disease status. The core of the model’s
likelihood, Ldata, depends on probabilities of each of these three causal relationships. Pr(R|T ) depends
on parameters describing the sensitivity (Sevac) and specificity (Spvac) of vaccination classification,
Pr(I|T ) depends on the force of infection (λ) and reporting probability (ρ), and Pr(C|I) depends on
parameters describing the sensitivity (Setest) and specificity (Sptest) of case confirmation.

Second, T → I is determined by the probability of contracting yellow fever given one’s true vacci-
nation status, which we represent with Pr(I|T ). We start with the case where T = 0 and I = 1, the
probability of which is

Pr(I = 1|T = 0) = e−(a−1)λk(1− e−λk)ρk, (5)

where a is age at the time that an individual is recorded as a suspected case, λk is the force of infection
of yellow fever virus in the individual’s country k, and ρk is the probability that an infection is reported
in country k. The term e−(a−1)λk represents the probability that an individual avoids infection before
age a, whereas 1− e−λk represents the probability that the individual becomes infected at age a. This
formulation is widely known within epidemiology as a “catalytic” model [24] and has been used in
prior models of yellow fever disease burden [22, 25, 26]. Eqn. (5) implies that

Pr(I = 0|T = 0) = 1− Pr(I = 1|T = 0), (6)

which encompasses all the ways in which an individual would not become a suspected case with an
etiology of yellow fever virus at age a. Individuals who are truly vaccinated become suspected cases
with an etiology of yellow fever virus with probability

Pr(I = 1|T = 1) = (1− V E) Pr(I = 1|T = 0), (7)

where V E is vaccine efficacy. Similar to eqn. (6),

Pr(I = 0|T = 1) = 1− Pr(I = 1|T = 1) (8)

is the probability that a truly vaccinated person does not become a suspected case with an etiology of
yellow fever virus at age a.

Third, I → C is determined by the sensitivity and specificity of laboratory testing in each country
k, which we represent with Setest,k and Sptest,k, respectively. Like eqns. (1)-(4),
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Pr(C = 1|I = 1) = Setest,k (9)

Pr(C = 0|I = 1) = 1− Setest,k (10)

Pr(C = 0|I = 0) = Sptest,k (11)

Pr(C = 1|I = 0) = 1− Sptest,k (12)

describe the probabilities that confirmed cases result from suspected cases with differing true infection
statuses in country k. We note that individuals with a status of I = 1 represent reported infections
only, given that the reporting probability ρk filters out infections that went unreported in country k.
We treat Setest,k and Sptest,k as fixed effects.

Based on these three causal dependencies, we can define the joint distribution of all four states
(c, i, r, t) for each individual to be

Pr(C = c, I = i, R = r, T = t) = Pr(R = r|T = t)Pr(I = i|T = t)Pr(C = c|I = i)Pr(T = t). (13)

All of the terms on the right-hand side of eqn. (13) have already been defined except for Pr(T = t),
which pertains to the latent state of true vaccination status. To define this, we begin by specifying
the relationship between Pr(T = 1) and Pr(R = 1), which is

Pr(R = 1) = Pr(R = 1|T = 1)Pr(T = 1) + Pr(R = 1|T = 0)Pr(T = 0). (14)

Solving for Pr(T = 1), we obtain

Pr(T = 1) =
Pr(R = 1)− Pr(R = 1|T = 0)

Pr(R = 1|T = 1)− Pr(R = 1|T = 0)
. (15)

As Pr(R = 1|T = 1) and Pr(R = 1|T = 0) have already been defined, that leaves only Pr(R = 1) to be
defined. For this quantity, we used vaccination coverage estimates appropriate to each suspected case’s
home adm1, year, and age. Finally, to obtain a probability of the observed states only, we marginalize
over states T and I in eqn. (13) to obtain

Pr(C = c,R = r) =
∑
t=0,1

∑
i=0,1

Pr(R = r|T = t)Pr(I = i|T = t)Pr(C = c|I = i)Pr(T = t), (16)

which is the joint probability of the observed states (c, r) for each individual.
The likelihood of the model and its parameters consists of two parts. First, the contribution to

the likelihood from data on the confirmed case (cj) and reported vaccination (rj) status across all
individuals j is

Ldata,k(Sevac,k, Spvac,k, Setest,k, Sptest,k, λk, ρk, V E|{cj}, {rj}) =
∏
j

Pr(C = cj , R = rj) (17)

for country k. The variables {cj} and {rj} refer to the status of c and r across the set of individuals j
within country k. The data in this analysis ultimately consist of counts of the number of individuals
within each country with each possible combination of values of c (0 or 1) and r (0 or 1), because
that determines how many times each Pr(C = c,R = r) from the four possible combinations of c and
r is multiplied in the likelihood in eqn. (17). Our analysis constitutes a test-negative design in the
sense that it utilizes information on the proportions of individuals with a given vaccination status (r) in
groups distinguished by their case confirmation status (c). Differences in the proportions between these
groups provide information about the parameters, with Sevac and Spvac being of primary interest.

Second, the contribution to the likelihood from the distribution of country-specific sensitivities and
specificities of reported vaccination status is

Lvac(α⃗vac|{Sevac,k}, {Spvac,k}) =
∏
k

Dirichlet ({1− Sevac,k, 1− Spvac,k, Sevac,k + Spvac,k − 1}|α⃗vac) ,

(18)
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where α⃗vac contains three concentration parameters, αvac,1, αvac,2, and αvac,3. This component of
the likelihood allows for a balance to be achieved between the freedom of the Sevac,k and Spvac,k
parameters to vary among countries and the constraint that similar combinations of those parameters
may apply to multiple countries. Mathematically, this balance is achieved by allowing the country-
specific parameter values to follow a common distribution. The choice of a Dirichlet distribution was
motivated by a desire to model the Sevac,k and Spvac,k parameters jointly and to ensure that they
were restricted to values between 0 and 1. The third implied parameter of this Dirichlet distribution,
Se+ Sp− 1, allowed us to specify a prior for the overall accuracy of case confirmation.

Together, these component likelihoods lead to

Loverall({Sevac,k}, {Spvac,k}, {Setest,k}, {Sptest,k}, {λk}, {ρk}, V E, α⃗vac) =
∏
k

Ldata,k Lvac (19)

as the overall likelihood of the model and its parameters. Notation such as {Sevac,k} refers to the
collection of Sevac,k parameters across the set of countries k, and similar for other parameters specified
for each country. In contrast to Sevac,k and Spvac,k, the country-specific parameters Setest,k, Sptest,k,
λk, and ρk were not modeled as belonging to common distributions and were allowed to vary freely
among countries. Posterior estimates of these parameters were found to closely follow their prior
distributions, suggesting that modeling them as belonging to a common distribution would have had
only a negligible impact on our results.

Priors

We specified informative priors for each parameter to the extent possible based on independently
available information. For λk, we used posterior estimates of force of infection at the country level
from a previous study [26]. Because that study produced separate posterior estimates under eight
alternative scenarios, we fitted a normal distribution on the log10 scale to posterior samples of force of
infection for each country pooled across the eight scenarios. For ρk, we used posterior estimates from
the same study [26] to inform our priors, albeit with the same prior for each country k since that study
only obtained a single estimate of reporting probability. In this case, we fitted a normal distribution
to logit-transformed values of reporting proportion estimates pooled across the eight scenarios. For
V E, we used a posterior estimate from a previous study [27] to inform a beta-distributed prior, the
parameters of which were obtained by matching to the previous study’s median estimate of 0.975 and
95% credible interval of 0.83 - 1.0. For Sevac and Spvac, we restricted the intensity parameters αvac

to be larger than 1 to ensure a unimodal shape to the inferred distribution of Sevac and Spvac across
countries. Specifically, the priors of these parameters were all exponential(1) + 1. For Setest,k and
Sptest,k, we selected values of Dirichlet intensity parameters that resulted in a median of 0.95 and
95% intervals of the marginals of Setest,k and Sptest,k equal to 0.8 - 1.0 and 0.6 - 1.0, respectively
[28, 29, 30]. This was obtained with Dirichlet intensity parameters of 0.145, 0.569, and 5.359 for
1− Setest,k, 1− Sptest,k, and Setest,k + Sptest,k − 1.

Hamiltonian Monte Carlo

We used the likelihood from eqn. (19) and the priors described above as the basis for obtaining Bayesian
estimates of the model’s parameters using Hamiltonian Monte Carlo implemented through the rstan
package [31] in R 4.2.1 [32]. We ran the models with 105 iterations and a burn-in period of 5 × 104

iterations. Convergence was assessed using R̂ estimates from the rstan package [31] and trace plots for
all parameters. We specified the threshold for convergence to be R̂ < 1.05.

Model comparison

To account for uncertainty in some of the choices we made in the design of our model, we compared
our full model described above to 15 other models that represent simpler cases of it. Specifically, we
constructed alternative models that simplified the parameters that we allowed to vary geographically,
with the alternative models treating different combinations of geographically variable parameters as
constants. For example, instead of considering country-specific values of Sevac,k and Spvac,k, we
considered an alternative with the same Sevac and Spvac applying to all countries. We did the same
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for Setest and Sptest, λ, and ρ. This resulted in a total of 16 different models that explored all
combinations of the ways in which geographic variability could be toggled on or off across these four
sets of parameters. We compared these 16 models on the basis of the Watanabe-Akaike information
criterion (WAIC). We were also interested in assessing how parameter estimates differed across models.

Results

Model comparison

We fitted all 16 models to the data and determined that all models converged, as evidenced by R̂ < 1.05
and visual inspection of trace plots. We found that the default model, which is the most complex model
with four sets of geographically variable parameters, performed among the best on the basis of WAIC
(Fig. 2). We observed minimal differences in WAIC among models that did or did not allow for
geographic variability in force of infection or reporting proportion. Notably, geographic variability in
Sevac and Spvac was the most important model feature for enabling a low WAIC. This was followed
by geographic variability in Setest and Sptest as the second most important model feature, but to a
lesser extent (Fig. 2).

Figure 2: ∆WAIC values of the 16 models. ∆WAIC is defined as the difference between the WAIC
value of a given model and that of the model with the lowest WAIC value. The default model (top
left) includes geographic variability in Sevac and Spvac (vac), Setest and Sptest (test), force of infection
(FOI), and reporting proportion (rep). In the columns and rows, geographic variability is indicated
by whether the parameters vary by country or do not vary and are thus global constants.

Estimation of Sevac and Spvac

The default model showed considerable variability in estimates of the sensitivity and specificity of
vaccination status across countries, with median estimates of 0.69 (95% CrI: 0.21 - 0.98) and 0.70 (95%
CrI: 0.21 - 0.98), respectively. Across the 20 countries that we considered, country-specific estimates
ranged from medians of 0.15 (95% CrI: 0.09 - 0.23) to 0.98 (95% CrI: 0.90 - 1.0) for sensitivity, and
from medians of 0.06 (95% CrI: 0.04 - 0.09) to 0.96 (95% CrI: 0.94 - 0.98) for specificity (Fig. 3).
The Pearson correlation between Sevac,k and Spvac,k across countries had a median value of –0.85
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(95% CrI: –0.924 - –0.711), indicative of a trade-off between the sensitivity and specificity of differing
practices of vaccination status classification among countries. Notably, estimates of Sevac,k and Spvac,k
for several countries fell near the diagonal line, suggesting that classification of vaccination status was
only marginally better than chance.

We observed that the amount of uncertainty associated with estimates of country-specific values
of Sevac,k and Spvac,k was influenced by the number of data points from each country. Specifically,
countries with very few samples (i.e., ≤ 6) exhibited markedly higher levels of uncertainty in their
estimates (Fig. S1). To assess the robustness of our results to influences from particular countries,
we performed a sensitivity analysis in which we excluded the top one to five countries with the most
data points. The results of this analysis indicated that overall estimates of the distribution of Sevac
and Spvac across countries remained largely unchanged (Fig. S2), supporting the robustness of our
primary results.

Among the eight alternative models that allowed for geographic variability in Sevac,k and Spvac,k,
we found minimal differences in estimates of Sevac,k and Spvac,k (Fig. S3). The negative correlation
between Sevac,k and Spvac,k across countries that we observed for the default model was also apparent
for the other seven models (Table S1, Fig. S4). For models that lacked geographic variability in Sevac
and Spvac, estimates of Sevac and Spvac were all similar. For example, the simplest model (Fig. S3,
bottom right), yielded median estimates of Sevac and Spvac of 0.49 (95% CrI: 0.48 - 0.50) and 0.71
(95% CrI: 0.70 - 0.72), respectively.

To validate our inferences, we repeated our inference procedure with the default model on ten data
sets simulated with parameters set to the medians of their marginal posterior distributions. In doing
so, we observed broad consistency between the country-level estimates of Sevac,k and Spvac,k and their
simulated values (Fig. S5). In addition to alignment in the central tendencies of the posteriors obtained
from simulated and empirical data sets, the spans of their uncertainty intervals were also similar.

Estimation of other parameters

Unlike Sevac,k and Spvac,k, estimates of Setest,k and Sptest,k varied negligibly across countries in the
default model (Fig. S6). Specifically, the country-specific Setest,k estimates ranged from medians of
0.99 (95% CrI: 0.82 - 1.00) to 1.00 (95% CrI: 0.81 - 1.00), and Sptest,k estimates ranged from medians
of 0.96 (95% CrI: 0.66 - 1.00) to 1.00 (95% CrI: 0.99 - 1.00). We consistently observed a similar
pattern across all seven country-specific models, where the estimates for each country were similar
across different models (Fig. S7, eight left panels). For the simplest model (Fig. S7, bottom right),
which assumes no geographic variation in any parameter, the median estimates of Setest and Sptest
were 0.99 (95% CrI: 0.82 - 1.00) and 0.99 (95% CrI: 0.98 - 0.99), respectively. In general, we observed
that all estimates of Setest and Sptest overlapped significantly with their prior distributions, which
had medians of 0.98 (95% CrI: 0.77 - 1.00) and 0.97 (95% CrI: 0.58 - 1.00), respectively. Posterior
estimates of other parameters—i.e., ρk, λk, and V E—also closely resembled their prior distributions
(Figs. S8-S10).

Given that our model allows for multiple sources of error in observed data, there is potential for
some parameter combinations to not be identifiable. To assess the ability of the model to obtain
separate, uncorrelated estimates of the sensitivities and specificities of vaccination status and testing,
we first examined the correlations of their posterior samples within each of the 20 countries in our
analysis. Correlations between Sevac,k and Setest,k ranged from −0.10 to 0.09, as did correlations
between Spvac,k and Sptest,k. As a further test of the identifiability of these parameters, we generated
another ten simulated data sets, but with lower values of Setest,k and Sptest,k (0.70 for both) than
their median posterior estimates. Even under these lower values of Setest,k and Sptest,k, our inferences
of Sevac,k and Setest,k remained similar (Fig. S11).

We also explored the extent to which misestimation of other parameters—namely, the force of
infection, λk—could bias estimates of Sevac,k and Spvac,k. To test this, we simulated ten data sets
with values of λk varying randomly from 10−5 to 10−1 by factors of 10 across the 20 countries in our
analysis. When we applied our inference method to those data, we found that estimates of Sevac,k
and Spvac,k were similar to those from our primary analysis (Fig. S11). Moreover, estimates of λk also
resembled those from the primary analysis (Fig. S12). In both sets of analyses, posterior estimates of
λk were driven strongly by their priors.
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Vaccination coverage adjusted for misclassification

By using the default model estimates of Sevac,k and Spvac,k, we were also able to adjust for bias
in estimates of vaccination coverage. We did this by calculating adjusted vaccination coverage using
eqn. (15), where reported vaccination coverage comes from population-weighted vaccination coverage
estimates from POLICI between 1980 and 2023 (see Fig. 4).

Our findings revealed that adjusted vaccination coverage could either increase or decrease relative
to reported coverage, depending on country-specific estimates of Sevac,k and Spvac,k (Fig. 4). Specif-
ically, our analysis revealed that in ten countries, the 2.5% quantile of adjusted vaccination coverage
exceeded reported coverage, implying underestimation of reported vaccination coverage. These coun-
tries exhibited a pattern of low Sevac,k and high Spvac,k. In five countries, the 97.5% quantile of
adjusted vaccination coverage was lower than reported coverage, implying overestimation of reported
vaccination coverage. These countries exhibited a pattern of high Sevac,k but low Spvac,k. In some
countries, we noted that bias of reported vaccination coverage may be negligible, such as when reported
coverage is very low. Uncertainty around adjusted vaccination coverage was driven by the degree of
uncertainty about Sevac,k and Spvac,k, which was in turn influenced by the number of data points
from each country (Fig. 4).
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Figure 3: Estimates of Sevac and Spvac from the default model. The points with their lines
represent the median estimates and the 95% CrI of country-specific estimates Sevac,k and Spvac,k. The
shades indicate the density of Sevac and Spvac at a global level, where lighter shades indicate higher
densities.
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Figure 4: Reported versus adjusted vaccination coverage. Reported vaccination coverages from
POLICI are shown with an “X”. The horizontal points and lines indicate the medians and 95% posterior
predictive intervals of adjusted vaccination coverage, colored by the direction of bias (underestimate,
overestimate, or no significant difference). The size of each point corresponds to the number of data
points from each country. The countries are arranged from bottom to top based on their reported
vaccination coverage. The sensitivity and specificity of vaccination status for each country is shown
on the left.
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Discussion

Our study aimed to quantify the degree of misclassification associated with yellow fever vaccination
status using a test-negative case-control study design with surveillance data on yellow fever in Africa.
We found that vaccination status misclassification appears to be prevalent, with country-level esti-
mates of sensitivity and specificity of vaccination status being highly negatively correlated and with
the average of sensitivity and specificity generally not exceeding 0.70. By quantifying these inaccura-
cies, we were able to obtain adjusted estimates of vaccination coverage that account for vaccination
status misclassification. Our estimates of adjusted vaccination coverage indicated that reported vacci-
nation coverage may be an underestimate in ten out of twenty countries, an overestimate in five, and
approximately correct in five.

We observed considerable variability in our estimates of the sensitivity and specificity of vaccina-
tion status across the 20 countries that we considered, which could be attributable to differences in
vaccination recording systems across those countries. To remedy the unique issues with each country’s
vaccination recording system and improve the quality of vaccination coverage data, the WHO has
developed guidelines to help identify weaknesses in vaccination recording systems and improve them
[33, 34, 35]. Whatever the specific causes of this country-level variation are, this variation is unlikely
to be explainable based on any readily available or predictable factors. As a result, it would be difficult
to extrapolate our estimates to countries not included in our analysis, and efforts should be made to
extend our analysis with additional data.

Analyses of simulated data suggest that inferences of the sensitivity and specificity of vaccination
status are valid but that inferences of other parameters closely mirror prior assumptions. A primary
driver of this asymmetry in parameter identifiability is that our data—which ultimately come down to
the proportion vaccinated among test-negative versus test-positive individuals—are influenced more
by the sensitivity and specificity of vaccination status than other parameters. Given that the data
are limited to suspected cases who underwent confirmatory testing, they simply do not contain much
information about other parameters, such as the force of infection or reporting probability. Reassur-
ingly, the prior distributions for those parameters were well-informed by a previous study [26], for
which estimation of those parameters was of primary interest.

Using our estimates of the sensitivity and specificity of vaccination status, we quantified discrep-
ancies between reported and adjusted vaccination coverage. Estimates of vaccination coverage are
important for estimating the burden of yellow fever, because of their implications for the use of sero-
logical data to infer the force of infection [22]. Because seropositivity as a result of natural infection
or vaccination cannot be differentiated empirically, estimates of vaccination coverage are important
for determining how much of measured seropositivity is attributable to natural infection [26]. If vac-
cination coverage is higher than reported, then force of infection may be overestimated. Conversely, if
vaccination coverage is lower than reported, then force of infection may be underestimated. Such biases
in estimates of the force of infection are expected to lead to corresponding biases in estimates of dis-
ease burden, which could be consequential for prioritizing investments in different vaccine-preventable
diseases [2].

There are important limitations of our analysis to note, especially in relation to the state of currently
available data. Of the more than 15,000 suspected cases in the database that we analyzed, only 206 were
confirmed yellow fever cases. Within the same timeframe of 2008 to 2013 in the 20 countries included
in our database, a total of 3,590 confirmed cases were reported by another source [36], suggesting
that the data we analyzed may be very incomplete. In addition, there is substantial imbalance in the
sample sizes from different countries, which could affect our global estimates of the sensitivity and
specificity of vaccination status. At the same time, our sensitivity analysis suggested that omission of
data from countries with the most data resulted in minimal changes to our global estimates. There
was, nevertheless, high uncertainty in parameters for countries with low sample sizes. Moreover, the
database that we used includes only 20 of the more than 30 countries in Africa where there is a
risk of yellow fever. There are also limitations of the vaccination coverage estimates that we used to
inform Pr(R = 1). Reported vaccination coverage may vary at finer temporal and spatial scales than
the estimates available to us, meaning that the values of Pr(R = 1) that we used may be imperfect
approximations and could potentially lead to bias in our estimates of Sevac,k and Spvac,k.

In the future, the analytical framework we used could be applied to evaluate country-level vacci-
nation reporting systems for other diseases. The requirements for doing so would be the same type
of data on vaccination and infection statuses for suspected cases of whatever disease is of interest.
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Replication of our analysis for other diseases could shed light on the consistency (or not) of the sensi-
tivity and specificity of vaccination status across multiple diseases, leading to a unique approach for
comprehensive assessment of a given country’s vaccination recording system. Accurate understanding
of vaccination coverage is important for achieving public health goals for a variety of other infectious
diseases, such as measles [37] and polio [38].
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Figure S1: Relationship between the number of data points from each country (y-axis)
and uncertainty in the estimates of Sevac (left) and Spvac (right) for the default model.
Points and lines represent the posterior medians and 95% credible intervals of Sevac and Spvac for
each country.
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Figure S2: Estimates of Sevac and Spvac from the default model after excluding the top
five countries with the most data points. The dots and lines represent posterior medians and
95% credible intervals of country-specific estimates of Sevac,k and Spvac,k. The orange dots and lines
indicate the top five countries with the most data points. Lighter shading indicates higher probability
densities.
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Figure S3: Estimates of Sevac (y-axis) and Spvac (x-axis) from the 16 models (panels). In
the columns and rows, geographic variability is indicated by whether parameters vary by country or
do not vary and are thus global constants. The default model (top left) includes geographic variability
in Sevac and Spvac (vac), Setest and Sptest (test), force of infection (FOI), and reporting proportion
(rep). The dots and lines represent posterior medians and 95% credible-intervals of country-specific
estimates of Sevac,k and Spvac,k. Lighter shading indicates higher probability densities.
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Figure S4: Marginal posterior distributions of Sevac (blue) and Spvac (red) from the eight
models (panels) that accounted for geographic variability in those parameters. The dots
and lines represent medians and 95% credible intervals of country-specific estimates of Sevac,k and
Spvac,k. The country-specific estimates are sorted in ascending order based on Sevac,k. A noticeable
trend of negative correlation between Sevac,k and Spvac,k is observed for all models.
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Figure S5: Estimation of Sevac,k (x-axis) and Spvac,k (y-axis) for each of 20 countries (panels)
from ten data sets simulated with posterior median parameter values. The ten black dots
in each panel and their lines represent median estimates and 95% credible intervals obtained from
our analysis of the ten simulated data sets. The red dots and gray areas represent median posterior
estimates and their corresponding 95% credible intervals obtained from our analysis of empirical data.
The red dots were also the parameter values used to generate the ten simulated data sets.
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Figure S6: Estimates of Setest and Sptest from the default model. The points with their lines
represent the median estimates and the 95% CrI of country-specific estimates Setest,k and Sptest,k.
The red points and lines indicate the medians and 95% uncertainty intervals of the priors used.
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Figure S7: Estimates of Setest (y-axis) and Sptest (x-axis) from the 16 models (panels). In
the columns and rows, geographic variability is indicated by whether parameters vary by country or
do not vary and are thus global constants. The default model (top left) includes geographic variability
in Sevac and Spvac (vac), Setest and Sptest (test), force of infection (FOI), and reporting proportion
(rep). The dots and lines represent posterior median estimates and the 95% credible intervals of
country-specific estimates Setest,k and Sptest,k. The red points and lines indicate the medians and
95% uncertainty intervals of the priors.
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Figure S8: Estimates of force of infection, λk, (y-axis) from the 16 models (panels). Dots
and lines represent posterior medians and 95% credible intervals of λk for each country. Vertical red
lines represent the 95% intervals of the prior distributions, which were obtained from a previous study
[26]. The default model (top left) includes geographic variability in Sevac and Spvac (vac), Setest
and Sptest (test), force of infection (FOI), and reporting proportion (rep). In the columns and rows,
geographic variability is indicated by whether parameters vary by country or do not vary and are thus
global constants.
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Figure S9: Estimates of reporting proportion, ρk, from the 16 models (panels). Black dots
and lines represent posterior medians and 95% credible intervals of ρk for each country (or for the
global scale, depending on the model). Red lines represent the 95% interval and the horizontal black
lines represent the median of the prior distribution, which was obtained from a previous study [26].
The default model (top left) includes geographic variability in Sevac and Spvac (vac), Setest and Sptest
(test), force of infection (FOI), and reporting proportion (rep). In the columns and rows, geographic
variability is indicated by whether parameters vary by country or do not vary and are thus global
constants.
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Figure S10: Estimates of vaccine efficacy, V E, (y-axis) from all 16 models (x-axis). Black
dots and lines depict posterior medians and 95% credible intervals for V E. The horizontal red lines
represent the 95% interval of the prior distribution, and the black line represents the median of the
prior distribution.
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Figure S11: Estimates of Sevac,k (left) and Spvac,k (right) from simulated data with (y-axis)
or without (x-axis) changed values of λk for each of 20 countries (panels). In the unchanged
scenario, we simulated ten data sets with posterior median parameter values. In the changed scenario,
we simulated ten data sets with λk set to values of either 10−5, 10−4, 10−3, 10−2, or 10−1. The
ten black dots in each panel and their lines represent median estimates and 95% credible intervals
obtained from our analysis of the ten simulated data sets. The red dots and gray areas represent
median posterior estimates and their corresponding 95% credible intervals obtained from our analysis
of empirical data.
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Figure S12: Estimates of force of infection, λk, (y-axis) for each of 20 countries (x-axis) in
ten simulated data sets (panels). Black dots and vertical lines denote posterior median and 95%
credible intervals. Vertical red lines represent the 95% intervals of the prior distributions, sourced from
a previous study [26]. Triangles correspond to the values of λk used to generate the simulated data.
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Figure S13: Estimates of Sevac,k (left) and Spvac,k (right) from simulated data with (y-axis)
or without (x-axis) changed values of Setest,k and Spvac,k for each of 20 countries (panels).
In the unchanged scenario, we simulated ten data sets with posterior median parameter values. In
the changed scenario, we simulated ten data sets with Setest,k and Sptest,k set to 0.7. The ten black
dots in each panel and their lines represent median estimates and 95% credible intervals obtained from
our analysis of the ten simulated data sets. The red dots and gray areas represent median posterior
estimates and their corresponding 95% credible intervals obtained from our analysis of empirical data.
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Table S1: Correlation between Sevac,k and Spvac,k across countries in eight models that
account for geographic variability in Sevac and Spvac.

Setest and Sptest FOI
Reporting
proportion

Correlation

country country country –0.852 (–0.924 - –0.711)
country country global –0.853 (–0.926 - –0.720)
country global country –0.854 (–0.925 - –0.726)
country global global –0.855 (–0.922 - –0.728)
global country country –0.855 (–0.925 - –0.709)
global country global –0.854 (–0.924 - –0.718)
global global country –0.856 (–0.925 - –0.727)
global global global –0.857 (–0.923 - –0.726)
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[23] Arran Hamlet, Kévin Jean, Sergio Yactayo, Justus Benzler, Laurence Cibrelus, Neil Ferguson, and
Tini Garske. POLICI: A web application for visualising and extracting yellow fever vaccination
coverage in Africa. Vaccine, 37(11):1384–1388, March 2019.

[24] Hugo Muench. Catalytic Models in Epidemiology. Harvard University Press, 1959. Google-Books-
ID: rXlHAAAAIAAJ.

[25] Katy AM Gaythorpe, Kaja Abbas, John Huber, Andromachi Karachaliou, Niket Thakkar, Kim
Woodruff, Xiang Li, Susy Echeverria-Londono, VIMC Working Group on COVID-19 Impact on
Vaccine Preventable Disease, Matthew Ferrari, Michael L Jackson, Kevin McCarthy, T Alex
Perkins, Caroline Trotter, and Mark Jit. Impact of COVID-19-related disruptions to measles,
meningococcal A, and yellow fever vaccination in 10 countries. eLife, 10:e67023, June 2021.
Publisher: eLife Sciences Publications, Ltd.

[26] T. Alex Perkins, John H. Huber, Quan M. Tran, Rachel J. Oidtman, Magdalene K. Walters,
Amir S. Siraj, and Sean M. Moore. Burden is in the eye of the beholder: Sensitivity of yellow fever
disease burden estimates to modeling assumptions. Science Advances, 7(42):eabg5033, October
2021. Publisher: American Association for the Advancement of Science.
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