Neural Mechanisms Underlying Attention Control In Relation To Anxiety And Depressive Symptoms ============================================================================================= * Raye Fion Loh * Savannah Siew Kiah Hui * Junhong Yu ## Abstract Poor attention control has been implicated in the development of anxiety and depression-related disorders and it is a key diagnostic criterion. This study aims to understand the possible neural mechanisms behind this. 191 German participants aged 20-80 were assessed on their level of attention control, depression and anxiety as part of the Leipzig Study for Mind-Body-Emotion Interactions. Network-based statistics were applied to their resting-state functional connectivity (rsFC) data to identify networks positively and negatively associated with attention control. Mediation analyses were then performed with these two networks as mediators. Attention control correlated negatively with both anxiety and depression. The frontoparietal- or dorsal attention-somatomotor connections featured prominently in the attention control-positive network (ACPN). This network correlated positively with attention control, and negatively with both anxiety and depression. The attention control-negative network (ACNN) was largely represented by the ventral attention- or dorsal attention-visual connections. The ACPN was a significant and partial mediator between attention control and anxiety and a complete mediator for the relationship between attention control and depression. These findings could prove useful as neuroeducation in anxiety- and depression-related disorders, and as evidence for attention-based therapy. Keywords * Resting-state functional connectivity * Attention control * Depression * Anxiety * Network-based statistics * Mediation analysis ## 1. Introduction Anxiety disorders are common psychiatric disorders and major causes of disability and mortality throughout the world. Despite its adaptive benefits, anxiety becomes pathological when an individual starts to experience intense anxiety far beyond the expected levels for the situation, leading to excessive worry, hypervigilance, physiological arousal, and avoidance behaviours [1], depleting mental resources, reducing cognitive efficiency and negatively influencing daily functioning and quality of life [2, 3]. Depressive disorders are also highly prevalent and are characterised by emotional, cognitive, and physical symptoms [4]. Patients with depressive disorder have been frequently reported to present with cognitive impairment in several cognitive domains [5, 6] such as executive function [e.g. 9-12], episodic memory [e.g. 7, 13-17], semantic memory [e.g. 12, 18-22], visuo-spatial memory [e.g. 23, 24], and information processing speed [e.g. 6, 12, 17, 20-22]. Anxiety and depression symptoms often overlap significantly [25], which may point to possible underlying vulnerabilities that result in continued symptom perpetuation. One such underlying vulnerability may be poor attention control. Several depression models [26–28] have identified deficiencies in attention control and recurrent negative thinking (i.e., rumination) as important elements in the development and maintenance of negative affect. Therapies effective at reducing anxiety from baseline levels include those that support active goal-focused attention and flexible cognitive control, particularly inhibitory control [29]. This similarly suggests poor attention control is implicated in anxiety symptoms. The frequent co-occurrence of attention control deficits and anxiety symptoms could perhaps be explained by the possibility that both implicate the same resting-state networks. Resting-state functional connectivity (rsFC) can be quantified by the degree of temporal co-activation of spontaneous fMRI signals between various brain areas in the absence of a perceptual or behavioural task [30], and is helpful for measuring mind-wandering states such as attention control [31]. Hence, in the current study, we hypothesise that certain resting-state networks mediate the relationship between attention control and depression/anxiety in the non-clinical population. Few brain imaging studies have investigated this correlation in non-clinical populations. Even though these sub-clinical anxiety-related and depressive disorders are less understood as compared to their clinically significant counterparts [32], they are still prevalent [33, 34], often being associated with lower levels of quality of life [34–36], increased use of health services [34, 37], increased economic costs [33, 34] and higher mortality rates [34, 38]. More importantly, they are often early warning markers of subsequent clinical diagnosis [33, 38–40]. In addition, there have been few studies investigating the effect of attention control on the presentation of anxiety- and depression-related symptoms across the lifespan. Most studies mentioned above recruited participants who were young adults. However, anxiety and depression symptoms are not limited to young adults; rather, they are applicable even to the elderly [41]. ## 2. Material & Methods ### 2.1 Participants Datasets from an openly accessible anonymized database, the Leipzig Study for Mind-Body-Emotion Interactions project [42] and an additional follow-up project [43] were used in this study and details regarding recruitment and study procedure can be found there. This pThe study protocol was approved by the University of Leipzig’s medical faculty’s ethics committee (reference number 097/15-ff) [43]. The database was accessed on January 8, 2022, and there was no available access to identifying information. Data from 13 subjects were eventually excluded (12 due to significant head motion during rs-fMRI scans, 1 due to missing data), leaving a total of 191 native German-speaking participants (92 females, 99 males). The specific age of each participant was not supplied in the dataset; instead, the age of each person is expressed in 5-year bins as shown in Figure 1. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/11/11/2023.11.10.23298383/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/F1) Figure 1. Summary of the Age Range of Par ### 2.2. Measures The Attention Control Scale [ACS] [42] was used in this study to evaluate individual differences in attention control. It is a self-report questionnaire with 20 items and it measures an individual’s ability (a) to focus, (b) to orientate attention between tasks and (c) to control thought flexibly. Participants responded on a 4-point Likert scale (1 = almost never; 2 = sometimes; 3 = often; 4 = always), where a higher score reflected greater attention control ability. The Hospital Anxiety and Depression Scale [HADS] [45] was employed in this study to assess subclinical tendencies of depression and anxiety. It consists of 14 questions and two subscales measuring (a) anxiety [HADS.A] and (b) depression [HADS.D] across the past week. Each subscale has seven items and it is scored on a 4-point Likert scale (e.g., 1 = most of the time, 4 = never). A higher score represented higher anxiety and depression symptoms. ### 2.3. fMRI acquisition The full fMRI acquisition details may be obtained from [42, 43]. Magnetic resonance imaging (MRI) was done using a 3 Tesla scanner equipped with a 32-channel head coil. Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) procedure was used to collect T1-weighted images (TE=2920ms; TR=5000ms; TI1=700ms; TI2=2500ms; FOV=256mm; 176 sagittal slices; voxel size=1mm isotropic). T2-weighted gradient echo planar imaging (EPI) multiband BOLD technique (TR = 1,400 ms; TE = 30 ms; 64 axial slices; matrix = 88 x 88; voxel size = 2.3mm isotropic) was used to acquire the resting-state fMRI (rs-fMRI) volumes. Participants were told to stay awake and lie motionless with their eyes open while staring at a low-contrast fixation cross. ### 2.4. Data pre-processing The T1 structural images were preprocessed with FreeSurfer 7.2.0 using the default recon-all options. Non-brain tissue was removed using a hybrid watershed or surface deformation procedure [46], automated Talairach transformation, segmentation of subcortical white matter and deep grey matter volumetric structures (including the hippocampus, amygdala, caudate, putamen, ventricles) [47, 48], intensity normalisation [49], tessellation [50, 51]. When the cortical models were finished, they were registered to a spherical atlas based on individual cortical folding patterns to match cortical geometry across participants [52], and the cerebral cortex was divided into units based on gyral and sulcal structure. fMRIPrep 20.2.5 was used to preprocess the resting fMRI volumes [53]. Slice time was adjusted using 3dTshift from AFNI [54] and the motion was corrected using MCFLIRT [55]. Following this, co-registration to the matching T1w was performed using boundary-based registration [56] with 9 degrees of freedom, using bbregister from freesurfer. Motion correction transformations, BOLD-to-T1w transformations, and T1w-to-template (MNI) warps were combined and applied in a single step with antsApplyTransforms and Lanczos interpolation. Following that, using the load confounds package ([https://github.com/SIMEXP/load](https://github.com/SIMEXP/load) confounds), these preprocessed volumes were denoised by regressing out 6 motion parameters, the average signal of white matter and cerebrospinal fluid masks, global signal and their derivatives, as well as cosines covering the slow time drift frequency band. Scrubbing was used to reduce the effects of excessive head motion [57]. After that, the volumes are smoothed with a 5mm FWHM kernel and sent through a 0.1Hz low-pass filter. Finally, the brainnetome atlas [58] was used to divide the whole brain into 246 anatomical areas that corresponded to network nodes. Participants with significant head motion are omitted from the analysis if more than 20% of their rs-fMRI volumes are over the high motion limit (relative RMS > 0.25). ### 2.5. Statistical analysis #### 2.5.1. Network-based statistics First, network-based statistics were carried out on the rsFC matrices to obtain edges correlated with attention control. The selection thresholds were set at *p* < .01 and *p* < .05 at the edge and network levels respectively. Significant edges were separated into those positively correlated with attention control, labelled as the attention control-positive network (ACPN), and those negatively correlated with attention control, labelled as the attention control-negative network (ACNN). Connectivity scores for each participant were calculated for both positive and negative networks based on the connectivity strength of each network such that the greater the network score, the greater the connectivity strength of the networks. These analyses were performed in R (version 4.1.0) using the *NBR* package [59]. #### 2.5.2 Mediation analysis Subsequently, the ACPN and ACNN scores were used as individual mediators of the connection between attention control and anxiety, as well as attention control and depression. This analysis was conducted in R with the mediation package [60], employing a statistical significance of *p* < 0.05, with quasi-Bayesian confidence intervals with 1000 Monte Carlo simulations. #### 2.5.3. Data and code availability The preprocessed rsFC matrices, behavioural scores of the participants studied, and the R code for the analysis may be found at *osf.io/f2qd6*. ## 3. Results ### 3.1. Network-based analysis The attention control-related brain connection patterns are shown in Figure 2. The edges were classified into seven brain networks [61]. Attention control is positively associated with increased somatomotor-frontoparietal and somatomotor-dorsal attention connectivity. Strong positive connections can be observed between the frontoparietal and somatomotor networks, as well as between the dorsal attention and somatomotor networks. More specifically, there were stronger connections between the primary motor cortex and parts of the dorsal and medial prefrontal cortex. Attention control is negatively associated with decreased visual-ventral and visual-dorsal attention connectivity. Strong negative connections can be observed between dorsal attention and visual networks, as well as between ventral attention and visual networks, between the caudal dorsolateral region and the left inferior occipital gyrus, left occipital polar cortex, left medial superior occipital gyrus and left lateral superior occipital gyrus as well as opercular area 44 and right inferior occipital gyrus, right medial superior occipital gyrus, right rostral lingual gyrus. ![Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/11/11/2023.11.10.23298383/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/F2) Figure 2. (A) Chord diagram depicting att ### 3.2. Mediation Analysis Attention control positively predicted anxiety and depression symptoms. Attention control also positively predicted ACPN and negatively predicted ACNN. ACPN negatively predicted both anxiety and depression symptoms, while ACNN positively predicted both anxiety and depression symptoms. These findings were all significant and are reflected in Table 1. View this table: [Table 1.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/T1) Table 1. Summary of All the Regression Analyses Not Yet Accounting for the Mediator. The effect of attention control on anxiety was found to be partially mediated via the ACPN but was not significantly mediated via the ACNN. Results of the mediation analysis for anxiety are shown in Table 2 and Figure 3. The effect of attention control on depression was fully mediated via the ACPN but was not significantly mediated via the ACNN. These results can be found in Table 3 and Figure 4. ![Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/11/11/2023.11.10.23298383/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/F3) Figure 3. Visualisation of me ![Figure 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/11/11/2023.11.10.23298383/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/F4) Figure 4. Visualisation of mediation moc View this table: [Table 2.](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/T2) Table 2. Estimates of the ACPN- and ACNN-mediated Model of Attention Control Against Anxiety. View this table: [Table 3](http://medrxiv.org/content/early/2023/11/11/2023.11.10.23298383/T3) Table 3 Estimates of the ACPN- and ACNN-mediated Model of Attention Control Against Depression. ## 4. Discussion This study identified rsFC positively and negatively associated with attention control. The pattern of edges in these networks reflected an increased somatomotor-frontoparietal and dorsal attention-somatomotor connectivity, and a decreased dorsal attention-visual and ventral attention-visual connectivity in attention control. The ACPN partially mediated the effect of attention control on anxiety and fully mediated the effect of attention control on depression. On the other hand, the ACNN did not significantly mediate the relationship between attention control and anxiety or depression. What is surprising about the results is the increased connectivity between the frontoparietal network and dorsal attention network with the somatomotor network in attention control. The current literature on the role of the frontoparietal- and/or dorsal attention-somatosensory network on attention mostly comprises clinical groups with attention deficits, namely in ADHD populations. A mix of findings have been found, such as stronger connections in an ADHD population between the white matter rsFC of the default mode network and the somatomotor network with the other networks [62], increased visual-dorsal attention connectivity [63] and increased surfaced-based brain rsFC within the limbic, visual default mode, somatomotor, dorsal attention, frontoparietal and VANs [64]. Poor sustained attention in this population was also associated with stronger positive connectivity within the motor network bilaterally and between motor, parietal, prefrontal, and limbic networks in a task-based functional connectivity study [65]. Poor motor control has been observed in ADHD children, which may imply a lower somatomotor activity correlation with inattentiveness [66]. Other studies did look at the somatotopic (spatial) attention modulation of behaviour in non-clinical populations, but they were mainly limited to the neural processing of tactile stimuli [67–73, 104] and most do not investigate functional connectivity of the somatosensory region with other regions of the brain. To the best of our knowledge, this paper is the first to look into the rsFC of attention control in all age groups and non-clinical populations. The implication of the somatomotor network in attention may have to do with the fact that the ACS measured a somatic component of attention, such as one’s ability to alternate between different modalities of external sensory input (e.g. “When I am reading or studying, I am easily distracted if there are people talking in the same room.”) or regulate internal sensory input (e.g. “When concentrating I ignore feelings of hunger or thirst.”). In comparison, the attention control measures in previous literature might not have paid as close attention to these somatic components. Some [74–76] used task-based attentional search assessments such as the ANT-I task [78] which had a heavier cognitive load but only required minor motor responses, while others [79] used questionnaires with less emphasis on the somatic components and more emphasis on the affective components of anxiety, such as the State Trait Anxiety Inventory which includes items such as “I worry too much over something that really doesn’t matter” and “I feel calm; I feel secure.” Another interesting finding of this paper was that anxiety symptoms were not correlated with the frontoparietal- or dorsal attention-somatomotor rsFC strength. This paper’s findings hence dispute previous findings about the positive correlation of somatomotor connectivity with heightened anxiety [80–82] as increased rsFC of the frontoparietal- and dorsal attention-somatomotor network was found in this study to be associated with lowered anxiety levels. The findings of past studies mainly clustered around the decreased functioning within the frontoparietal network during the processing of neutral targets [75, 76, 79, 83] and increased activity in these portions in tasks that use emotionally laden stimuli [76, 84–86] in individuals high in trait anxiety or diagnosed with an anxiety disorder. Other studies focusing on the DAN tend to focus mainly on dorsal attention-amygdala activity [87–90]. A possible reason for this discrepancy is that some of the previous literature examined clinically anxious populations [85, 86] while this current study investigated rsFC in sub-clinical and non-clinical populations. However, for the rest of the studies that similarly focused on healthy individuals, the cause for this discrepancy could be a focus for future studies. The last finding of this paper worth mentioning would be that while the HADS.A scale measured somatic-related anxiety symptoms (such as “I feel tense or ‘wound up.’”), the HADS.D scale does not measure any somatic symptoms related to depression. Yet, ACPN was found to be a partial mediator in the relationship between attention control and anxiety symptoms and a complete mediator in the relationship between attention control and depression symptoms. This may imply that the attention control networks play a more important role in this relationship. We propose that this may stem from the connection between rumination, known to impede attention control [91], and the potentially weakened connectivity within the dorsal attention and frontoparietal somatosensory networks. This reduced connectivity could hinder individuals from redirecting negative thought patterns and engaging in mindfulness-enhancing motor activities, thereby potentially exacerbating mood symptoms [92, 93]. Specifically, ruminative thoughts related to self-efficacy can intensify depression symptoms, while those concerning perceived social failures can heighten anxiety [92]. While rumination plays a key role in both anxiety and depression symptom perpetuation [94], it is a hallmark symptom of depression but only a potential symptom of anxiety [95]. Our current study aligns with the findings of [96], who identified hypoconnectivity between the resting-state functional connectivity (rsFC) frontoparietal and dorsal attention networks in Major Depressive Disorder (MDD). However, their study did not explicitly investigate the somatomotor network, likely due to its primary focus on MDD in general rather than exploring the link between attention control and depression specifically. The findings of this study would be useful for neuroeducation, “a didactic or experiential-based intervention that aims to reduce client distress and improve client outcome by helping clients understand the neurological processes underlying mental functioning” [97]. In the context of this study, neuroeducation would involve informing clients of the neurological processes, strengthening connectivity in their frontoparietal- or dorsal attention-somatomotor network which may underlie their poor attention control. This knowledge empowers clients to develop self-compassion, modify deep-seated cognitive patterns, and normalise the fluctuations in their personal growth journey [97]. These insights have the potential to alleviate client anxiety, enhance results, and foster greater cooperation between therapists and their clients. [104]. Furthermore, the findings support therapies that incorporate somatic and attention-based elements, like mindfulness cognitive-based therapy, which has demonstrated effectiveness in reducing anxiety and depression symptoms such as rumination [93, 98–100] and enhancing emotion regulation abilities [101, 102]. The findings are subject to some limitations. Firstly, the present study is purely correlational. Causation between attention control, functional connectivity of the brain and anxiety- and depression-related symptoms cannot be inferred. Second, attention control was measured via self-reported questionnaire responses which may be subjective and unreliable compared to more objective measures of attention control, such as using a Stroop task. Replication of the present study with more objective measures or with additional measures for corroboration such as peer-reported measures could increase its validity. ## Data Availability Data was not collected firsthand. The open-access anonymous database utilised in our study may be accessed via Babayan et al., 2019 and Mendes et al., 2019. [http://fcon\_1000.projects.nitrc.org/indi/retro/MPI\_LEMON.html](http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html). ## Author Contributions Raye Fion Loh: Conceptualization, Formal analysis, Investigation, Project administration, Software, Visualization, Writing – original draft Savannah Siew Kah Hui: Supervision, Visualization, Writing – review & editing Junhong Yu: Data curation, Funding acquisition, Methodology, Resources, Software, Supervision, Writing – review & editing ## Footnotes * This work is supported by funding from the Nanyang Assistant Professorship (Award no. 021080-00001) * Received November 10, 2023. * Revision received November 10, 2023. * Accepted November 10, 2023. * © 2023, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1.Kalin NH. Novel insights into pathological anxiety and anxiety-related disorders. Am J Psychiatry. 2020;177(3):187–189. DOI: 10.1176/appi.ajp.2020.20010057. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2020.20010057&link_type=DOI) 2. 2.Mathews A, MacLeod C. Cognitive vulnerability to emotional disorders. Annu Rev Clin Psychol. 2005;1(1):167–195. DOI: 10.1146/annurev.clinpsy.1.102803.143916. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1146/annurev.clinpsy.1.102803.143916&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17716086&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 3. 3.Rodriguez BF, Bruce SE, Pagano ME, Keller MB. Relationships among psychosocial functioning, diagnostic comorbidity, and the recurrence of generalized anxiety disorder, panic disorder, and major depression. J Anxiety Disord. 2005;19(7):752–766. DOI: 10.1016/j.janxdis.2004.10.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.janxdis.2004.10.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16076422&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000231336700002&link_type=ISI) 4. 4.American Psychiatric Association, DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. American Psychiatric Publishing; 2013. Available from: doi:10.1176/appi.books.9780890425596 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.books.9780890425596&link_type=DOI) 5. 5.Goodwin GM. Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression. J Psychopharmacol. 1997;11(2):115–122. DOI: 10.1177/026988119701100204. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/026988119701100204&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9208375&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997XK61100004&link_type=ISI) 6. 6.Austin MP, Ross M, Murray C, O’Carroll RE, Ebmeier KP, Goodwin GM. Cognitive function in major depression. J Affect Disord. 1992;25(1):21–29. DOI:10.1016/0165-0327(92)90089-O. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0165-0327(92)90089-O&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=1624644&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1992HX99400003&link_type=ISI) 7. 7.Beats B. The biological origin of depression in later life. Int J Geriatr Psychiatry. 1996;11:349–354. DOI:10.1002/(SICI)1099-1166(199604)11:4<349::AID-GPS457>3.0.CO;2-T. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/(SICI)1099-1166(199604)11:4<349::AID-GPS457>3.0.CO;2-T&link_type=DOI) 8. 8.Purcell R, Maruff P, Kyrios M, Pantelis C. Neuropsychological function in young patients with unipolar major depression. Psychol Med. 1997;27(6):1277–1285. DOI: 10.1017/s0033291797005448. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291797005448&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9403899&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997YJ15400005&link_type=ISI) 9. 9.Merriam EP, Thase ME, Haas GL, Keshavan MS, Sweeney JA. Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test Performance. Am J Psychiatry. 1999;156(5):780–782. DOI: 10.1176/ajp.156.5.780. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/ajp.156.5.780&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10327916&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000080095400022&link_type=ISI) 10. 10.Nebes RD, Pollock BG, Houck PR, Butters MA, Mulsant BH, Zmuda MD, Reynolds CF 3rd. Persistence of cognitive impairment in geriatric patients following antidepressant treatment: a randomized, double-blind clinical trial with nortriptyline and paroxetine. J Psychiatr Res. 2003;37(2):99–108. DOI: 10.1016/s0022-3956(02)00085-7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0022-3956(02)00085-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12842163&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000181464300002&link_type=ISI) 11. 11.Baudic S, Tzortzis C, Barba GD, Traykov L. Executive deficits in elderly patients with major unipolar depression. J Geriatr Psychiatry Neurol. 2004;17(4):195–201. DOI:10.1177/0891988704269823. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0891988704269823&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15533990&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000225239400003&link_type=ISI) 12. 12.Reppermund S, Zihl J, Lucae S, Horstmann S, Kloiber S, Holsboer F, Ising M. Persistent Cognitive impairment in depression: The role of Psychopathology and Altered Hypothalamic-Pituitary-Adrenocortical (HPA) System regulation. Biol Psychiatry. 2007;62(5):400–406. DOI: 10.1016/j.biopsych.2006.09.027. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2006.09.027&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17188252&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000249042800005&link_type=ISI) 13. 13.Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry. 2001;178:200–206. DOI:10.1192/bjp.178.3.200. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImJqcHJjcHN5Y2giO3M6NToicmVzaWQiO3M6OToiMTc4LzMvMjAwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMTEvMTEvMjAyMy4xMS4xMC4yMzI5ODM4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 14. 14.Smith TW, Christensen AJ, Peck JR, Ward JR. Cognitive distortion, helplessness, and depressed mood in rheumatoid arthritis: A four-year longitudinal analysis. Health Psychol. 1994;13(3):213–217. DOI: 10.1037/0278-6133.13.3.213. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1037/0278-6133.13.3.213&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8055856&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1994NL93700002&link_type=ISI) 15. 15.Brébion G, Smith MJ, Widlöcher D. Discrimination and response bias in memory: effects of depression severity and psychomotor retardation. Psychiatry Res Neuroimaging. 1997;70(2):95–103. DOI:10.1016/s0165-1781(97)03098-9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0165-1781(97)03098-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9194203&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997XE13100004&link_type=ISI) 16. 16.Porter RJ, Gallagher P, Thompson JM, Young AH. Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry. 2003;182:214–220. DOI: 10.1192/bjp.182.3.214. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImJqcHJjcHN5Y2giO3M6NToicmVzaWQiO3M6OToiMTgyLzMvMjE0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMTEvMTEvMjAyMy4xMS4xMC4yMzI5ODM4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17.Butters MA, Whyte EM, Nebes RD, Begley AE, Dew MA, Mulsant BH, Zmuda MD, Bhalla R, Meltzer CC, Pollock BG, Reynolds CF 3rd., Becker JT. The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry. 2004;61(6):587–595. DOI: 10.1001/archpsyc.61.6.587. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archpsyc.61.6.587&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15184238&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000221824800007&link_type=ISI) 18. 18.Naismith SL, Hickie IB, Turner KA, Little C, Winter VR, Ward PB, Wilhelm K, Mitchell PB, Parker G. Neuropsychological Performance in Patients With Depression is Associated With Clinical, Etiological and Genetic Risk Factors. J Clin Exp Neuropsychol. 2003;25(6):866–877. DOI: 10.1076/jcen.25.6.866.16472. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1076/jcen.25.6.866.16472&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=13680463&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000186369700012&link_type=ISI) 19. 19.Bhalla RK, Butters MA, Zmuda M, Seligman K, Mulsant BH, Pollock BG, Reynolds CF. Does education moderate neuropsychological impairment in late-life depression? Int J Geriatr Psychiatry. 2005;20(5):413–417. DOI:10.1002/gps.1296. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/gps.1296&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15852438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 20. 20.Cataldo MG, Nobile M, Lorusso ML, Battaglia M, Molteni M. Impulsivity in depressed children and adolescents: A comparison between behavioral and neuropsychological data. Psychiatry Res Neuroimaging. 2005;136(2-3):123–133. DOI: 10.1016/j.psychres.2004.12.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2004.12.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16125790&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000232291700005&link_type=ISI) 21. 21.Baune B, Aljeesh Y. The association of psychological stress and health related quality of life among patients with stroke and hypertension in Gaza Strip. Ann Gen Psychiatry. 2006;5(1):6. DOI:10.1186/1744-859X-5-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1744-859X-5-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16712716&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 22. 22.Sheline YI. Depression and the hippocampus: Cause or effect? Biol Psychiatry. 2011;70(4):308–309. DOI: 10.1016/j.biopsych.2011.06.006. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2011.06.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21791257&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 23. 23.Abas M, Sahakian BJ, Levy R. Neuropsychological deficits and CT scan changes in elderly depressives. Psychological Medicine. 1990 Aug 1;20(3):507–20. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2236360&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1990DY57000007&link_type=ISI) 24. 24.Elliott R, Sahakian BJ, McKay AP, Herrod JJ, Robbins TW, Paykel ES. Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med. 1996;26(5):975–989. DOI: 10.1017/s0033291700035303. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291700035303&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8878330&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1996VH58100009&link_type=ISI) 25. 25.Hirschfield RM. The comorbidity of major depression and anxiety disorders. Prim Care Companion J Clin Psychiatry. 2001;03(06):244–254. DOI: 10.4088/pcc.v03n0609. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4088/pcc.v03n0609&link_type=DOI) 26. 26.De Raedt R, Koster EH. Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cogn Affect Behav Neurosci. 2010;10(1):50–70. DOI: 10.3758/cabn.10.1.50. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3758/CABN.10.1.50&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20233955&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 27. 27.Disner SG, Beevers CG, Haigh EA, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12(8):467–477. DOI: 10.1038/nrn3027. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nrn3027&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21731066&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 28. 28.Joormann J, Gotlib IH. Emotion regulation in depression: Relation to cognitive inhibition. Cogn Emotion. 2010;24(2):281–298. DOI: 10.1080/02699930903407948. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/02699930903407948&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20300538&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000274980700007&link_type=ISI) 29. 29.Mogg K, Bradley BP. Anxiety and attention to threat: Cognitive mechanisms and treatment with attention bias modification. Behav Res Ther. 2016;87:76–108. DOI: 10.1016/j.brat.2016.08.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.brat.2016.08.001&link_type=DOI) 30. 30.Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541. DOI:10.1002/mrm.1910340409 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/mrm.1910340409&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8524021&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995RX75100008&link_type=ISI) 31. 31.Chou YH, Sundman M, Whitson H, et al. Maintenance and Representation of Mind Wandering during Resting-State fMRI. Sci Rep. 2017;7:40722. DOI: 10.1038/srep40722. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep40722&link_type=DOI) 32. 32.Rodríguez MR, Nuevo R, Chatterji S, Ayuso-Mateos JL. Definitions and factors associated with subthreshold depressive conditions: A systematic review. BMC Psychiatry. 2012;12(1). DOI: 10.1186/1471-244x-12-181. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-244x-12-181&link_type=DOI) 33. 33.Cuijpers P, Smit F. Subthreshold depression: A clinically relevant condition? Eur Psychiatry. 2010;25:153. DOI: 10.1016/s0924-9338(10)70153-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0924-9338(10)70153-x&link_type=DOI) 34. 34.Haller H, Cramer H, Lauche R, Gass F, Dobos GJ. The prevalence and burden of subthreshold generalized anxiety disorder: A systematic review. BMC Psychiatry. 2014;14(1). DOI: 10.1186/1471-244x-14-128. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-244x-14-128&link_type=DOI) 35. 35.Rucci P, Gherardi S, Tansella M, Piccinelli M, Berardi D, Bisoffi G, Corsino MA, Pini S. Subthreshold psychiatric disorders in primary care: prevalence and associated characteristics. J Affect Disord. 2003;76(1-3):171–181. DOI:10.1016/s0165-0327(02)00087-3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0165-0327(02)00087-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12943947&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000185400700021&link_type=ISI) 36. 36.Chachamovich E, Fleck M, Laidlaw K, Power M. Impact of major depression and subsyndromal symptoms on quality of life and attitudes toward aging in an international sample of older adults. Gerontologist. 2008;48(5):593–602. DOI: 10.1093/geront/48.5.593. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/geront/48.5.593&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18981276&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 37. 37.Goldney RD, Fisher LJ, Dal Grande E, Taylor AW. Subsyndromal depression: Prevalence, use of health services and quality of life in an Australian population. Soc Psychiatry Psychiatr Epidemiol. 2004;39(4):293–298. DOI: 10.1007/s00127-004-0745-5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00127-004-0745-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15085331&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 38. 38.Cuijpers P, Koole SL, van Dijke A, Roca M, Li J, Reynolds CF. Psychotherapy for subclinical depression: Meta-analysis. Br J Psychiatry. 2014;205(4):268–274. DOI: 10.1192/bjp.bp.113.138784. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImJqcHJjcHN5Y2giO3M6NToicmVzaWQiO3M6OToiMjA1LzQvMjY4IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMTEvMTEvMjAyMy4xMS4xMC4yMzI5ODM4My5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 39. 39.Beesdo K, Knappe S, Pine DS. Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. Psychiatr Clin North Am. 2009;32(3):483–524. DOI:10.1016/j.psc.2009.06.002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psc.2009.06.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19716988&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000270208500003&link_type=ISI) 40. 40.Yang X-Hua, Huang J, Zhu C-Ying, Wang Y-Fei, Cheung EFC, Chan RC-K, Xie G-rong. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res. 2014;220(3):874–882. DOI: 10.1016/j.psychres.2014.08.056. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2014.08.056&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25262638&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 41. 41.Sharp LK, Lipsky MS. Screening for depression across the lifespan: a review of measures for use in primary care settings. Am Fam Physician. 2002;66(6):1001–1009. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12358212&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000178254100005&link_type=ISI) 42. 42.Babayan A, Erbey M, Kumral D, Reinelt JD, Reiter AM, Röbbig J, Schaare HL, Uhlig M, Anwander A, Bazin PL, Horstmann A, Lampe L, Nikulin VV, Okon-Singer H, Preusser S, Pampel A, Rohr CS, Sacher J, Thöne-Otto A, … Villringer A. A Mind-brain-body Dataset of MRI, EEG, Cognition, Emotion, and Peripheral Physiology in Young and Old Adults. Sci Data. 2019;6(1). DOI:10.1038/sdata.2018.308. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sdata.2018.308&link_type=DOI) 43. 43.Mendes N, Oligschläger S, Lauckner M, Golchert J, Huntenburg JM, Falkiewicz M, et al. A functional connectome phenotyping dataset including cognitive state and personality measures. Sci Data. 2019;6:180307. DOI: 10.1038/sdata.2018.307. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/sdata.2018.307&link_type=DOI) 44. 44.Derryberry D, Reed MA. Anxiety and attentional focusing: Trait, state and hemispheric influences. Pers Individ Dif. 1998;25(4):745–761. DOI: 10.1016/s0191-8869(98)00117-2. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0191-8869(98)00117-2&link_type=DOI) 45. 45.Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. DOI: 10.1111/j.1600-0447.1983.tb09716.x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1600-0447.1983.tb09716.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6880820&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1983QV25600001&link_type=ISI) 46. 46.Segonne F. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004. DOI: 10.1016/s1053-8119(04)00188-0. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s1053-8119(04)00188-0&link_type=DOI) 47. 47.Fischl B. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. DOI: 10.1093/cercor/bhg087. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/bhg087&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14654453&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000187219900002&link_type=ISI) 48. 48.Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation. Neuron. 2002;33(3):341-355. DOI: 10.1016/s0896-6273(02)00569-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0896-6273(02)00569-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11832223&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000173643200006&link_type=ISI) 49. 49.Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI Data. IEEE Trans Med Imaging. 1998;17(1):87–97. DOI: 10.1109/42.668698. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/42.668698&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9617910&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000073646700008&link_type=ISI) 50. 50.Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. NeuroImage. 1999;9(2):179-194. DOI: 10.1006/nimg.1998.0395. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/nimg.1998.0395&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9931268&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078608900001&link_type=ISI) 51. 51.Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from Magnetic Resonance Images. Proc Natl Acad Sci. 2000;97(20):11050–11055. DOI: 10.1073/pnas.200033797. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTcvMjAvMTEwNTAiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMy8xMS8xMS8yMDIzLjExLjEwLjIzMjk4MzgzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 52. 52.Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. NeuroImage. 1999;9(2):195-207. DOI: 10.1006/nimg.1998.0396. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/nimg.1998.0396&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9931269&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000078608900002&link_type=ISI) 53. 53.Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. FMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods. 2018;16(1):111–116. DOI: 10.1038/s41592-018-0235-4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41592-018-0235-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30532080&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 54. 54.Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–173. DOI: 10.1006/cbmr.1996.0014. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/cbmr.1996.0014&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8812068&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1996UV56700002&link_type=ISI) 55. 55.Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–841. DOI: 10.1006/nimg.2002.1132. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1053-8119(02)91132-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12377157&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000178642000027&link_type=ISI) 56. 56.Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48(1):63–72. DOI: 10.1016/j.neuroimage.2009.06.060. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2009.06.060&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19573611&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000269321100010&link_type=ISI) 57. 57.Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320–341. DOI: 10.1016/j.neuroimage.2013.08.048. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2013.08.048&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23994314&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000328868600030&link_type=ISI) 58. 58.Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T. The human Brainnetome Atlas: A new brain atlas based on Connectional Architecture. Cereb Cortex. 2016;26(8):3508–3526. DOI: 10.1093/cercor/bhw157. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/bhw157&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27230218&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 59. 59.Gracia-Tabuenca Z, Alcauter S. NBR: Network-based R-statistics for (unbalanced) longitudinal samples. BioRxiv (Cold Spring Harbor Lab). 2020. DOI: 10.1101/2020.11.07.373019. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4xMS4wNy4zNzMwMTl2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIzLzExLzExLzIwMjMuMTEuMTAuMjMyOTgzODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 60. 60.Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R Package for Causal Mediation Analysis. J Stat Softw. 2014;59(5). DOI: 10.18637/jss.v059.i05. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.18637/jss.v059.i05&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25568305&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 61. 61.Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–1165. DOI: 10.1152/jn.00338.2011. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/jn.00338.2011&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21653723&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000294775500007&link_type=ISI) 62. 62.Bu X, Liang K, Lin Q, Gao Y, Qian A, Chen H, Chen W, Wang M, Yang C, Huang X. Exploring white matter functional networks in children with attention-deficit/hyperactivity disorder. Brain Communications. 2020;2(2). DOI: 10.1093/braincomms/fcaa113. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/braincomms/fcaa113&link_type=DOI) 63. 63.Wang M, Hu Z, Liu L, Li H, Qian Q, Niu H. Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: Evidence from resting-state functional near-infrared spectroscopy. Neurophotonics. 2020;7(01):1. DOI: 10.1117/1.nph.7.1.015012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1117/1.nph.7.1.015012&link_type=DOI) 64. 64.Jung M, Tu Y, Park J, Jorgenson K, Lang C, Song W, Kong J. Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder. Br J Psychiatry. 2019;214(06):339–344. DOI: 10.1192/bjp.2018.248. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1192/bjp.2018.248&link_type=DOI) 65. 65.O’Halloran L, Cao Z, Ruddy K, Jollans L, Albaugh MD, Aleni A, Potter AS, Vahey N, Banaschewski T, Hohmann S, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Gowland P, Heinz A, Whelan R. Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology. NeuroImage. 2018;169:395–406. DOI: 10.1016/j.neuroimage.2017.12.030. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroimage.2017.12.030&link_type=DOI) 66. 66.Kaiser ML, Schoemaker MM, Albaret JM, Geuze RH. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature. Res Dev Disabil. 2015;36C:338–357. DOI: 10.1016/j.ridd.2014.09.023. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ridd.2014.09.023&link_type=DOI) 67. 67.Hsiao SS, O’Shaughnessy DM, Johnson KO. Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. J Neurophysiol. 1993;70(1):444–447. DOI: 10.1152/jn.1993.70.1.444. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/jn.1993.70.1.444&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8360721&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993LM76000034&link_type=ISI) 68. 68.Burton H, Sinclair RJ. Attending to and remembering tactile stimuli. J Clin Neurophysiol. 2000;17(6):575–591. DOI: 10.1097/00004691-200011000-00004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00004691-200011000-00004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11151976&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165976900004&link_type=ISI) 69. 69.Burton H, Sinclair RJ. Attending to and Remembering Tactile Stimuli. J Clin Neurophysiol. 2000;17(6):575-591. DOI: 10.1097/00004691-200011000-00004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00004691-200011000-00004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11151976&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165976900004&link_type=ISI) 70. 70.Eimer M, Forster B. Modulations of early somatosensory ERP components by transient and sustained spatial attention. Exp Brain Res. 2003;151(1):24–31. DOI: 10.1007/s00221-003-1437-1. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00221-003-1437-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12756516&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000184015200004&link_type=ISI) 71. 71.Forster B, Eimer M. The attentional selection of spatial and non-spatial attributes in touch: ERP evidence for parallel and independent processes. Biol Psychol. 2004;66(1):1–20. DOI: 10.1016/j.biopsycho.2003.08.001. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsycho.2003.08.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15019167&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000220330000001&link_type=ISI) 72. 72.Gherri E, Forster B. Attention to the body depends on eye-in-orbit position. Front Psychol. 2014;5. DOI: 10.3389/fpsyg.2014.00683. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fpsyg.2014.00683&link_type=DOI) 73. 73.Gomez-Ramirez M, Trzcinski NK, Mihalas S, Niebur E, Hsiao SS. Temporal correlation mechanisms and their role in feature selection: A single-unit study in primate somatosensory cortex. PLoS Biol. 2014;12(11). DOI: 10.1371/journal.pbio.1002004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pbio.1002004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25423284&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 74. 74.Bishop SJ. Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci. 2009;12(1):92–98. DOI:10.1038/nn.2242. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nn.2242&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19079249&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000262010800020&link_type=ISI) 75. 75.Bishop SJ, Jenkins R, Lawrence AD. Neural processing of fearful faces: Effects of anxiety are gated by perceptual capacity limitations. Cereb Cortex. 2007;17(7):1595–1603. DOI:10.1093/cercor/bhl070. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/bhl070&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16956980&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000247349000010&link_type=ISI) 76. 76.Pannu-Hayes J, LaBar KS, Petty CM, McCarthy G, Morey RA. Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res Neuroimaging. 2009;172(1):7–15. DOI: 10.1016/j.pscychresns.2008.05.005. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pscychresns.2008.05.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19237269&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000265247200002&link_type=ISI) 77. 77.Pacheco-Unguetti AP, Acosta A, Callejas A, Lupiáñez J. Attention and anxiety. Psychol Sci. 2010;21(2):298–304. DOI: 10.1177/0956797609359624. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0956797609359624&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20424060&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 78. 78.Callejas A, Lupiáñez J, Tudela P. The three attentional networks: on their independence and interactions. Brain Cogn. 2004;54(3):225–227. DOI: 10.1016/j.bandc.2004.02.012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bandc.2004.02.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15050779&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000220756900008&link_type=ISI) 79. 79.Basten U, Stelzel C, Fiebach CJ. Trait anxiety modulates the neural efficiency of inhibitory control. J Cogn Neurosci. 2011;23(10):3132–3145. DOI:10.1162/jocn\_a\_00003. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.1162/jocn_a_00003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21391763&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000294055600039&link_type=ISI) 80. 80.Cui H, Zhang J, Liu Y, Li Q, Li H, Zhang L, Hu Q, Cheng W, Luo Q, Li J, Li W, Wang J, Feng J, Li C, Northoff G. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder. Hum Brain Mapp. 2016;37(4):1459–1473. DOI: 10.1002/hbm.23113. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/hbm.23113&link_type=DOI) 81. 81.Li X, Zhang M, Li K, Zou F, Wang Y, Wu X, Zhang H. The Altered Somatic Brain Network in Anxiety. Front Psychiatry. 2019;10. DOI: 10.3389/fpsyt.2019.00465. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fpsyt.2019.00465&link_type=DOI) 82. 82.Bouziane I, Das M, Friston KJ, Caballero-Gaudes C, Ray D. Enhanced top-down sensorimotor processing in somatic anxiety. Translational Psychiatry. 2022 Jul 2;12(1). 83. 83.Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: Controlling attention to threat-related stimuli. Nat Neurosci. 2004;7(2):184–188. DOI:10.1038/nn1173. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nn1173&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14703573&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000188468500017&link_type=ISI) 84. 84.Telzer EH, Mogg K, Bradley BP, Mai X, Ernst M, Pine DS, Monk CS. Relationship between trait anxiety, prefrontal cortex, and attention bias to angry faces in children and adolescents. Biol Psychol. 2008;79(2):216–222. DOI: 10.1016/j.biopsycho.2008.05.004. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsycho.2008.05.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18599179&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 85. 85.Goldin PR, Manber T, Hakimi S, Canli T, Gross JJ. Neural bases of social anxiety disorder. Arch Gen Psychiatry. 2009;66(2):170. DOI: 10.1001/archgenpsychiatry.2008.525. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/archgenpsychiatry.2008.525&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19188539&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000262992200009&link_type=ISI) 86. 86.Etkin A, Keller KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence for a compensatory network in generalized anxiety disorder. NeuroImage. 2010;47. DOI: 10.1016/s1053-8119(09)70428-8. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s1053-8119(09)70428-8&link_type=DOI) 87. 87.Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb Cortex. 2010;21(7):1667–1673. DOI: 10.1093/cercor/bhq237. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/bhq237&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21127016&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000291750400018&link_type=ISI) 88. 88.Vaidya CJ, Gordon EM. Phenotypic variability in resting-state functional connectivity: Current status. Brain Connect. 2013;3(2):99–120. DOI: 10.1089/brain.2012.0110. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/brain.2012.0110&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23294010&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 89. 89.He Y, Xu T, Zhang W, Zuo XN. Lifespan anxiety is reflected in human amygdala cortical connectivity. Hum Brain Mapp. 2016;37(3):1178–1193. DOI: 10.1002/hbm.23094. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/hbm.23094&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26859312&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 90. 90.Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, Smyser CD, Shimony JS, Ortega M, Dierker DL, Patel GH, Nelson SM, Gilmore AW, McDermott KB, Berg JJ, Drysdale AT, Perino MT, Snyder AZ, Raut RV, Dosenbach NU. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci. 2020;117(7):3808–3818. DOI: 10.1073/pnas.1910842117. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiMTE3LzcvMzgwOCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIzLzExLzExLzIwMjMuMTEuMTAuMjMyOTgzODMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 91. 91.Yaroslavsky I, Allard ES, Sanchez-Lopez A. Can’t look away: Attention control deficits predict rumination, depression symptoms and depressive affect in daily life. J Affect Disord. 2019;245:1061–1069. DOI: 10.1016/j.jad.2018.11.036. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2018.11.036&link_type=DOI) 92. 92.Hsu KJ, Beard C, Rifkin L, Dillon DG, Pizzagalli DA, Björgvinsson T. Transdiagnostic mechanisms in depression and anxiety: The role of rumination and attentional control. J Affect Disord. 2015;188:22–27. DOI: 10.1016/j.jad.2015.08.008. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2015.08.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26340079&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 93. 93.Blanck P, Perleth S, Heidenreich T, Kröger P, Ditzen B, Bents H, et al. Effects of mindfulness exercises as stand-alone intervention on symptoms of anxiety and depression: Systematic review and meta-analysis. Behaviour Research and Therapy. 2018 Mar;102:25–35. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 94. 94.Michl LC, McLaughlin KA, Shepherd K, Nolen-Hoeksema S. Rumination as a Mechanism Linking Stressful Life Events to Symptoms of Depression and Anxiety: Longitudinal Evidence in Early Adolescents and Adults. J Abnorm Psychol. 2013;122(2):339. doi:10.1037/a0031994. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1037/a0031994&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23713497&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 95. 95.Olatunji BO, Naragon-Gainey K, Wolitzky-Taylor KB. Specificity of rumination in anxiety and depression: A multimodal meta-analysis. Clin Psychol Sci Pract. 2013;20(3):225–257. DOI: 10.1037/h0101719. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/cpsp.12037&link_type=DOI) 96. 96.Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry. 2015;72(6):603. DOI: 10.1001/jamapsychiatry.2015.0071. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2015.0071&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25785575&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 97. 97.Miller R. Neuroeducation: Integrating brain-based psychoeducation into clinical practice. J Ment Health Couns. 2016;38(2):103–115. DOI: 10.17744/mehc.38.2.02. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.17744/mehc.38.2.02&link_type=DOI) 98. 98.Papageorgiou C, Wells A. Treatment of recurrent major depression with attention training. Cogn Behav Pract. 2000;7:407–413. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1077-7229(00)80051-6&link_type=DOI) 99. 99.Siegle GJ, Ghinassi F, Thase ME. Neurobehavioral therapies in the 21st century: summary of an emerging field and an extended example of cognitive control training for depression. Cogn Ther Res. 2007;31:235–262. DOI: 10.1007/s10608-006-9118-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10608-006-9118-6&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000245819300007&link_type=ISI) 100.100.Siegle GJ, Price RB, Jones NP, Ghinassi F, Painter T, Thase ME. You gotta work at it: pupillary indices of task focus are prognostic for response to a neurocognitive intervention for rumination in depression. Clin Psychol Sci. 2014;2:455–471. DOI: 10.1177/2167702614536160. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/2167702614536160&link_type=DOI) 101.101.Gyurak A, Ayduk O, Gross JJ. Training Executive Functions: Emotion Regulation and Affective Consequences. 102.102.Bomyea J, Amir N. The Effect of an Executive Functioning Training Program on Working Memory Capacity and Intrusive Thoughts. Cognitive Therapy and Research. 2011 May 13;35(6):529–35. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10608-011-9369-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22514357&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) 103.103.Burton H, Raichle M, Snyder A, Sinclair R, MacLeod A-M, Abend N. Tactile Attention Tasks Enhance Activation in Somatosensory Regions of Parietal Cortex: a Positron Emission Tomography Study. Cereb Cortex. 1999;9(7):662–674. DOI: 10.1093/cercor/9.7.662. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/cercor/9.7.662&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10554989&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F11%2F11%2F2023.11.10.23298383.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000083300500002&link_type=ISI) 104.104.Miller R, Beeson ET. The neuroeducation toolbox: practical translations of neuroscience in counseling and psychotherapy. San Diego, Ca: Cognella Academic Publishing; 2021.