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Abstract—Regular monitoring of respiratory quality of life
(RQoL) is essential in respiratory healthcare, facilitating prompt
diagnosis and tailored treatment for chronic respiratory diseases.
Voice alterations resulting from respiratory conditions create
unique audio signatures that can potentially be utilized for disease
screening or monitoring. Analyzing data from 1908 participants
from the Colive Voice study, which collects standardized voice
recordings alongside comprehensive demographic, epidemiolog-
ical, and patient-reported outcome data, we evaluated various
strategies to estimate RQoL from voice, including handcrafted
acoustic features, standard acoustic feature sets, and advanced
deep audio embeddings derived from pretrained convolutional
neural networks. We compared models using clinical features
alone, voice features alone, and a combination of both. The multi-
modal model combining clinical and voice features demonstrated
the best performance, achieving an accuracy of 70.34% and an
area under the receiver operating characteristic curve (AUROC)
of 0.77; an improvement of 5% in terms of accuracy and 7%
in terms of AUROC compared to model utilizing voice features
alone. Incorporating vocal biomarkers significantly enhanced the
predictive capacity of clinical variables across all acoustic feature
types, with a net classification improvement (NRI) of up to
0.19. Our digital voice-based biomarker is capable of accurately
predicting RQoL, either as an alternative to or in conjunction
with clinical measures, and could be used to facilitate rapid
screening and remote monitoring of respiratory health status.

Index Terms—voice biomarker, respiratory quality of life,
audio processing, deep learning.

I. INTRODUCTION

MONITORING chronic respiratory diseases or other
conditions that affect breathing is a foundation of

respiratory healthcare. Telemonitoring solutions can help in
reducing the workload of clinicians, decrease hospital ad-
missions and shorten clinician response time, thus enabling
more timely intervention. Remote monitoring is of utmost
importance for identifying clinically relevant deterioration in
the Respiratory Quality of Life (RQoL) and may be used as
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a prognostic tool for chronic respiratory conditions, such as
Chronic Obstructive Pulmonary Disease (COPD) or asthma.
A recent study proves that a decrease in RQoL by 4 points
over a period of one year, measured by the St George’s
Respiratory Questionnaire (SGRQ) [1], was associated with
increased hospitalization and mortality. Besides SGRQ, other
questionnaires have been also developed for estimating RQoL,
including Chronic Respiratory Disease Questionnaire (CRDQ)
[2], Breathing Problems Questionnaire (BPQ) [3], and VQ11
[4], just to name a few. Although questionnaires are considered
essential in epidemiological studies, they are subjective, prone
to biases and time-consuming; therefore, investigating alter-
native methods, such as analyzing voice characteristics, may
provide valuable, scalable, easy-to-use solutions into assessing
RQoL, requiring no invasive or cumbersome equipment, only
a smartphone to record the voice.

The voice is a result of the airstream initiated in the
lungs and respiratory airways, and passed through the larynx,
causing the vibration of vocal folds, and furthermore through
the oral and nasal cavity, where the sound is shaped and
articulated. Respiratory diseases can alter the voice production
process, resulting in distinctive changes in voice. Previous
studies have shown that inspiratory closure of vocal folds,
which causes refractory breathlessness, occurs frequently in
COPD [5]. Changes in breathing and voice are highly cor-
related with altered lung function in patients with COPD
[6], most likely affected by respiratory and muscle damage
[7]. Acoustic features extracted from the speech are clearly
distinctive during COPD exacerbation and stable periods [8],
and are even distinguishable up to 7 days before the onset
of symptoms [6]. Therefore, they could be used as an early
warning system for COPD exacerbation.

Decreased voice-related quality of life, persistent cough and
laryngeal dysfunction are also associated with up to 88% of
patients with severe asthma [9]. Abnormal movements of vocal
folds are caused by muscle tension in the vocal folds and
larynx [9]. Vocal signatures extracted from voice recordings
can be used to identify asthma worsening as a substitute to
measures of lung function [10].

There are multiple advantages of monitoring respiratory dis-
eases using voice recordings. The technology is non-invasive,
cost-efficient and practical, requiring only smartphones to
capture the voice; thus, could be used from patients’ homes for
real-life remote monitoring in-between clinical visits or as a
screening tool. Vocal biomarkers extracted from smartphone
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voice recordings were already used to identify pulmonary
hypertension [11], and to monitor the recovery process of
patients with influenza [12]. A number of studies for screening
of COVID-19 from voice and cough smartphone recordings
has recently appeared, either for the detection of COVID-19
[13], [14], [15], [16], [17], or for discriminating between the
symptomatic and asymptomatic cases [18].

Contrary to the previous research works which were mostly
focused on the identification and/or monitoring of respiratory
diseases from voice, in this paper we investigated whether
RQoL can be assessed from voice features. Instead of targeting
a single respiratory disease, we analyze RQoL in a general
population containing participants with multiple respiratory
conditions (e.g. asthma, COPD) as well as participants with no
history of respiratory diseases, by stratifying them according
to VQ11 scores, and comparing voice signatures extracted
from sustained vowel phonation recordings. As an objective
measure, vocal biomarkers can increase the reliability of
screening based only on subjective self-reports. To support this
hypothesis, we used data from the international, multilingual
Colive Voice initiative to show that voice can be utilized
as a universal biomarker for monitoring chronic respiratory
conditions, either alone, or in addition to clinical parame-
ters extracted from self-administered questionnaires. To our
knowledge, this is the first study that proposes a multimodal
approach combining voice features with clinical data.

II. MATERIAL AND METHODS

A. Study design

Colive Voice1 is an international digital health study estab-
lished and led by the Luxembourg Institute of Health which
aims at identifying vocal biomarkers for remote monitoring
and screening of various chronic diseases and frequent health
symptoms. The multilingual audio databank is collected in four
languages (English, French, German and Spanish) and con-
tains recordings of multiple vocal tasks, including sustained
vowel phonation, coughing, breathing, reading and counting.
Voice recordings are associated with annotated clinical and de-
mographic data, providing an in-depth patient characterization
with validated disease-specific questionnaires on symptoms,
treatments and quality of life. Colive Voice has been hosted
online since June 2021 and is open for participation to anyone,
under the condition that: 1) they sign the consent form and 2)
they are at least 15 years old.

The study has been approved by the National Research
Ethics Committee in Luxembourg (N◦ 202103/01) in March
2021. Informed written consent was obtained electronically
via the Colive Voice application from all participants in the
study. The Colive Voice study protocol is also registered on
ClinicalTrials.gov (NCT04848623).

Part of the study is dedicated to investigation of RQoL in
the general population from voice recordings, accompanied
with annotations of RQoL via self-administered VQ11 ques-
tionnaire, as well as clinical and demographic data.

Unlike SGRQ and BPQ, which are extensive (76 items in
SGRQ and 33 items in BPQ) with complex scoring, making

1https://www.colivevoice.org)

them unsuitable for repeated evaluations in clinical practice as
well as a regular use in real life, VQ11 is a brief questionnaire
with only 11 items distributed across functional omponents (3
items), psychological components (4 items) and social compo-
nents (4 items). Although much simpler and faster to record,
VQ11 shows high correlation with SGRQ [4]. Each item in
VQ11 is represented by five categories (not at all, a little,
moderately, much, extremely) which reflect the participant’s
feeling about the statement associated with a particular item,
and can be represented by a value from 1 to 5. The total
score is obtained by summing all individual items, leading to
a score between 11 and 55 with lower value indicating better
RQoL [4]. We stratify the participants in the study into two
categories using the cut-off VQ11 score of 22: 1) Impaired
RQoL (V Q11 ≥ 22), and 2) Normal RQoL (V Q11 < 22)
[19], [20].

Since the number of participants with impaired RQoL was
significantly lower than the normal RQoL, we generate a
balanced dataset matched by age and gender composed of
1908 sustained vowel recordings in total, equally distributed
between two groups.

A full workflow of RQoL monitoring from data acquisition
to the prediction of RQoL is shown in Figure 1.

B. Data acquisition and preprocessing

Participants were recruited via an online crowdsourced cam-
paign or through partnerships with various patient associations,
academic institutions, hospitals, or other research initiatives
(including Les Sentinelles and the ComPaRe study, AP-HP).
The full list of partners is available on the Colive Voice web-
site. Participants were invited to use an app2 accessible from
participants’ devices equipped with microphones (smartphone,
tablet or laptop). Collected information is composed of socio-
demographic and clinical data acquired via participants’ self-
reported questionnaires and voice recordings.

Socio-demographic data contains information about body
mass index (BMI) and smoking habits, while clinical data
contains information about day and night coughing, chest pain,
sore throat, as well as associated diseases such as asthma
and COPD. Categorical variables were encoded as one-hot
representations, leading to 23 features in total.

Voice recordings are acquired in the form of sustained vowel
phonation (/a/ vowel) produced at a comfortable pitch and
loudness as long as possible. Vowel phonation is selected since
it provides valuable information about the pulmonary function,
and in addition, it is less susceptible to language bias, which
may be present in the multi-lingual data collection. Reduced
pulmonary function leads to decreased airflow necessary to
support phonation [21], which in turn reflects in reduced
RQoL.

Participants were advised to make voice recordings in a
quiet environment without the external noise in order to
preserve high-quality recordings. However, given that data is
collected in uncontrolled conditions and to account for the
challenges related to the use of different devices, microphones,

2https://app.colivevoice.org/
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Fig. 1: Workflow of RQoL monitoring

TABLE I: Study population characteristics

Total Normal RQoL (V Q11 < 22) Impaired RQoL (V Q11 ≥ 22) p value

Participants 1908 954 (50%) 954 (50%) NA

Mean VQ11 score 21.6 (8.2) 15 (3) 28.3 (6.1) < 0.0001

Gender
F M O F M O F M O

11280 608 20 640 304 10 640 304 10
(67.1%) (31.9%) (1%) (67.1%) (31.9%) (1%) (67.1%) (31.9%) (1%)

Age 42.4 (14.2) 42.4 (14.1) 42.5 (14.2) 0.948

BMI [kg/m2]

Underweight 66 (3.5%) 35 (3.7%) 31 (3.2%)

< 0.0001
Normal weight 792 (41.5%) 490 (51.3%) 302 (31.7%)
Overweight 466 (24.4%) 224 (23.5%) 242 (25.4%)
Obesity 601 (30.6%) 205 (21.5%) 379 (39.7%)

Smoking status
Not at all 1533 (80.4%) 806 (84.5%) 727 (76.2%)

< 0.0001Less than daily 98 (5.1%) 50 (5.2%) 48 (5%)
Daily 277 (14.5%) 98 (10.3%) 179 (18.8%)

Day coughing
No 1181 (61.9%) 704 (73.8%) 477 (50%)

< 0.0001Transient 597 (31.3%) 235 (24.6%) 362 (38%)
Frequent 130 (6.8%) 15 (1.6%) 115 (12%)

Night coughing
No 1414 (74.1%) 802 (84%) 612 (64.2%)

< 0.0001Transient 396 (20.8%) 137 (14.4%) 259 (27.1%)
Frequent 98 (5.1%) 15 (1.6%) 83 (8.7%)

Chestpain Yes 191 (10%) 43 (4.5%) 148 (15.5%) < 0.0001

Sore throat Yes 190 (10%) 71 (7.4%) 119 (12.5%) 0.0002

Asthma Yes 306 (16%) 118 (12.4%) 188 (19.7%) < 0.0001

COPD Yes 73 (3.8%) 18 (1.9%) 55 (5.8%) < 0.0001

F - Female; M - Male; O - Other; NA - Not Applicable; BMI - Body Mass Index; COPD - Chronic Obstructive Pulmonary Disease; p < 0.05 is considered
statistically significant.

and recording conditions for data collection, audio preprocess-
ing using a proprietary pipeline was performed to harmonize
the recordings and prepare them for the subsequent steps.

C. Statistical analysis

We utilized an independent two-tailed t-test to compare
the means of groups with normal and impaired RQoL for
continuous variables. For categorical variables, a chi-square
test was used. A p-value less than 0.05 indicates a statistically
significant difference. Only variables that were statistically sig-
nificant were used as socio-demographic and clinical features
in further processing. Table I provides a summary of the study
population characteristics.

D. Feature extraction and fusion

We first extracted a set of 72 handcrafted audio features,
that contain time domain, spectral, cepstral, prosodic, and
nonlinear dynamics features (Table II). Audio features were
extracted using Surfboard [22], a Python library for feature
extraction with application to the medical domain, as well as
Parselmouth [23], a Python interface to Praat. We selected
the audio features that are shown to be relevant for vocal
biomarker research across multiple diseases.

In addition to this, we used standard audio feature sets,
i.e. extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [24] and ComParE, extracted using the openS-
MILE [25]. The eGeMAPS is a minimalistic set of acoustic
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TABLE II: Handcrafted audio features

ID Feature Domain Computation parameters

1-26 MFCC Cepstral Mean and standard deviation of 13 MFCCs
27 RMS power Time None
28 Zero crossing rate Time None
29 Crest factor Time None
30 Dominant frequency Spectral None
31 Spectral centroid Spectral None
32 Spectral rolloff Spectral None
33 Spectral spread Spectral None
34 Spectral skewness Spectral None
35 Spectral kurtosis Spectral None
36 Spectral bandwidth Spectral None
37 Spectral flatness Spectral None
38 Spectral standard deviation Spectral None
39 Spectral slope Spectral None
40 Spectral decrease Spectral None
41 Maximum phonation time Time None
42-44 Aperiodicity features Time Fraction of locally unvoiced frames, Number of voice breaks, Degree of voice breaks
45-54 Tremor Time Frequency contour magnitude, amplitude contour magnitude, frequency tremor cyclicality,

amplitude tremor cyclicality, frequency tremor frequency, amplitude tremor frequency, frequency
tremor intensity index, amplitude tremor intensity index, frequency tremor power index,
amplitude tremor power index

55-59 Jitter Time Local, local absolute, RAP, ppq5, ddp
60-65 Shimmer Time Local, local [dB], apq3, apq5, apq11, dda
66 Detrended fluctuation analysis Nonlinear

dynamics
None

67 Shannon entropy Nonlinear
dynamics

None

68 Harmonics to noise ratio Time None
69-70 Fundamental frequency (F0) Prosodic Mean, standard deviation
71-72 F0 contour Prosodic Mean, standard deviation

MFCC - Mel-frequency cepstral coefficients; RMS - Root mean square; RAP - Relative average perturbation; ppq - Period perturbation quotient; ddp -
Difference of differences of periods; apq - Amplitude perturbation quotient; dda - Difference of differences of amplitudes.

TABLE III: Characteristics of the deep audio embeddings

Audio embedding Learning method Dataset Input Embedding size

VGGish Supervised Audio Set 64 band log-mel spectrograms 128
YAMNet Supervised Audio Set 64 band log-mel spectrograms 1024
OpenL3 Self-supervised Music/environmental subset of the Audio Set 128/256 band log-mel spectrograms 512/6144
BYOL-A Self-supervised Audio Set 64 band log-mel spectrograms 512/1024/2048

parameters for paralinguistic or clinical speech analysis which
is composed of 88 energy/amplitude, frequency, spectral and
temporal features, as well as statistical functionals applied to
them (arithmetic mean, standard deviation, percentile). Com-
ParE is a brute force audio feature set that contains 65 low-
level acoustic descriptors and various statistical functionals
applied to them, leading to a total of 6737 audio features.

Finally, we experiment with 4 different types of deep audio
embeddings, i.e. VGGish [26], YAMNet, OpenL3 [27], and
BYOL-A [28], which are state-of-the-art general audio fea-
tures pretrained on large audio collections that are successfully
used for a number of downstream tasks. Characteristics of
different audio embeddings are provided in Table III.

VGGish is a pretrained convolutional neural network (CNN)
mostly inspired by the VGG network used in computer vision.
The network is adapted to accept 96x64 bin log-mel spectro-
grams at its input and extracts 128-dimensional embeddings
from 960 ms segments of an audio signal. YAMNet employs
the Mobilenet v1 depthwise separable convolution architecture
used with the same input as VGGish, but outputs 1024-
dimensional embeddings for each 960 ms audio segment. Both

VGGish and YAMNet are pretrained on the large-scale Audio
Set dataset for audio event classification which contains more
than 2 million of 10 s YouTube clips of sounds classified
into 632 audio events. To summarize features across different
audio segments and output the equal size feature vectors from
recordings of different lengths average pooling was used.

OpenL3 uses CNN-based L3-Net for self-supervised learn-
ing via audio-visual correspondence, to learn whether a par-
ticular video frame corresponds to an audio frame; thus,
requiring no annotations. The model is pretrained on two
subsets of Audio Set, i.e. music and environmental subset,
containing 296K and 195K clips respectively, and uses either
128 or 256 band Mel-spectrograms at the input, while the
output audio embedding is 512 or 6144-dimensional vector
for each 1s audio segment. We use a model pretrained on an
environmental subset, with 256 band Mel-spectrograms and
6144-dimensional embeddings.

BYOL-A uses the Bootstrap Your Own Latent (BYOL)
method for self-supervised learning of general-purpose im-
age representations, adapted to work with audio. Normalized
96x64 bin log-mel spectrograms are used as an input, and two
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augmented versions of the input are created by shifting pitch
and stretching time, which are further fed into two parallel
networks (online and target network). The online network pre-
dicts the output representation of the target network, which is
then iteratively updated as the exponential moving average of
the parameters of the online network. The model is pretrained
on the Audio Set dataset and produces 512, 1024 or 2048-
dimensional general-purpose audio embeddings. We use 2048-
dimensional embeddings.

In addition to voice features, we extracted the demo-
graphic/clinical data relevant for RQoL from the subjective
self-reports. We used socio-demographic variables that were
found statistically significant (BMI, smoking habits), symp-
toms (day and night coughing, chest pain, sore throat), and
associated diseases that can affect RQoL (asthma, COPD),
as shown in Table I. All categorical variables were encoded
as one-hot representations, except for ensemble-based models
(Random Forest, Extreme Gradient Boosting), where single
feature representation was kept. One-hot encodings produce
sparse feature vectors, which are not suitable for tree-based
models, since splitting on such features produces a small gain,
and is typically ignored in favor of continuous variables. Fea-
tures were standardized before feeding them to classification
models to put them on the same scale, i.e. all features have
zero mean and unit standard deviation.

Given that the size of the audio feature vectors is substan-
tially larger than the size of socio-demographic/clinical fea-
tures (up to 250 times larger for ComParE features), Principal
Component Analysis (PCA) was applied to audio embeddings
prior to data fusion, to reduce their dimensionality to the first
23 principal components that explain most of the variance,
and to put the features from different modalities to equal
dimension.

E. RQoL prediction

Features extracted in the previous section were fed into
several classifiers: Logistic Regression (LR), Support Vector
Machines (SVM), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and Multilayer Perceptron (MLP).

LR with L2 regularization is used to handle overfitting,
as well as SVM with radial basis function kernel, where
the model hyperparameters, i.e. the regularization parameter
C and the kernel coefficient γ are optimized using a grid
search. Two ensemble models include RF and XGBoost. RF
was composed of 500 fully grown trees (optimal number of
trees was determined after hyperparameter tuning), expanded
until all leaves were pure or contained less than 2 samples,
with Gini index as the criterion for splitting the node, and the
number of features at each split equal to the square root of the
total number of features. All models are implemented using
the scikit-learn 1.1.3 Python library.

XGBoost is a flexible and distributed gradient boosting
algorithm, that allows for custom loss functions, as well
as regularization techniques to mitigate the overfitting. We
use XGBoost with 500 trees, L2 regularization and log loss
objective function. XGBoost is implemented using the xgboost
1.5.0 Python library.

MLP was composed of two hidden layers with 256 neurons
each and a ReLU activation function, followed by dropout
layers for preventing overfitting with a dropout rate equal to
0.3, and an output layer with a sigmoid activation function
is utilized in this paper. We used Adam optimizer, binary
cross entropy loss function, batch size equal to 32, while
the optimal learning rate (0.0001) and the number of epochs
(30) are determined via grid search. Note that Adam has an
adaptive per-parameter learning rate, which is computed using
the initial learning rate as an upper limit. MLP is implemented
using Tensorflow 2.9.1.

F. Evaluation

For evaluation of the model performance we use accuracy,
sensitivity, specificity, area under the receiver operating char-
acteristic curve (AUROC), Brier score and net reclassification
index (NRI).

Accuracy is the ratio of the number of correctly classified
observations and the total number of observations. Sensitivity
(true positive rate, recall) is the proportion of participants
detected with impaired RQoL (true positives) among those
who have impaired RQoL (true positives + false negatives),
and shows the model’s ability to correctly identify cases.
Specificity (true negative rate) is the proportion of participants
detected with normal RQoL (true negatives) among those who
have normal RQoL (true negatives + false positives), and refers
to the model’s ability to correctly identify healthy controls.
ROC curve plots sensitivity against false negative rate (1-
specificity) at different classification thresholds, while AUROC
is an aggregated performance measure which summarizes
ROC curve, with a value of 0.5 denoting random guess, and
1 denoting perfect classification.

To assess model calibration, i.e. the consistency between the
predicted probability and the observations, Brier score was
used, which is the mean squared deviation of the predicted
probability from the actual target. It is a value between 0 and
1, with a lower value indicating a better model.

Given the size of the dataset, to get the reliable and robust
performance estimates and preserve the class distribution
across folds, we used stratified 5-fold cross-validation [29].
Data is split into five folds, four merged and used for training,
and the remaining one for testing. The process is repeated 5
times, so that each fold was used exactly once for testing, and
the performance is then averaged over all folds.

Finally, since our aim was to quantify how much voice-
related information can improve the reliability of RQoL
screening on top of standard clinical features, we used NRI
to estimate the improvement in performance due to adding
vocal biomarkers to a set of socio-demographic and clinical
predictors. The value can range from -2 to 2, with bigger value
indicating larger improvement.

III. RESULTS

A. Evaluation of RQoL from socio-demographic/clinical data

Before evaluating the relevance of vocal biomarkers for
estimating RQoL, we set up a baseline experiment where only
socio-demographic data (BMI, smoking habits) and clinical
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TABLE IV: RQoL assessment based on socio-demographic and clinical features

ML model Accuracy [%] Sensitivity [%] Specificity [%] AUROC Brier score

LR 64.10 (1.71) 59.64 (3.98) 68.55 (4.86) 0.70 (0.03) 0.22 (0.01)
SVM 62.79 (2.11) 54.40 (6.48) 71.17 (4.74) 0.67 (0.03) 0.23 (0.01)
RF 61.43 (2.02) 53.25 (4.80) 69.59 (5.57) 0.66 (0.03) 0.24 (0.01)
XGBoost 62.26 (2.41) 53.25 (4.70) 71.27 (5.44) 0.66 (0.03) 0.24 (0.01)
MLP 63.84 (2.17) 56.39 (3.94) 71.27 (4.37) 0.70 (0.03) 0.22 (0.01)

TABLE V: RQoL assessment based on handcrafted voice features, standard acoustic feature sets, and deep audio embeddings

ML model Features Accuracy [%] Sensitivity [%] Specificity [%] AUROC Brier score

LR

Handcrafted 60.48 (3.42) 56.30 (4.75) 64.68 (4.64) 0.67 (0.03) 0.23 (0.01)
eGeMAPS 59.54 (2.37) 53.25 (2.08) 65.82 (3.34) 0.64 (0.03) 0.23 (0.01)
ComParE 62.58 (1.84) 54.62 (3.17) 70.55 (1.49) 0.67 (0.02) 0.23 (0)
VGGish 61.69 (1.82) 59.86 (3.51) 63.52 (1.15) 0.66 (0.02) 0.23 (0.01)
YAMNet 61.53 (2.63) 53.67 (2.74) 69.39 (3.32) 0.67 (0.01) 0.23 (0.01)
OpenL3 62.16 (2.86) 56.71 (4.04) 67.61 (2.25) 0.67 (0.03) 0.23 (0.01)
BYOL-A 65.57 (1.66) 59.96 (3.46) 71.17 (1.92) 0.70 (0.02) 0.22 (0)

SVM

Handcrafted 62.11 (3.84) 55.15 (4.65) 69.07 (4.56) 0.67 (0.04) 0.23 (0.01)
eGeMAPS 58.91 (1.91) 45.91 (2.97) 71.90 (3.95) 0.63 (0.02) 0.23 (0)
ComParE 63.37 (1.49) 47.70 (3.58) 79.04 (1.47) 0.66 (0.03) 0.23 (0.01)
VGGish 60.74 (1.38) 52.62 (2.13) 68.87 (1.79) 0.66 (0.02) 0.23 (0)
YAMNet 62.06 (1.69) 48.12 (2.55) 76.00 (2.30) 0.67 (0.01) 0.23 (0)
OpenL3 63.58 (2.10) 57.23 (2.46) 69.92 (2.11) 0.67 (0.03) 0.23 (0.01)
BYOL-A 63.99 (1.58) 52.2 (3.10) 75.79 (2.37) 0.69 (0.02) 0.22 (0.01)

RF

Handcrafted 60.64 (2.95) 58.49 (4.38) 62.79 (4.17) 0.65 (0.03) 0.23 (0.01)
eGeMAPS 58.65 (2.17) 55.45 (2.96) 61.85 (2.03) 0.62 (0.02) 0.24 (0)
ComParE 61.16 (1.92) 55.98 (3.06) 66.35 (2.29) 0.64 (0.03) 0.23 (0.01)
VGGish 60.38 (1.52) 57.23 (1.77) 63.52 (1.99) 0.64 (0.02) 0.23 (0)
YAMNet 61.79 (1.45) 57.34 (3.49) 66.25 (2.11) 0.66 (0.02) 0.23 (0)
OpenL3 62.26 (1.66) 55.77 (3.26) 68.76 (0.75) 0.66 (0.03) 0.28 (0.01)
BYOL-A 62.37 (2.50) 58.18 (3.75) 66.56 (1.89) 0.67 (0.03) 0.23 (0.01)

XGBoost

Handcrafted 58.07 (2.75) 57.23 (3.05) 58.91 (4.98) 0.62 (0.02) 0.31 (0.01)
eGeMAPS 57.91 (1.18) 56.50 (1.32) 59.33 (2.75) 0.61 (0.01) 0.32 (0.01)
ComParE 58.12 (2.28) 54.52 (4.90) 61.74 (2.39) 0.62 (0.03) 0.32 (0.02)
VGGish 56.87 (1.12) 56.40 (1.49) 57.34 (1.58) 0.60 (0.02) 0.33 (0.01)
YAMNet 58.76 (2.98) 57.97 (4.36) 59.54 (3.17) 0.63 (0.02) 0.32 (0.02)
OpenL3 57.71 (2.70) 54.72 (2.78) 60.70 (4.32) 0.63 (0.02) 0.32 (0.01)
BYOL-A 58.75 (2.72) 56.40 (3.15) 61.11 (3.86) 0.63 (0.02) 0.32 (0.01)

MLP

Handcrafted 61.58 (3.10) 58.08 (5.43) 65.09 (3.01) 0.66 (0.03) 0.23 (0.01)
eGeMAPS 60.95 (1.56) 52.62 (1.50) 69.29 (2.88) 0.64 (0.02) 0.24 (0.01)
ComParE 58.81 (2.30) 54.94 (7.62) 62.68 (5.99) 0.63 (0.03) 0.25 (0.01)
VGGish 60.22 (2.63) 57.03 (5.72) 63.42 (3.63) 0.65 (0.03) 0.23 (0.01)
YAMNet 62.26 (0.55) 54.72 (2.23) 69.81 (3.00) 0.67 (0.01) 0.23 (0)
OpenL3 60.69 (1.72) 56.92 (5.83) 64.47 (2.83) 0.64 (0.02) 0.24 (0.01)
BYOL-A 62.53 (3.27) 54.20 (5.21) 70.86 (5.05) 0.67 (0.03) 0.23 (0.01)

data (day and night coughing, chest pain, sore throat, as well as
associated diseases such as asthma and COPD) from the par-
ticipants’ self-reports were used for prediction of RQoL status.
Categorical variables were encoded as one-hot representations,
leading to 23 features in total. Performance is averaged over 5
folds (Table IV), with the best AUROC of 0.70, and accuracy
of 64.1% obtained using LR classifier.

We also presented the feature importance based on the mean
impurity decrease for the RF model in Figure 2, revealing that
BMI is the most important socio-demographic variable, fol-
lowed by clinical symptoms related to day and night coughing.

B. Evaluation of RQoL from voice recordings

We investigated whether voice related information could
be used as a digital biomarker for RQoL. To that end, we
extracted a set of handcrafted audio features (Table II), as
well as two widely used general audio feature sets (eGeMAPS

and ComParE). In addition to this, four state-of-the-art deep
audio embeddings are evaluated (VGGish, YAMNet, OpenL3,
BYOL-A) which proved to be highly competitive across
multiple audio tasks. The features were either fed directly
to the classifier, or in case of deep audio embeddings after
applying Principal Component Analysis (PCA) to reduce the
dimensionality of feature vectors. The results for assessment
of RQoL from voice were provided in Table V, with the
best performance reaching AUROC equal to 0.7 and accuracy
of 65.57% using BYOL-A deep audio embeddings. BYOL-
A substantially outperforms all other feature extraction tech-
niques by over 2%.

To highlight the characteristics of sustained vowel phonation
labeled with normal and impaired RQoL, we showed in Figure
3 spectrograms of two participants matched by age and gender
(males, 67 years old): one with normal RQoL without the
history of pulmonary diseases, but with a diagnosed COVID-
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TABLE VI: RQoL assessment based on fused socio-demographic/clinical and voice features

ML model Features Accuracy [%] Sensitivity [%] Specificity [%] AUROC Brier score NRI

LR

Handcrafted 67.77 (2.07) 63.42 (2.47) 72.12 (2.06) 0.74 (0.01) 0.20 (0.01) 0.15
eGeMAPS 67.14 (2.24) 61.53 (2.98) 72.74 (3.27) 0.73 (0.02) 0.21 (0.01) 0.16
ComParE 68.92 (0.85) 64.26 (2.17) 73.59 (0.78) 0.75 (0.02) 0.20 (0.01) 0.14
VGGish 68.92 (2.18) 65.62 (3.55) 72.22 (1.56) 0.75 (0.02) 0.20 (0.01) 0.14
YAMNet 69.34 (1.65) 64.05 (2.27) 74.63 (2.60) 0.76 (0.02) 0.20 (0.01) 0.17
OpenL3 69.76 (2.82) 65.83 (3.15) 73.69 (2.53) 0.76 (0.02) 0.20 (0.01) 0.16
BYOL-A 70.34 (1.82) 66.78 (4.60) 73.90 (1.44) 0.77 (0.02) 0.19 (0.01) 0.10

SVM

Handcrafted 67.87 (1.24) 60.38 (1.80) 75.37 (2.40) 0.74 (0.01) 0.20 (0) 0.12
eGeMAPS 67.24 (1.38) 56.08 (1.75) 78.41 (1.67) 0.73 (0.01) 0.21 (0.01) 0.19
ComParE 66.98 (1.79) 58.70 (2.49) 75.26 (2.07) 0.72 (0.03) 0.21 (0.01) 0.13
VGGish 68.66 (1.41) 61.01 (2.57) 76.31 (1.97) 0.75 (0.02) 0.20 (0.01) 0.16
YAMNet 68.76 (1.94) 57.65 (2.75) 79.88 (2.65) 0.76 (0.02) 0.20 (0.01) 0.16
OpenL3 62.95 (1.42) 61.64 (2.34) 64.26 (2.84) 0.69 (0.02) 0.25 (0.01) 0
BYOL-A 69.18 (1.36) 61.75 (2.90) 76.63 (2.19) 0.76 (0.01) 0.20 (0) 0.13

RF

Handcrafted 66.41 (1.51) 64.89 (3.39) 67.92 (2.53) 0.74 (0.02) 0.21 (0) 0.12
eGeMAPS 65.09 (2.04) 61.53 (2.61) 68.66 (1.76) 0.72 (0.02) 0.21 (0) 0.13
ComParE 67.98 (2.18) 64.58 (4.37) 71.39 (2.22) 0.73 (0.02) 0.21 (0) 0.14
VGGish 66.88 (2.03) 64.89 (2.92) 68.87 (2.36) 0.73 (0.02) 0.21 (0) 0.13
YAMNet 67.98 (1.74) 65.94 (3.02) 70.02 (0.86) 0.74 (0.02) 0.21 (0) 0.13
OpenL3 68.08 (1.92) 65.31 (3.22) 70.86 (1.22) 0.74 (0.02) 0.24 (0.02) 0.13
BYOL-A 67.35 (1.51) 65.00 (3.82) 69.71 (0.93) 0.75 (0.01) 0.21 (0) 0.10

XGBoost

Handcrafted 65.04 (1.34) 64.15 (2.58) 65.94 (3.14) 0.71 (0.01) 0.27 (0.01) 0.14
eGeMAPS 63.84 (2.63) 62.68 (2.51) 64.99 (4.39) 0.70 (0.01) 0.27 (0.01) 0.12
ComParE 66.14 (1.37) 62.79 (3.11) 69.50 (1.92) 0.70 (0.02) 0.27 (0.02) 0.16
VGGish 65.36 (2.08) 64.47 (2.26) 66.25 (3.08) 0.70 (0.02) 0.27 (0.02) 0.17
YAMNet 65.31 (2.89) 64.36 (3.22) 66.25 (2.87) 0.71 (0.02) 0.27 (0.02) 0.13
OpenL3 64.21 (1.86) 62.47 (2.24) 65.94 (2.58) 0.71 (0.02) 0.27 (0.02) 0.13
BYOL-A 66.04 (2.41) 63.10 (2.39) 68.97 (3.26) 0.72 (0.02) 0.26 (0.01) 0.14

MLP

Handcrafted 67.92 (1.57) 64.89 (2.78) 70.96 (1.00) 0.74 (0.02) 0.21 (0.01) 0.13
eGeMAPS 66.46 (2.75) 61.33 (4.10) 71.59 (2.18) 0.73 (0.03) 0.21 (0.01) 0.12
ComParE 63.52 (2.96) 59.66 (6.18) 67.40 (5.17) 0.68 (0.03) 0.23 (0.01) 0.09
VGGish 67.46 (2.69) 63.74 (4.77) 71.17 (0.91) 0.74 (0.02) 0.21 (0.01) 0.14
YAMNet 68.97 (1.70) 64.58 (4.61) 73.37 (2.14) 0.76 (0.01) 0.20 (0.01) 0.07
OpenL3 63.58 (2.09) 59.23 (5.56) 67.93 (2.44) 0.69 (0.02) 0.23 (0.01) 0.06
BYOL-A 68.45 (2.23) 63.21 (3.21) 73.70 (3.30) 0.75 (0.02) 0.20 (0.01) 0.13

Fig. 2: Feature importance for socio-demographic and clinical
features based on the mean impurity decrease

19 more than 3 weeks before the recording was made; and
one with extremely impaired RQoL (VQ11 score: 46) diag-
nosed with asthma-COPD overlap syndrome. Even though the

normal RQoL example is actually a boundary case (VQ11
score: 21, cut-off value 22), the differences in spectrograms
are clearly visible. While the normal RQoL recording is rep-
resented by uninterrupted phonation, with clearly distinctive
harmonics (Figure 3a), impaired RQoL recording is charac-
terized by strangled voice with multiple stoppages and voice
breaks, and increased energy areas in higher frequency bands,
which are most likely caused by aperiodic noise produced at
a glottal constriction (Figure 3b). Furthermore, the absence of
higher harmonics above 1kHz can be observed throughout the
spectrogram, and as phonation progresses, even the adjacent
lower harmonics become smeared and more difficult to distin-
guish. However, for the impaired RQoL voice recordings with
VQ11 score closer to cut-off value, the differences are not so
distinct.

C. Evaluation of RQoL from fused socio-demographic/clinical
data and voice recordings

By fusing socio-demographic/clinical with voice features,
we can quantify how much voice features can boost the
performance of the socio-demographic and clinical data, un-
covering the full potential of the multimodal data fusion.
The results for the assessment of RQoL from multimodal
features are provided in Table VI, whereas the comparison
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a) b)

Fig. 3: Spectrograms of sustained vowel phonation of participants matched by age and gender (male, age 67) with a) normal
RQoL (VQ11 score: 21); and b) impaired RQoL (VQ11 score: 46). Normal RQoL spectrogram is represented by uninterrupted
phonation, with clearly distinctive harmonics. Impaired RQoL spectrogram is characterized by strangled voice with multiple
stoppages and voice breaks, and increased energy areas in higher frequency bands. The absence of higher harmonics above
1kHz can be observed, and as phonation progresses, the adjacent lower harmonics become smeared and more difficult to
distinguish.

Fig. 4: Accuracy with the best-performing machine learning
model for socio-demographic/clinical features only, voice fea-
tures only and fused clinical and voice (multimodal) features.
Models with both clinical and voice data (“Fused”) system-
atically outperformed models where clinical variables only
or voice features only were used. Error bars represent the
standard deviation.

of the best-performing machine learning model for the socio-
demographic/clinical features only, voice features only and
multimodal features obtained after their fusion is presented in
Figure 4. By using intermediate fusion (feature level fusion)
we show that clinical data extracted from questionnaires and
voice features obtained as the higher-level representations

extracted from raw audio signals are complementary, leading
to a substantial performance boost (accuracy equal to 70.34%
and AUC equal to 0.77 using the combination of BYOL-A
audio embeddings and socio-demographic/clinical features).
Note that specificity is, in general, higher than sensitivity
for all models, i.e. the models are still better at predicting
normal than impaired RQoL. This is also visible from the
confusion matrix of the best-performing model (fused BYOL-
A and socio-demographic/clinical features, trained with LR
classifier) shown in Figure 5a, where it is clear that the number
of false negatives is substantially larger than the number
of false positives. Using the Brier score as a measure of
calibration, the same multimodal model achieves the lowest
average Brier score over all folds equal to 0.19 with a nearly
linear calibration curve, as shown in Figure 5b. Figure 5c
displays the ROC curve of the best-performing model.

Finally, since our objective was to quantify how much the
vocal biomarkers increase the reliability of screening based
only on subjective self-reports, NRI was used to estimate the
improvement in performance after fusing vocal biomarkers
with socio-demographic/clinical predictors. Table VI reveals
that vocal biomarkers indeed improve the predictive capability
of demographic and clinical variables for all acoustic features,
with the biggest improvement measured by NRI of 0.19 for
eGeMAPS features modeled with SVM.

IV. DISCUSSION

In this large international study, we have developed a
digital voice-based biomarker for monitoring of RQoL using
a combination of standard self-reported clinical information
and voice-related features. We have shown that voice brings
complementary information to improve the performances of
the predictive model and increase the reliability of screening
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(a) (b) (c)

Fig. 5: Performance of the best model (fused BYOL-A deep audio embeddings and socio-demographic/clinical features, trained
with logistic regression classifier): a) Confusion matrix; b) Probability calibration curve; and c) ROC curve. Light blue lines
denote the ROC curves across 5 cross-validation folds, whereas a thick blue line represents the average ROC curve. Standard
deviation is highlighted with the shaded area.

based only on subjective self-reports, reaching a full potential
when both clinical and voice modalities are used conjointly in
a multimodal setup.

RQoL has been evaluated from socio-demographic and clin-
ical factors in various respiratory diseases, but mainly focusing
on a single disorder, such as COPD [30], [31], asthma [32],
idiopathic pulmonary fibrosis [33], or COVID-19 [34]. There
were also attempts to investigate the effect of several respira-
tory diseases simultaneously on RQoL by using a multicase-
control design, where the use cases were COPD, asthma,
allergic and non-allergic rhinitis [35]. However, limited efforts
were made to evaluate RQoL in the general population. A
large five-year cohort study in Malawi was carried out to
investigate the high prevalence of reduced lung function in
Sub-Saharan Africa and its association with RQoL in the
general population [36]. To establish a baseline for evaluation
of RQoL from vocal biomarkers in the general population, we
first estimated RQoL based on a number of socio-demographic
(BMI, smoking habits) and clinical variables (day and night
coughing, chest pain, sore throat, asthma, COPD). The feature
importance analysis revealed that BMI is the most important
socio-demographic variable. This confirms previous findings
that BMI is significantly correlated with RQoL in COPD [37]
and asthma [38], suggesting furthermore that RQoL of obese
patients improves after weight reduction [37].

We further investigated whether digital biomarkers extracted
from voice can act as a substitute for standard clinical mea-
sures estimated from questionnaires. Contrary to question-
naires which are mostly done during on-site clinical visits and
can be tedious, voice recordings allow quick and easy-to-use
data collection at patients’ homes; thus, substantially facili-
tating remote patient monitoring [39]. Our vocal biomarkers
outperformed socio-demographic/clinical predictive factors by
approximately 1.5% in terms of accuracy, confirming their
potential to be a surrogate for clinical measures. The best-
performing features are BYOL-A, which are general-purpose
audio representations extracted with a model pretrained on a

large amount of out-of-domain audio data in a self-supervised
manner, i.e. requiring no annotations [28]. After freezing the
convolutional layers, only the classification head is fine-tuned
with the sustained vowel phonation collected within the Colive
Voice study. This allows training the deep neural network
models even with limited available voice data, and furthermore
enables deploying for real-time inference, in applications that
require low latency. However, deep audio embeddings such as
BYOL-A suffer from limited interpretability, which might be
an issue in a clinical application. Therefore, trade-off between
performance and interpretability has to be considered when
selecting the audio features.

Finally, fusing clinical and voice features in a multimodal
setup allows focusing on different aspects of RQoL, local-
izing a broad range of information extracted from different
modalities, and enabling more robust prediction models. The
fusion of audio features with textual (word embeddings) and
vision features (facial action units) has already been shown
to improve the performance of unimodal approaches for the
detection of clinical depression [40], [41]. A deep multimodal
fusion model that learns indicators of Alzheimer’s disease
from audio and text modalities, as well as disfluency features,
increases the predictive power of audio features [42]. Fusion of
speech, handwriting and gait data enables accurate evaluation
of neurological state in different stages of Parkinson’s disease
[43]. To the best of our knowledge, there were no previous
attempts to combine voice features with clinical data for appli-
cation in healthcare. By using intermediate feature level fusion
we proved that voice features and clinical variables extracted
from self-administered questionnaires are indeed complemen-
tary, leading to improved performance in comparison to both
unimodal approaches by almost 5% in terms of accuracy, and
up to 7% in terms of AUC. The intermediate fusion has an
advantage in flexibility of extracting marginal representations
appropriate for each modality, and arguably reflects more
closely the relationships between the modalities [44]. To avoid
producing high-dimensional joint feature representations, PCA
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was used to reduce the dimensionality of feature vectors
coming from different modalities to the same length.

To further evaluate not only the ability of the model to
accurately predict the class labels, but also the associated
probability, the Brier score was used. The well-calibrated
model is neither underconfident, nor overconfident, i.e. the
true frequency of the positive label (impaired RQoL score in
our case) against its predicted probability is approximately
linear. This is confirmed by a solid average Brier score, and a
calibration curve that does not deviate substantially from the
perfectly calibrated model.

A major strength of this study is the fact that the dataset
is acquired via a mobile app at participants’ homes, i.e.
in uncontrolled conditions close to real-world circumstances.
This confirms the feasibility of using a digital voice-based
biomarker to provide quantitative measurements of RQoL,
and enable regular remote monitoring in real life without
relying on costly, invasive or cumbersome equipment; thus,
facilitating personalized and more timely treatment, according
to the patient’s needs and general health status.

However, a crowdsourced data collection poses multiple
challenges and could be also observed as a limitation. There
is a risk of acquiring low-quality answers from the self-
administered questionnaires and introducing noise in the data,
making it more difficult to infer the ground truth labels. We
mitigated this risk by using a well-known, clinically validated
questionnaire to assess RQoL. Recording voice using multiple
devices, different qualities of microphones, and various record-
ing conditions make data collection additionally challenging,
resulting in different quality of audio recordings. For this
purpose, we developed a proprietary data processing pipeline
that harmonizes recordings and performs quality checks, but
we cannot entirely exclude the possibility of having some low-
quality recordings in our dataset.

V. CONCLUSION

In this paper we developed a digital voice-based biomarker
for monitoring RQoL in the general population. Our results
confirm that vocal biomarkers can be a viable surrogate for
standard clinical measures estimated from questionnaires, but
the ultimate capacity is unlocked in a multimodal setup when
clinical and voice data are used together. The best performance
was obtained with a feature-level fusion of BYOL-A deep
audio embeddings and socio-demographic/clinical variables,
reaching an accuracy of over 70% and AUC of 0.77, a
performance boost of 5% in comparison to acoustic features
extracted from voice only.

The proposed approach facilitates rapid screening and repre-
sents a step towards the development of scalable, non-invasive,
easy-to-use and low-cost solutions for remote monitoring of
respiratory health status.
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Fischer, Philippe Kayser, Luigi De Giovanni, Michael Schnell
and Aurore Dobosz for their substantial contribution to the
Colive Voice study.

REFERENCES

[1] P. W. Jones, F. H. Quirk, C. M. Baveystock, and P. Littlejohns, “A
self-complete measure of health status for chronic airflow limitation.
The St. George’s Respiratory Questionnaire,” The American Review of
Respiratory Disease, vol. 145, no. 6, pp. 1321–1327, 1992.

[2] A. Chauvin, L. Rupley, K. Meyers, K. Johnson, and J. Eason, “Re-
search Corner Outcomes in Cardiopulmonary Physical Therapy: Chronic
Respiratory Disease Questionnaire (CRQ):,” Cardiopulmonary Physical
Therapy Journal, vol. 19, no. 2, pp. 61–67, 2008.

[3] M. E. Hyland, J. Bott, S. Singh, and C. A. Kenyon, “Domains, constructs
and the development of the breathing problems questionnaire,” Quality
of Life Research: An International Journal of Quality of Life Aspects of
Treatment, Care and Rehabilitation, vol. 3, no. 4, pp. 245–256, 1994.
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[8] V. S. Nallanthighal, A. Härmä, and H. Strik, “Detection of COPD
Exacerbation from Speech: Comparison of Acoustic Features and Deep
Learning Based Speech Breathing Models,” in ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2022, pp. 9097–9101.

[9] A. E. Vertigan, S. L. Kapela, and P. G. Gibson, “Laryngeal Dysfunction
in Severe Asthma: A Cross-Sectional Observational Study,” The Journal
of Allergy and Clinical Immunology: In Practice, vol. 9, no. 2, pp. 897–
905, 2021.

[10] M. Z. Alam, A. Simonetti, R. Brillantino, N. Tayler, C. Grainge,
P. Siribaddana, S. A. R. Nouraei, J. Batchelor, M. S. Rahman, E. V.
Mancuzo, J. W. Holloway, J. A. Holloway, and F. I. Rezwan, “Predicting
Pulmonary Function From the Analysis of Voice: A Machine Learning
Approach,” Frontiers in Digital Health, vol. 4, 2022.

[11] J. D. S. Sara, E. Maor, B. Borlaug, B. R. Lewis, D. Orbelo, L. O.
Lerman, and A. Lerman, “Non-invasive vocal biomarker is associated
with pulmonary hypertension,” PLoS ONE, vol. 15, p. e0231441, 2020.

[12] B. Tracey, S. Patel, Y. Zhang, K. Chappie, D. Volfson, F. Parisi,
C. Adans-Dester, F. Bertacchi, P. Bonato, and P. Wacnik, “Voice
Biomarkers of Recovery From Acute Respiratory Illness,” IEEE Journal
of Biomedical and Health Informatics, vol. 26, no. 6, pp. 2787–2795,
2022.

[13] J. Han, T. Xia, D. Spathis, E. Bondareva, C. Brown, J. Chauhan, T. Dang,
A. Grammenos, A. Hasthanasombat, A. Floto, P. Cicuta, and C. Mascolo,
“Sounds of COVID-19: exploring realistic performance of audio-based
digital testing,” npj Digital Medicine, vol. 5, no. 1, pp. 1–9, 2022.

[14] N. D. Pah, V. Indrawati, and D. K. Kumar, “Voice Features of Sustained
Phoneme as COVID-19 Biomarker,” IEEE Journal of Translational
Engineering in Health and Medicine, vol. 10, pp. 1–9, 2022.

[15] M. Al Ismail, S. Deshmukh, and R. Singh, “Detection of Covid-19
Through the Analysis of Vocal Fold Oscillations,” 2021, pp. 1035–1039.

[16] V. Despotovic, M. Ismael, M. Cornil, R. M. Call, and G. Fagherazzi,
“Detection of COVID-19 from voice, cough and breathing patterns:
Dataset and preliminary results,” Computers in Biology and Medicine,
vol. 138, p. 104944, 2021.

[17] A. Triantafyllopoulos, A. Semertzidou, M. Song, F. B. Pokorny, and
B. W. Schuller, “Introducing the COVID-19 YouTube (COVYT) speech
dataset featuring the same speakers with and without infection,” Biomed-
ical Signal Processing and Control, vol. 88, p. 105642, 2024.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.11.11.23298300doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.11.23298300
http://creativecommons.org/licenses/by-nc/4.0/


11
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