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Abstract

In this study, we propose a comprehensive mechanical model of ocular bulb vibrations
and discuss its implications for acoustic tonometry. The model describes the eye wall as
a spherical, pre-stressed elastic shell containing a viscoelastic material and accounts for
the interaction between the elastic corneoscleral shell and the viscoelastic vitreous
humor. We investigate the natural frequencies of the system and the corresponding
vibration modes, expanding the solution in terms of scalar and vector spherical
harmonics. Our findings reveal the significant role of intraocular pressure (IOP) and
ocular rigidity in influencing vibration frequencies, while the vitreous rheological
properties primarily affect damping. This study contributes to the understanding of the
mechanical behavior of the eye under dynamic conditions, with potential implications
for non-contact intraocular pressure measurement techniques such as acoustic
tonometry. The model can also be relevant for other ocular pathological conditions,
such as traumatic retinal detachment, which are believed to be influenced by the
dynamic behavior of the eye.

Introduction 1

The human eye is the organ that allows us to perceive visual information of the world 2

around us. The shell enclosing the ocular bulb consists of three layers, with different 3

functions. The most external one is the fibrous corneo-scleral shell, which supports the 4

mechanical loads acting on the organ. The vascular middle layer is the uvea, which 5

consists of the iris, the ciliary body and the choroid. Finally, the innermost layer is the 6

retina, which is the nervous tunic, where the photoreceptors are located. The interior of 7

the eye is made of three chambers: the anterior chamber, the posterior chamber and the 8

vitreous chamber (Figure 1). The first is located between the cornea and the iris, the 9

second is between the iris and the lens, and the third is delimited anteriorly by the lens 10

and posteriorly by the retina. The anterior and posterior chambers are connected 11

through the pupil and contain aqueous humor, a liquid with properties very similar to 12

water. The vitreous chamber contains a gel, the vitreous humor, with viscoelastic 13

properties [1]. 14

The eye is a pressurized organ and the intraocular pressure (IOP) is responsible for 15

the main mechanical loads acting on the corneo-scleral shell under physiological 16
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Fig 1. Sketch of a cross-section of the human eye. {fig:sketch-eye}

conditions. IOP is regulated by a delicate balance between rate of aqueous production 17

by the ciliary body [2] and resistance to its drainage at the junction between the cornea 18

and the iris, mostly through a spongy tissue named trabecular meshwork [3]. IOP has a 19

significant impact on the functioning of the eye and is involved in the onset and 20

development of various pathological conditions. Most notably, elevated IOP increases 21

the risk of developing glaucoma, a collection of eye conditions that can cause damage to 22

the optic nerve and can result in vision loss [4]. 23

Standard methods to measure IOP (contact tonometry methods) exploit the 24

principle that the force required to deform the cornea by applanation or indentation 25

increases with increasing IOP. The gold standard instrument in contact tonometry is 26

the Goldmann applanation tonometer, which uses a probe to flatten a portion of the 27

cornea and infers the IOP from the required force. Non-contact tonometers are also 28

presently in use, which employ an air puff to flatten the cornea [5, 6]. A detailed review 29

of the techniques presently in use to measure IOP and the underlying physical principles 30

is reported in [7]. 31

A promising, non-contact IOP measurement technique, which has been investigated 32

since the late seventies [8], is acoustic tonometry. The general idea is to excite 33

vibrations of the eye bulb with acoustic waves and measuring its response, from which it 34

is possible to infer the natural vibrations frequencies of the eye and their damping ratio. 35

These, in turn, are affected by IOP [8–13]. Although the preliminary results obtained 36

adopting these techniques suggest that they have a great potential, none of such 37

approaches has made its way to the clinical practice yet. 38

Reliability of acoustic methods would certainly benefit from a better understanding 39

of the mechanical behavior of the eye under dynamic conditions. In fact, the natural 40

frequencies of the eye and their damping do not only depend on IOP, but also on a 41

number of other factors, such as mechanical properties and thickness of the 42

corneoscleral shell, elasticity and viscosity of the vitreous body, size of the eye bulb, etc. 43

A better understanding of the dynamical response of the eye may also have an 44

impact in other areas related to pathological conditions of the eye. For instance, retinal 45

detachment is often a consequence of trauma or of vitreo-retinal tractions, which are 46

both, to some extent, influenced by the dynamical behavior of the eye bulb and of the 47

vitreous body [14–17]. It has been suggested that, due to its viscoelastic behavior, the 48

vitreous body might serve as a mechanical damper for the eye, thus absorbing impacts, 49

and protecting the lens and retina against mechanical injury [1]. In this respect, 50
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understanding the role of vitreous mechanical properties on ocular bulb dynamics 51

provides useful information on how vitreous aging and vitreous replacement with 52

tamponade substitutes would impact on tractions on the retina. 53

There is extensive literature on mathematical modeling of spherical shells vibrations, 54

which dates back to some classical works of the nineteenth century [18,19]. The effect of 55

a fluid filling an elastic sphere on its vibration frequencies has been first considered 56

by [20] and various further papers have been published since. A recent contribution that 57

also summarizes previous results is [21]. The authors studied theoretically small 58

oscillations of a pressurized, elastic, spherical shell subject to internal and external fluid 59

effects. 60

Some authors have also studied theoretically or numerically the vibrations of a 61

fluid-filled shell, specifically considering the problem of ocular bulb vibrations. In [22], 62

the eye was modeled as an elastic shell, representing corneo-scleral shell, described with 63

a realistic geometry. The shell was filled with an inviscid and incompressible fluid, 64

representing the vitreous humor. The resulting model was solved using the 65

finite-element method to compute the vibration modes of the eye and the dependence of 66

resonant frequencies on IOP. 67

Salimi et al. [23] computed the natural frequencies of the eye using the finite-element 68

method. They first described the eye as a spherical shell containing a fluid and then 69

proposed an anatomically more accurate model. They also validated their numerical 70

predictions against results from experimental tests. 71

Aloy at al. [24] proposed various models of the eye with increasing complexity and 72

computed the oscillation frequencies of the system, with the aim of indirectly estimating 73

the mechanical properties of ocular tissues. They first modeled the eye globe as a 74

homogeneous sphere, then accounted for the presence of an outer stiffer layer (the 75

corneo-scleral shell) and, finally, modeled the cornea and sclera as distinguished tissues, 76

with different mechanical properties. 77

Shih and Guo [25] also studied the natural modes of oscillation of the ocular bulb, 78

described as a spherical elastic shell filled with an inviscid fluid. The theoretical model 79

proposed in [25] is obtained by adapting the equations that govern the equilibrium of a 80

pre-stretched plate to a spherical geometry. 81

In this paper, we study coupled vibrations of the vitreous humor and corneo-scleral 82

shell, modeling the former as a linear, viscoelastic, incompressible material, and the 83

latter as a thin elastic spherical shell. In spite of the idealizations it is based on, our 84

approach improves over previous works in various respects. We account for the effect of 85

pre-stress of the shell in a formally correct manner and this leads to governing equations 86

for the shell that are slightly different from those derived in previous works. 87

We also consider the viscoelasticity of the vitreous body, which was invariably 88

neglected in all previous contributions (in most cases the vitreous body was simply 89

described as an inviscid fluid). This is likely to have an important effect, particularly on 90

the damping properties of the system. 91

With these ingredient, we compute the resonant frequencies and the vibration modes 92

of the eyebulb, highlighting the role of IOP, stiffening of the sclera, and damping 93

associated to the viscoelastic behavior of the vitreous. This allows us to assess the 94

importance of pressure and stiffening on the resonant frequencies, as well as effect of the 95

rheological properties of the enclosed fluid on the damping rate. The importance of 96

these effectes is discussed in the final section of this paper, where we summarize our 97

main findings. 98
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Materials and methods 99

Formulation of the mathematical model 100

To compute the vibration properties of the eyebulb we have developed an analytical 101

model, where the eyebulb is described as an elastic pre-stressed, spherical shell (the 102

corneo-scleral shell) filled with an incompressible viscoelastic material (the vitreous 103

humor). 104

The equations that govern the motion in the interior of the eyebulb are the standard 105

ones for linear viscoelasticity, (1). They have been used in [15] to characterize the 106

vibrations of the vitreous body, under the assumption that the cornea was rigid. 107

For the shell we use the coordinate-free approach developed in [26] [26] and we adopt 108

the equations of motion for a pressurized spherical shell, (2), developed therein. We 109

refer to [26] and to the supplementary material for additional information concerning 110

the shell model. 111

The two models (vitreous and corneo-scleral shell) are coupled using the no-slip 112

condition and also assuming that the shell is loaded by the traction locally exerted by 113

the inner viscoelastic material. More in detail, we consider an equilibrium state where 114

the eyebulb is at rest, with an internal constant pressure p. The corneoscleral shell is 115

thus in a stressed state, described by membrane force-tensor N̊ = pR
2 P, where 116

P = I − n⊗ n, with I the identity tensor and n the outward unit normal, is the 117

projector on the tangent plane to the shell. Note that in this state the bending moment 118

vanishes. 119

Small-amplitude vibrations are described by a displacement field u(x, t). In the 120

vitreous humor, the displacement obeys the motion equations 121

ρvü = divS,

divu = 0,
(1) {eq:eq-bulk}{eq:eq-bulk}

where each superimposed dot represents partial differentiation with respect to time, ρv 122

is the density of the vitreous humor and S is the increment of the nominal (Piola) 123

stress. On the corneoscleral shell, the normal and tangential components of the 124

displacement, respectively, w = n · u and v = Pu, obey the motion equations 125

ρshẅ = divs(P divs M)− 1

R
P ·N+

p

2
R∆sw − p

2
divsv − n · Sn,

ρshv̈ = Pdivs N+
1

R
P(divs M)−PSn,

(2) {balance2}{balance2}

where N and M are the increments of the nominal membrane-force tensor and 126

bending-moment tensor. On the right-hand sides of Eqs. (2), the last term represent the 127

force per unit reference area exerted by the vitreous humor on the corneoscleral shell. 128

Moreover, the first term on the right-hand sides of the same equation set represents the 129

extra contribution due to the shell pre-tension due to the IOP. 130

Within the vitreous, we adopt the following constitutive equation for the incremental 131

nominal stress: 132

S = p∇u⊤ +Σ, (3) {eq:1b}{eq:1b}

where 133

Σ = −qI + 2

∫ t

−∞
G(t− s)D(s)ds, (4) {eq:4b}{eq:4b}

with q the pressure increment and D = dev(sym∇u̇) the strain rate. The first term on 134

the right-hand side of (3) accounts for the pre-compression associated to the IOP. An 135

explanation of the nature of this term in connection with the definition of nominal 136

stress may be found in [27]. 137
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The stress relaxation function G(t) embodies the information of the material that 138

fills the cavity, in response to a stress relaxation test. For an elastic material, G(t) is 139

proportional to the Heaviside function; for a viscous fluid, G(t) is proportional to the 140

Dirac delta centered at the origin [28]. In the case of harmonic motion, the properties of 141

the stress relaxation function are encoded in the complex modulus 142

G(ζ) = ζ

∫ ∞

0

e−ζτG(τ)dτ. (5) {eq:complex-modulus}{eq:complex-modulus}

We assume that the stress-response function of the vitreous can be described with the 143

Kelvin-Voigt model (a linear spring and a dashpot arranged in parallel), so that 144

G(ζ) = γ + ζη, (6) {eq:kelvin-voigt}{eq:kelvin-voigt}

where γ is the shear modulus and η is the viscosity. 145

For the corneoscleral shell we adopt the constitutive equations 146

N =
pR

2
∇u+ h(2µε+ λ̃(tr ε)P) +

1

R
M,

M =
h3

12
(2µκ+ λ̃(trκ)P),

(7) {eq:7}{eq:7}

where 147

ε =
1

2

(
P∇sv +∇sv

⊤P
)
+

w

R
P,

κ = −P∇s∇sw +
1

R
P∇sv +

1

R
∇sv

⊤P+
w

R2
P,

(8) {eq:8}{eq:8}

are, respectively, the in-plane stretch and bending tensors. Equations (2), (7) and (8) 148

follow from a systematic linearization of the equations that govern the dynamics of 149

non-linear elastic shells 150

The equations that govern the dynamics of an empty or a fluid-filled spherical shell 151

have been derived and studied by several authors. Lamb [30] studied the 152

small-amplitude vibrations of a thin spherical shell by fully solving the dynamical 153

equations of elasticity in a domain bounded between two concentric spherical surfaces. 154

The vibrations of an elastic spherical shell containing a fluid have been studied first by 155

Love [31], then by Rand and DiMaggio [32] by Engin and Liu [33], and by Bai and 156

Wu [34]. The effect of viscosity of the enclosed fluid has been investigate by Su [35]. 157

The explicit contribution of an initial pressure to the motion of the shell has been 158

considered by Kuo et al. [36] and by Shih and Guo [37]. In both cases, the initial 159

pressure results into an extra term that adds up to the restoring elastic forces. Kuo et 160

al. [36] take as starting point the equations that govern the axisymmetric motions of a 161

spherical shell and introduce the restoring force due to the pre-stress by an insightful 162

ad-hoc argument. Shih and Guo [37], instead, take as starting point the equations of a 163

pre-stresssed membrane taken from [38], and take into account the effect of curvature 164

replacing the Laplacian operator of the membrane with the Laplace-Beltrami operator. 165

Compared with these two references, our approach to the calculation of the extra 166

restoring force due to the IOP is based on a systematic linearization of the nonlinear 167

equation of motions derived in [26], and yields slightly different equations. In particular, 168

in our case the initial pre-stress affects also the tangential motion of the shell. However, 169

the extra contribution of the normal component of the displacement that appears in our 170

motion equations (see the Supplementary Material), proportional to the surface 171

Laplacian ∆s of the normal displacement, coincides with that of Kuo et al. [36] and that 172

of Shih and Guo. [37]. 173
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Parameter values 174

All parameter values that have been used in the model are reported in Table 1. 175

Jesus et al. [39] measured the scleral radius through an approximation of the 176

topographical scleral data to a sphere and found the value of 11.2± 0.3 mm, which is 177

what we use in the model. 178

The thickness of the sclera is highly variable from point to point, ranging from 0.50 179

mm at the limbus to 0.95 mm at the posterior pole (see Table 1). The thickness of the 180

central cornea is approximately 0.56 mm. In our model the corneo-scleral shell is 181

modeled as a constant thickness structure, and we have adopted the value 0.5 mm, 182

which is in line with the value chosen in related studies [25]. 183

Parameter Value Reference

Radius of curvature of the sclera 11.2± 0.3 [39]
Thickness of the sclera 0.50± 0.11 mm limbus

0.43± 0.14 mm ora serrata
0.42± 0.15 mm equator
0.65± 0.15 mm posterior region
0.95± 0.18 mm posterior pole
0.86± 0.21 mm optic nerve region [40]

Thickness of the cornea 0.561± 0.026 mm [41]
Density of the sclera 1077± 5 kg/m3 [42]
Density of the cornea 1058± 7 kg/m3 [42]
Shear modulus of the vitreous 10 Pa [43,44]
Viscosity of the vitreous η 0.39 Pa · s [43,44]
Ocular rigidity 0.021 µl−1 [45, 46]
Physiological IOP 15 mmHg [47]

Table 1. Experimental values of the parameters. {tab:parameters}

Densities of the sclera and cornea have been taken equal to 1077 and 1058 kg/m3, 184

respectively [42]. 185

The viscoelastic properties of the vitreous have been measured by several authors; 186

see Table 1 in [1]. Most authors have characterized vitreous properties through the 187

complex modulus G, defined by equation (5). In this work we interpret the rheological 188

tests using the Kelvin-Voigt model (6) and adopt the values of γ = 10 Pa and η = 0.39 189

Pa · s, that are derived from measurements by [43] (see Table 1 in [44]). 190

We finally need to specify the values of the parameters µ and λ̃. In conventional 191

engineering theories, these parameters are the shear modulus and the effective first 192

Lamé constant. They are given by 193

µ =
E

2(1 + ν)
and λ̃ =

2Eν

1 + ν
, (9) {eq:9}{eq:9}

where E and ν are, respectively, the Young’s modulus and the Poisson’s ratio. The 194

constant λ̃ represents a correction to the Lamé parameter λ = Eν
(1+ν)(1−2ν) , that 195

accounts for the fact that a thin shell is in a plane stress state. If the material is 196

incompressible, then ν = 0.5 and (9) become µ = 1
3E and λ̃ = 2

3E, so that 197

λ̃ = 2µ. (10) {eq:10}{eq:10}

It would be tempting to employ (9) or (10) to fit our parameters, employing the 198

available measurements of the Young’s modulus and Poisson’s ratio of the cornea. 199

However, the available data are scattered and, moreover, the outer shell of the eye is 200
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highly anisotropic and non-homogeneous. In addition, one should consider that the 201

mechanical and geometrical properties of the cornea are significantly different from 202

those of the sclera [48,49]. 203

For the aforementioned reasons, we have opted for fitting the parameters µ and λ̃ 204

using measurements from inflation tests that provide a global estimate of the bulb 205

mechanical properties, somehow averaging over the spatial variability of tissue 206

properties. Friedenwald [45] proposed the following empirical law to link the ocular 207

volume V to IOP p 208

log

(
p

p0

)
= K(V − V0), (11) {eq:61}{eq:61}

where p0 and V0 are the corresponding reference values, and K is a constant called 209

ocular rigidity. Friedenwald [45] estimated the ocular rigidity to be 0.021 µl−1. 210

It follows from (11) that dp
dV = Kp, and hence 211

dp

dR
= 4πR2Kp. (12) {dPdR}{dPdR}

For a sphere of radius R, a uniform increment dR of the radius corresponds to a 212

normal displacement w = dR and to a tangential displacement v = 0. Thus, by (8), the 213

stretching and bending strains are, respectively, 214

ε =
dR

R
P, κ =

dR

R2
P. (13)

Neglecting bending moments, the increment of the nominal membrane force tensor is, 215

according to the constitutive equation (7), 216

N =
(pR

2
+ 2h(µ+ λ̃)

)dR
R

P. (14)

The corresponding increment of nominal traction (force per reference unit area) is 217

b = (dp+ pdR
R )n, thus, the equilibrium equation in the normal direction (see (2)) yields 218

−
(
p+ 4

h

R
(µ+ λ̃)

)dR
R

+ dp+ p
dR

R
= 0, (15)

whence 219

dp

dR
= 4

h

R2
(µ+ λ̃), (16) {dpdR2}{dpdR2}

which corresponds to 220

dV

dp
=

πR4

h(µ+ λ̃)
= C, (17)

where C is ocular compliance. Comparison of (12) and (16) yields 221

µ+ λ̃ = π
R4

h
Kp, C =

1

Kp
. (18) {eq:mu-lambda}{eq:mu-lambda}

Since the sclera is an almost incompressible material, we assume that the Poisson 222

coefficients be equal to 0.5. Then, (10) and (18) yield 223

µ =
π

3
R3Kp. (19) {eq:mu-05}{eq:mu-05}

As a consequence, the value of the Young’s modulus that results from (9) and (19) is 224

given by 225

E = π
R4

h
Kp, (20) {eq:young}{eq:young}
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in agreement with [50]. In particular, taking R = 11.2 mm, h = 0.5 mm, 226

K = 0.021 µl−1 and p = 15 mmHg, we obtain E = 4.15 MPa. This is in line with 227

experimentally determined values, see Table 1 in [48]. 228

We note that the above expressions imply that the Young’s modulus E increases 229

(and the ocular compliance C decreases) as IOP grows. Thus, by assuming a constant 230

values of ocular rigidity K, we effectively account for corneo-scleral tissue stiffening in 231

response to tissue strain. 232

Solution procedure 233

The manipulations needed to find a solution of the mathematical model described in the 234

previous section are quite elaborated, and a detailed description is reported in the 235

Supplementary Material. Here we just outline the main steps in the following. 236

The first step of the solution process consists in passing from the time domain to the 237

frequency domain, by writing 238

u(x, t) = Re
(
eζtu(x, ζ)

)
, q(x, t) = Re

(
eζtq(x, ζ)

)
, (21) {eq:21}{eq:21}

where ζ ∈ C \ {0} is a complex frequency. The imaginary part of ζ is the angular 239

frequency of oscillation of the solution, while the opposite of the real part yields the rate 240

of decay of the solution. 241

We expand pressure increment and displacement using scalar and vector spherical 242

harmonics, respectively (for the detailed definitions we refer to the Supplementary 243

Material and [51,52]). Specifically, we write 244

q(r) =
∑
ℓ≥0

∑
−ℓ≤m≤ℓ

Qℓm(r, ζ)Yℓm(r̂), (22) {eq:10b}{eq:10b}

and 245

u(r, ζ) =
∑
ℓ≥0

∑
−ℓ≤m≤ℓ

uℓm(r, ζ), (23) {eq:11b}{eq:11b}

where 246

uℓm(r, ζ) = Pℓm(r, ζ)pℓm(r̂) +Bℓm(r, ζ)bℓm(r̂) + Cℓm(r, ζ)cℓm(r̂). (24) {eq:12b}{eq:12b}

Here r represents the position with respect to the center of the sphere; r = |r| is the 247

distance from the center, and r̂ is the unit vector pointing in the direction of r. The 248

functions Yℓm are the spherical harmonics, while pℓm, bℓm and cℓm are the vector 249

spherical harmonics, defined on the unit sphere. We recall that pℓm are radial vectors 250

and bℓm and cℓm are vectors tangential to the sphere surface and orthogonal to each 251

other. 252

As shown in the Supplementary Material, the substitution of (21)-(24) into the 253

motion equations (??), (3), and (4) yields a system of ordinary differential equations for 254

the coefficients Qℓm, Pℓm, Bℓm and Cℓm. For ℓ = 0, this system admits only the trivial 255

solution. For ℓ ≥ 1, bounded solutions have the general form: 256

Qℓm(r, ζ) = −C
(1)
ℓm

ρvRζ2

ℓ

( r

R

)ℓ
,

Pℓm(r, ζ) = C
(1)
ℓm

( r

R

)ℓ−1

+ C
(2)
ℓm

( r

R

)−1

jℓ

(
a(ζ)

r

R

)
,

Bℓm(r, ζ) = C
(1)
ℓm

sℓ
ℓ

( r

R

)ℓ−1

+
C

(2)
ℓm

sℓ

(
a(ζ) jℓ−1

(
a(ζ)

r

R

)
− ℓ

( r

R

)−1

jℓ

(
a(ζ)

r

R

))
,

Cℓm(r, ζ) = C
(3)
ℓmjℓ

(
a(ζ)

r

R

)
,

(25) {eq:66}{eq:66}

November 2, 2023 8/19

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2023. ; https://doi.org/10.1101/2023.11.10.23298373doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298373
http://creativecommons.org/licenses/by/4.0/


where C
(1)
ℓm , C

(2)
ℓm and C

(3)
ℓm are three arbitraty constants, a(ζ) = iRζ

√
ρv/G(ζ), and jℓ is 257

the ℓ-th spherical Bessel function, defined by jℓ(x) =
√
π/(2x)Jℓ+1/2(x). 258

Upon substitution of the solution (25) into the motion equations (2) that govern the 259

dynamics of the corneo-scleral shell we obtain two characteristic equations, namely, 260(
m11(ℓ, ζ) m12(ℓ, ζ)
m21(ℓ, ζ) m22(ℓ, ζ)

)(
C

(1)
ℓm

C
(2)
ℓm

)
= 0, (26) {eq:eigenvectors}{eq:eigenvectors}

and 261

m33(ℓ, z)C
(3)
ℓm = 0, (27) {eq:eigenvectors2}{eq:eigenvectors2}

where mij(ℓ, ζ) are complex coefficients, the expressions of which are reported in the 262

Supplementary Material. Vibration frequencies are determined by imposing either that 263

the determinant of the matrix in (26) vanishes, that is, 264

m11(ℓ, ζ)m22(ℓ, ζ)−m21(ℓ, ζ)m12(ℓ, ζ) = 0, (28) {characteristic1}{characteristic1}

or 265

m33(ℓ, ζ) = 0. (29) {characteristic2}{characteristic2}

The characteristic equations (28) and (29) define two families of vibration modes. 266

Modes in the first family are a linear combination of the harmonics pℓm and bℓm, 267

through the functions Pℓm and Bℓm, which depends on the coefficients C
(1)
ℓm and C

(2)
ℓm . 268

These coefficients are obtained by solving (26). For this class of modes, the 269

displacement field on the shell has both normal and tangential components. 270

The second family, involves only the vector spherical harmonics cℓm, and the 271

corresponding velocity field is tangential to the shell surface. 272

For ℓ = 1, modes in the first family are singular at the origin [15,52], and hence must 273

be discarded. Still for ℓ = 1, vibration modes in the second family have the special 274

property that every concentric sphere within the ball undergoes a rigid oscillatory 275

rotation. Such modes have been already studied in [15], and do not entail any 276

deformation of the shell. As such, they are not detectable by any method based on 277

measuring the deformation of the corneoscleral shell, and hence they are not of interest 278

in the context of the present investigation. 279

We remark that the index m does not appear in the characteristic equations. This is 280

because harmonics having the same ℓ, but different m, can be transformed into each 281

other through a rotation, which makes them physically equivalent [15]. For this reason, 282

we focus our attention on the case m = 0. 283

In Fig. 2 we represent the velocity of the two lowest-frequency modes (ℓ = 2) in the 284

first family. The first mode involves mainly bending of the shell, whereas the second 285

involves stretching, since the velocity field is almost tangential. In the figures we show 286

only a meridian section of the sphere, since the motion is axisymmetric. 287

Fig. 3 shows is a three-dimensional representation of the vibration mode for ℓ = 2 of 288

the second family. This mode of oscillation is purely tangential and involves a twist 289

deformation of the shell. 290

November 2, 2023 9/19

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2023. ; https://doi.org/10.1101/2023.11.10.23298373doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298373
http://creativecommons.org/licenses/by/4.0/


-0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a)

-0.01 -0.005 0 0.005 0.01

-0.01

-0.005

0

0.005

0.01

(b)

Fig 2. Velocity fields on the boundary corresponding to the two eigenvalues from (28)
for ℓ = 2 and m = 0. {fig:eigenfunctions1}

Fig 3. Three-dimensional rendering of the velocity field on the boundary corresponding
to the eigenvalue from (29) for ℓ = 2 and m = 0. {fig:eigenfunctions2}

Validation of the model 291

In [23], Salimi et al. studied free vibrations of the eyeball using a FEM model. To 292

calibrate their model, they performed experiments on the vibrations of a water-filled 293

elastic ball. In this section we validate our analytical model against these experimental 294

measurements. 295

The ball was filled with water through an injector and the internal pressure was 296

measured with a pressure gauge. The ball was hanged to an elastic cord, so that it 297

could freely vibrate. A little hammer was used to generate ball vibrations, which were 298

measured using an accelerometer. The authors determined the vibration spectrum in 299

response to the excitation input, from which they inferred the main natural oscillation 300

frequencies of the sphere. They performed experiments for three different values of the 301

internal water pressure. 302

A comparison between their experimental findings and the results predicted by our 303

model is shown in Table 2, where we report the vibration frequencies of the lowest mode, 304

with ℓ = 2. In our computations, we used to the following parameters [23]: sphere radius 305

25 mm; thickness of the wall 4 mm; Young’s modulus 4.8 MPa, Poisson coefficient 0.45; 306

shell density 1200 kg/m3; water density 1000 kg/m3; water viscosity 10−3 Pa · s. 307

The error of the model is always lower than 10%. Both experiments and model 308
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{tab:salimi}
Pressure 13.7 kPa 34.5 kPa 62.0 kPa

Experimental frequencies 187 Hz 195 Hz 206 Hz
Computed frequencies 176 Hz 180 Hz 187 Hz

Error % 5.88% 8.33% 9.22%

Table 2. Comparison between the model predictions and Salimi et al.’s [23]
experiments on water-filled elastic ball. {tab:comparison}

predict an approximately linear dependency of the frequency from the pressure. Given 309

some possible experimental uncertainty regarding material properties of the sphere we 310

regard this agreement acceptable. The increasing error with rising pressure can be 311

attributed to the nonlinear behavior of rubber, leading to an increasing Young’s 312

modulus, compared to the reference value of 4.8 MPa used in the calculations, as the 313

internal pressure grows. 314

Results 315

We begin by showing the lowest frequency eigenvalues of the system, obtained by 316

solving the characteristic equations (28) and (29), with m = 0 and ℓ = 2. As discussed 317

above, these eigenvalues are our main interest in this work. Results are reported in 318

Fig. 4 for various cases, relative to different materials filling the eyebulb. The vertical 319

and horizontal axes represent the imaginary and the real part of the eigenvalue ζ, 320

respectively; these correspond, in the order, to the oscillation frequency and to the 321

damping ratio. Empty circles represent the vibration frequencies of the empty shell; in 322

this case damping vanishes as the shell is assumed to have a purely elastic behavior and 323

does not dissipate energy by itself. Mathematically, this implies that the corresponding 324

eigenvalues are purely imaginary. The eigenvalue with the lowest frequency corresponds 325

to the bending mode, shown in Figure 2a, obtained as one of the solutions of (28). The 326

second eigenvalue (frequency of ≈ 1000 Hz) corresponds to the purely tangential mode, 327

shown in Fig. 3 and obtained by solving equation (29). The highest frequency eigenvalue 328

corresponds to the third solution of (28), whose associated mode is shown in Figure 2b. 329

The presence of a fluid inside the shell increases the total mass of the system and, as 330

can be seen in the figure, lowers considerably the vibration frequencies. Moreover, the 331

system becomes dissipative when it contains a viscous material. This implies that all 332

corresponding eigenvalues are now complex, with the real part being negative, which 333

corresponds to dissipation. In all cases, the lowest frequency is associated with the 334

mode corresponding to the first root of the characteristic equation of (28) (Fig. 2a), 335

which is thus the mode we will mostly focus our attention on in the following. This is 336

because this mode is the one which will survive the longest time, after excitation of the 337

eye bulb vibration. 338

The various points with different colors in Fig. 4 correspond to cases of clinical 339

interest, in which the eyeball is filled with healthy vitreous (blue), water (red) and 340

silicone oil (yellow). The case of water is representative of a completely liquefied 341

vitreous, and silicone oils are often used as vitreous replacement fluids after vitrectomy. 342

The mechanical properties adopted for each case are reported in the caption of Fig. 4. 343

The figure shows that the frequencies of oscillation are weakly affected by the material 344

filling eyebulb. On the contrary, the damping rate strongly depends on the viscosity of 345

the filling material, being much higher for silicone oil and the real vitreous than for 346

water. 347

In Fig. 5 we investigate the dependency of the vibration frequency of the less 348

damped mode on IOP, for different values of ocular rigidity K. The oscillation 349

frequency increases markedly as IOP is raised from very small values up to 80 mmHg 350
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Fig 4. Comparison between the complex frequencies for different materials filling the
vitreous cavity. Water: density of 1000 kg/m3 and viscosity of 10−3 Pa · s; vitreous
body: values from Table 1 and density of 1000 kg/m3; silicone oil: density of 970 kg/m3

and viscosity of 0.5 Pa · s. {fig:frequencies}

(which is an exceedingly high value). The dependency is particularly strong at low IOP. 351

The results reported Fig. 5 also show that ocular stiffness has a significant impact on 352

the vibration frequencies, especially at large values of IOP. The intermediate curve, 353

which corresponds to the value of ocular rigidity proposed by Friedenwald, is in good 354

agreement the curve from Fig. 5 of Ref. [8]. 355

In Fig. 5(b) we report the same curves as on Fig. 5(a) but in a log-log plot. This 356

shows that, on such a plane, the curves become straight lines, which means that the 357

oscillation frequency depends on IOP according to a power law. Moreover, the curves 358

are almost parallel to each other. In the case of the empty shell, an argument based on 359

dimensional analysis shows that, under the assumption that the ocular rigidity K is 360

constant, i.e. Young’s modulus grows linearly with IOP according to (20), the oscillation 361

frequency depends on the square root of IOP. This is confirmed by our solution. 362

Interestingly, the angular coefficient of the curves in Fig. 5(b) is very close to 1/2, which 363

implies that the presence of vitreous within the sphere does not modify significantly this 364

dependency.
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Fig 5. Dependency of the frequency of oscillation of the slowest decaying mode as a
function of IOP, for 3 different values of the ocular rigidity K. (a) linear scales, (b)
log-log scales. {fig:p-vs-f-k}

365

We point out that, according to equation (20), Friedenwald’s law (11) implies that 366

the corneo-scleral tissue stiffens with stretch. To understand the importance of such an 367

effect, we compare in Fig. 6 the IOP-frequency curve for K = 0.021 µl−1 from Fig. 5 368
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with the curve obtained by assuming a constant Young modulus (and thus also a 369

constant ocular compliance C), determined by equation (20) for p = 15 mmHg. The 370

comparison between the two curves shows that neglecting ocular stiffening results into a 371

substantial underestimation of the change of vibration frequency with IOP. This 372

confirms the importance of tissue stiffening effects, which have been already pointed out 373

by Alarm et al. [9].
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Fig 6. Dependency of the frequency of oscillation of the slowest decaying mode as a
function of IOP. Comparison between the model with constant ocular compliance C
(blue) and the model with constant ocular rigidity K (red). {fig:varying_p_C_freq}

374

The effect of viscosity on the vibration damping rate is shown in Fig. 7, for the case 375

in which the eyeball is filled with a viscous fluid. The viscosity in the plot is varied from 376

10−6 m2/s, which is representative of water, to 10−3 m2/s, which a typical viscosity of 377

silicone oils used as tamponade fluids after vitrectomy. 378
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Fig 7. Damping of the slowest decaying mode as a function of fluid viscosity. {fig:damping-nu}

Finally, in Fig. 8 we plot contour lines of the frequency (a) and damping rate (b) of 379

the slowest decaying mode as a function of IOP and ocular rigidity K. In the figure, 380

IOP is varied over a very wide range of values and K is modified by ±50% from the 381

baseline value 0.021 µl−1. The plots show that at low values of IOP, ocular rigidity has 382

little effect on the eigenvalues of the system, as the contour lines are almost vertical. As 383

IOP increases, ocular rigidity becomes progressively more relevant 384
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Fig 8. Frequency (a) and damping rate (b) of the slowest deaying mode as a function
of IOP and ocular rigidity K. {fig:iop-K}

Discussion and conclusions 385

We have developed a mechanical model of the vibrations of the eyebulb, which describes 386

the cornea and the sclera as a thin elastic shell with pre-stress, and the vitreous humor 387

as a viscoelastic material. The model takes into account the effect of the pre-stress 388

through a consistent linearization, which leads to a more rigorous set of equations than 389

previous authors have used. 390

We have solved the set of linear evolution equations resulting from the model using a 391

series expansion of pressure increment and displacement in terms of scalar and vector 392

spherical harmonics. For each term of the series, we have obtained an eigenvalue 393

problem consisting of three nonlinear algebraic equations, which we have solved 394

numerically. We focused on the bending modes with the lowest damping rate, which are 395

the most relevant for our application. We have evaluated the natural vibration 396

frequencies and damping rates, using parameters significant for the eye ball dynamics. 397

In particular, we have used ocular stiffness to assess the mechanical properties of the 398

corneo-scleral shell, which we believe is a better approach than the use of a value of 399

Young’s module taken from experiments on scleral tissue. This is for two reasons. First, 400

scleral properties are known to be spatially variable and, moreover, they are significantly 401

different from those of the cornea. The use of a value of Young’s modulus based on 402

inflation tests provides a meaningful “average” value. Secondly, the use of Friedenwald’s 403

law (11), somehow accounts for the nonlinearity of the corneoscleral tissue. 404

The existing experimental and numerical estimates of the vibrations of the eyeball 405

provide extremely sparse values (see table 1 of [37]), ranging from 30 to 800 Hz. This 406

extreme uncertainty probably reflects inaccuracies of experimental techniques or 407

difficulty in data interpretation, more than real variability from case to case. Our model 408

shows that the slowest decaying mode of oscillation that involves motion of the eye bulb 409

(and can thus been observed and measured) has frequencies ranging from ≈ 80 to 410

≈ 300 Hz, depending on the value of the IOP. These values are well within the range of 411

measurements. Moreover, the good agreement with the experimental results of Salimi et 412

al. [23], performed on a fluid filled rubber ball in controlled conditions, is reassuring 413

about the reliability of our predictions. 414

The increase of the vibration frequencies with IOP is of particular interest in the 415

present context, as it at the basis of acoustic tonometry. This dependency has two 416

origins: “geometric” stiffening, due to an increase of pre-stress, and “material” 417

stiffening, due to the nonlinearity of the stress-strain curve of the sclera. Our results 418
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indicate that the latter effect is by far dominant, as shown by Fig. 6. 419

Our results also predict a significant dependency of bulb dynamics on the 420

mechanical properties of the corneo-scleral shell and, in particular, on ocular rigidity K: 421

the natural frequencies of oscillation of the eye increase with K, i. e. with increasing 422

stiffness of the ocular tissues. Fig. 8 shows, however, that the dependency of oscillation 423

frequencies on ocular rigidity is important only at relatively large values of IOP and, 424

close to physiological conditions (IOP of ≈ 15 mmHg), IOP is by far the main 425

determinant of ocular vibration frequencies. This is an important finding, since it 426

confirms that measurement of natural vibration frequencies of the eye is a promising 427

method to measure IOP. In particular, longitudinal measurements on a single subject 428

have the potential to provide reliable estimates of IOP changes. 429

In this work we have for the first time accounted to the effect of the vitreous gel on 430

the dynamics of the eye bulb. Results show that the material filling the eye ball 431

contributes significantly to determine the frequencies of oscillation, mostly due to an 432

added mass effect: an eye filled with gas, which is much lighter than the vitreous, would 433

have higher natural frequencies of oscillation. The material property that matters for 434

the inertia of the system is, obviously, density. On the other hand, our results show that 435

the elastic and viscous properties of the material filling the vitreous chamber have little 436

effect on ocular vibration frequencies. However, viscosity plays a major role in 437

determining the damping rate of the system. This confirms the speculation that the 438

vitreous body might have a protecting role on the internal ocular tissues, effectively 439

acting as a damper. This might be particularly relevant in the case of traumas. 440

Our results may be improved in several aspects. We may take into account the 441

spatial variability of shell properties and the details of eye geometry, which is not 442

exactly a sphere. Accounting for these effects to model the dynamics of the ocular bulb 443

would, however, rule out the possibility of adopting analytical metods, and would 444

require a fully numerical approach. As a result, this would make it difficult to capture 445

the role of the key parameters. In this respect, we think that idealized models, such as 446

the one presented here, represent a very valuable complementary approach. This is 447

because analytical models easily elucidate relationships between the quantities at play, 448

allowing to capture the essential features of the problem. 449
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