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Time to Walk 400 meters 
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Abstract 

Background: Walking slows with aging often leading to mobility disability. Mitochondrial 

energetics has been found to influence gait speed over short distances. Additionally, walking is 

a complex activity but few clinical factors that may influence walk time have been studied. 

Methods: We examined 879 participants ≥70 years and measured the time to walk 400m.  We 

tested the hypothesis that decreased mitochondrial energetics by respirometry in muscle 

biopsies and magnetic resonance spectroscopy in the thigh, is associated with longer time to 

walk 400m. We also used cardiopulmonary exercise testing to assess the energetic costs of 

walking: maximum oxygen consumption (VO2peak) and energy cost-capacity (the ratio of VO2, 

at a slow speed to VO2peak). In addition, we tested the hypothesis that selected clinical factors 

would also be associated with 400m walk time.  

Results: Lower Max OXPHOS was associated with longer walk time and the association was 

explained by the energetics costs of walking, leg power and weight.  Additionally, a multivariate 

model revealed that longer walk time was also significantly associated with lower VO2peak, 

greater cost-capacity ratio, weaker leg power, heavier weight, hip and knee stiffness, peripheral 

neuropathy, greater perceived exertion while walking slowly, greater physical fatigability, less 

moderate-to-vigorous exercise, less sedentary time and anemia. Significant associations 

between age, sex, muscle mass, and peripheral artery disease with 400m walk time were 

explained by other clinical and physiologic factors. 

Conclusions: Lower mitochondrial energetics is associated with needing more time to walk 

400m. This supports the value of developing interventions to improve mitochondrial energetics. 

Additionally, doing more moderate-to-vigorous exercise, increasing leg power, reducing weight, 

treating hip and knee stiffness, and screening for and treating anemia may reduce the time 

required to walk 400m and reduce the risk of mobility disability.  
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Mobility, the ability to walk far enough fast enough to conduct activities of daily living, is 

essential for maintaining independence. The prevalence of mobility disability defined as the 

inability to walk ½ mile or climb a flight of steps increased from 25.9% of women and 16.7% of 

men aged 70-74 years reported, to 50.5% of women and 35.3% of men aged 80-84.1 Walking 

400m is equivalent to walking 2 to 3 blocks and walking that distance too slowly may limit the 

ability to shop for oneself or cross intersections within the cycle of changing lights.  Several 

studies have shown that slower 400-meter (400m) walk speed or inability to complete a 400m 

walk is strongly associated with progression to more advanced disability and total as well as 

cardiovascular mortality in older adults.2–4 The 6-minute walk test, a similar test that sets the 

time and measures distance,5,6 has been associated with mortality and cardiovascular events in 

cohort studies,7 and in patients with heart failure, chronic obstructive pulmonary disease, and 

peripheral artery disease.8–10  

Mobility disability, requiring more than 15 minutes to walk 400m, has been the outcome for 

several large clinical trials.11 In the Lifestyle Intervention and Independence for Elders (LIFE) 

Study, a physical activity program reduced the incidence of major mobility disability, defined as 

the inability to walk 400m, by 18% from 35.5% to 30.1% after 2.6 years.12 The Sarcopenia and 

Physical fRailty IN older people: multi-componenT Treatment strategies (SPRINTT) project had 

interventions which reduced major mobility disability by 23%.13 While these findings are 

promising, stronger interventions are needed and might involve additional interventions on other 

factors that contribute to a long 400-meter walk time.14,15  

Walking is a complex activity.16 Preventing decline in mobility requires a better understanding of 

factors that contribute to the ability to walk 400m. Multimorbidity and lack of physical activity are 

major correlates of mobility disability17–19 but do not explain the steep increase in incidence of 

mobility disability with age.1,20  
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Previous studies suggest that the decline of muscle mitochondrial function that occurs with 

aging may contribute to the decline in mobility.21–24 Most have used magnetic resonance 

spectroscopy (MRS) to estimate the capacity of mitochondria in thigh muscle to generate 

adenosine triphosphate (ATP).24  Few have also directly measured mitochondrial energetics in 

muscle biopsies to determine the role of muscle mitochondria in mobility.22,25 The energy 

required to walk at one’s usual pace increases with aging after the seventh decade and has 

been associated with slow gait speed over short distances, e.g. 6 meters.26 

Few other potential correlates of gait speed have been studied.16 A few studies of gait speed 

over 3 to 20 m found associations that include leg extension force, height, body mass index, 

balance, sedentary behavior, and chronic obstructive lung and cardiovascular disease. Loss of 

skeletal muscle mass has been shown to play a role as well.27  It has been proposed that gait 

mechanics and stiffness of tendons around lower extremity joints might be important.16 

We tested the hypothesis that muscle mitochondrial energetics would be an important correlate 

of the time it takes an individual to walk 400m.  As walking 400m is a complex activity we also 

tested the hypothesis and systematically assessed many other factors that would contribute to 

the 400m walk time. We analyzed these potential correlates of the 400m walk time in the Study 

of Muscle, Mobility and Aging (SOMMA), a cohort study of the biological determinants of 

mobility. 

 

Methods 

SOMMA is a cohort study of 879 individuals aged 70 or older who were recruited by field 

centers at University of Pittsburgh and Wake Forest University School of Medicine. A 

description of the design and methods of SOMMA has been published.28 All participants 

provided written, informed consent, and the Western IRB-Copernicus Group (WCG) Institutional 

Review Board approved the SOMMA (WCGIRB #20180764).    
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Participants must have been able to complete the 400-meter walk; those who appeared as they 

might not be able to complete the 400m walk at the in-person screening visit completed a short 

distance walk (4 meters) to ensure their walking speed was ≥0.6m/s. The 400m walk was 

conducted at the participant’s usual or preferred pace for 10 laps around a 40-meter course 

without any assistive device other than a straight cane. The total time (seconds) to walk 400m 

included the rest time if the participant stopped walking during the test.  

To assess mitochondrial energetics, we performed high resolution respirometry on 

permeabilized muscle fibers from percutaneous muscle biopsies from the vastus lateralis.22 

Methods for mitochondrial respirometry to assess the activity of mitochondrial electron transport 

system have been published.25 This study uses maximal oxidative phosphorylation (OXPHOS) 

supported by complex I- and II-linked carbohydrates (Max OXPHOS) as a measure of ex vivo 

muscle mitochondrial energetics.  In addition,  we used 31Phosphorous magnetic resonance 

spectroscopy (31P MRS) to measure of in vivo muscle mitochondrial energetics. It measures the 

rate of phosphocreatine (PCr) recovery after an acute bout of knee extensor exercise to 

estimate the maximal production of adenosine triphosphate (ATPmax).29 

We defined several domains of factors, besides mitochondrial energetics, that may contribute to 

the time required to complete the 400m walk. The domains were cardiorespiratory fitness and 

energetic cost of walking, body stature and composition, muscle mass, strength and power, 

blood flow, oxygen delivery, cardiopulmonary disease, perceived fatigability and exertion, 

depressive symptoms, cognitive performance, neurologic conditions, joint symptoms, usual 

physical activity, vision, general health and medical conditions, health habits, and 

socioeconomic status. For each domain, we measured candidate variables that reflect the effect 

of the domains on time to walk 400m.28 

To assess the energetic costs of walking, participants completed a three-stage cardiopulmonary 

treadmill exercise test (CPET) using a symptom-limited modified Balke or manual protocol 
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during which the volume of oxygen (VO2) uptake was measured.30 Participants began the 

VO2peak test at preferred walking speed as the treadmill speed (0.5 mph) and grade (2.5%) 

were incrementally increased until participants reach a respiratory exchange ratio (RER) ≥1.05 

and self-reported Borg Rating of Perceived Exertion (RPE) was ≥17.31 VO2peak (mL/min) was 

defined as the highest 30-second average oxygen consumption over the course of the test. The 

energy cost of walking was calculated as the average VO2 mL/min while walking at a steady 

slow speed: 1.5 mph for 5 min at zero grade. Energy cost-to-capacity ratio is the proportion of 

VO2peak required to walk at the steady 1.5 mph pace (the ratio of VO2 mL/min at a steady pace 

divided by VO2peak mL/min.32   

Weight was measured using a balance beam or digital scales. Leg extension strength was 

assessed by a one repetition max (1RM) on a Keiser Air 420 exercise machine, and peak power 

was measured across the 40-70% range of leg extension.33 Whole body skeletal muscle mass 

was measured by D3-creatine dilution (D3Cr).34,35 A whole body magnetic resonance (MR) scan 

included fat-free thigh muscle volume.36 

To assess impaired delivery of oxygen to leg muscles, systolic blood pressure was measured by 

Doppler in the arm (brachial artery) and ankle (posterior tibial artery) on both sides and 

peripheral artery disease was classified as present if the ankle to brachial artery ratio or index 

(ABI) was less than 1.0 in either leg.37,38 Anemia was defined as hemoglobin <13.5% for men 

and <12% for women. We measured perceived fatigability by the Pittsburgh Fatigability Scale 

(PFS, scale 0-50, higher = greater fatigability) and Borg RPE Scale (RPE Fatigability, scale 6-

20, higher exertion = greater fatigability) at the end of the 5 min walk.39,40  

We assessed peripheral sensory neuropathy by reduced touch sensation by the ability to feel 

fine filaments pressed against the great toe.41  Joint stiffness was assessed as self-report of 

stiffness in the hip or knee that made it difficult to walk often or always in the past 7 days.  

Physical activity was assessed using a wrist-worn ActiGraph GT9X for 7-full days and we 

assessed the time spent in moderate-to-vigorous physical activity (MVPA) (minutes/day).42,43 
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Participants concurrently wore an activPal device on the thigh to characterize sedentary time 

(minutes/day) and total daily step count.  General health status and medical history was 

assessed by self-reported diagnosis of common medical conditions. Methods for other 

examinations are described in the Supplement. 

 

Statistical Methods 

Linear regression was used in age-adjusted analyses to analyze the association of each 

variable with 400m walk time.  We then used a series of forward stepwise regression models 

using a P-value of 0.1, to select the final multivariate model to identify the correlates of 400m 

walk time. Lastly, we used multiple imputation by fully conditional specification method to 

account for missing data (Supplemental Table 1).  The results are expressed in seconds of walk 

time per SD or unit of each potential correlate or the equivalent beta coefficients. 

We expected that many factors, such as mitochondrial energetics, would influence 400m walk 

time by their effect on other assessments, such as the energy cost of walking and may, 

therefore, not appear in the multivariable model.  Thus, we systematically analyzed how the 

association of muscle mitochondrial energetics (Max OXPHOS) with 400m walk time was 

explained by VO2peak, the ratio of energy cost-capacity, and leg power by adding them 

individually and then together to the model between Max OXPHOS and 400m walk time. 

Based on expert judgement and prior evidence about factors that influence walking speed, we 

analyzed other variables that were associated with age-adjusted 400m walk in bivariate 

analyses but were not included in the final stepwise model: age, sex, muscle mass and 

peripheral artery disease with walk time. As with the analysis of Max OXPHOS, we started with 

the association of that factor with 400m walk time, then adjusted for variables from the 

multivariable model that may at least partially account for the association until the association 

was no longer statistically significant.  
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Results 

Characteristics of the 879 participants are described in Table 1. Participants had no 

contraindications to MR, CT scans, or muscle biopsy and, at a screening visit, were able to walk 

at least 0.6 m/s. The participants were initially contacted and screened for eligibility by phone. 

Of those eligible for and attended a screening 80% were enrolled in the study (Supplemental 

Figure 1).  Details of process and results of screening have been published.28 

 About half of the cohort was between 70 and 74 years of age. The mean 400-meter walk time 

was 6 minutes, 36 seconds.  

There were weak or no correlations between the measurements except for an expected 

correlation of Pearson’s r > 0.5 between measurements of body mass, strength, power and 

weight with VO2peak (Supplemental Figure 2). Most of the 53 variables that were significantly 

associated with walk time remained so after adjusting for age (Table 2).  

In bivariate analyses, maximal muscle mitochondrial respiration during ATP production (Max 

OXPHOS) was strongly associated with 400m walk time: an additional 22.1 s (17.5, 26.8) for 

each SD decrement. The association between max OXPHOS, with 400m walk time was 

completely attenuated by adjustments for the energy cost-capacity ratio, leg power, 

cardiorespiratory fitness (VO2peak) and weight (Table 3). This accounts for the fact that Max 

OXPHOS, did not appear in the multivariate model that included these variables.  The 

association between ATPmax and 400m walk time was no longer significant after adjustment for 

a higher energy cost-capacity ratio and heavier weight. Furthermore, the association of in vivo 

ATPmax by 31P MRS with walk time (beta coefficient=12.4, P<0.001) was completely attenuated 

by adjustment for Max OXPHOS measured ex vivo from the muscle biopsy (adjusted beta 

coefficient = 3.6, p = 0.21). Therefore, hereafter, ‘mitochondrial energetics’ refers to Max 

OXPHOS.  
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In the multivariate model a higher ratio of VO2 at the slow walking speed to the VO2peak (cost-

capacity ratio) was associated with nearly 20 seconds longer per SD of the measurement, to 

compete the 400m walk (Table 4). In addition, a lower VO2peak indicated a 9 second longer 

time, per SD, to walk 400m.  Weaker leg power was associated with about 17 seconds slower 

time for each standard deviation (SD) decrement. Despite the greater leg power of heavier 

individuals, greater weight was associated with longer walk time—adding about 22 seconds for 

each 15 kg greater weight. Self-report of frequent or continuous stiffness in the hips or knees 

was associated with about 54 seconds longer time to walk 400m. Peripheral neuropathy by the 

monofilament test added 20 seconds to the walk time. 

Greater perceived physical fatigability was also associated with slower time to walk 400m by 6.0 

(1.9, 10.1) seconds. Every 2-unit increase on the 6–20-point Borg scale, during the last 3 of 5 

minutes of walking at a slow speed was associated with 10 seconds longer to complete the 

walk. Less time spent in objectively measured habitual moderate to vigorous physical activity 

was associated with a 9-seconds longer walk time for each decrement of SD. Less time spent in 

a sedentary mode was also associated with longer time to complete the 400-meter walk in 

bivariate analyses.  Anemia was associated with a longer time to complete the walk by 16 

seconds. 

Several factors that may be important for the 400-meter walk time and were significant in age-

adjusted associations did not appear in the multivariate model. This suggested that their 

associations with walk time were accounted for by other measurements in multivariate model. 

Besides Max OXPHOS and ATPmax, we examined the factors that explained the associations 

for age, sex, muscle mass, and peripheral vascular disease (Table 3). The association of older 

age with longer walk time was explained by weaker leg power, a higher energy cost-to-capacity 

ratio, less time spent in moderate to vigorous physical activity, and the association of greater 

weight with walk time. The longer walk time in women than men was fully explained by weaker 
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leg power and the association of greater weight with slower walk time. Lower muscle mass by 

the D3Cr assay has been associated with slower walking speed.27 In this analysis, associations 

of lower muscle mass by D3Cr or by thigh fat-free muscle volume with longer walk time were 

fully attenuated by adjustment for heavier weight, weaker leg power and lower VO2peak. In 

accord with previous research, peripheral vascular disease assessed by an ankle-arm blood 

pressure ratio <1.0, was associated with longer walking time;44 we found that the association 

was completely attenuated by weight, weaker leg power, lower VO2peak, higher ratio of energy 

cost-to-capacity, and anemia. 

 

Discussion  

The results of this study support the hypothesis that, in older adults, decreased mitochondrial 

energetics is associated with a longer time required to walk 400m.  Walking 400m is a complex 

activity, and the results also support the hypothesis that several clinical and physiologic factors, 

some that can be modified, also influence 400m walk time.  

A few previous studies have reported correlations between muscle mitochondrial energetics by 

high resolution respirometry in muscle biopsies with 400m walk speed.21–23,45
   Others have 

reported correlations between ATPmax by 31P MRS and slower walking speed.23,46,47  Our results 

suggest that the direct assessment of mitochondrial energetics in muscle biopsies is more 

strongly associated with 400m walk time than is in vivo ATPmax.  Studies have also observed 

that increasing acquired mitochondrial DNA mutations is associated with slower walking 

speed.48 These studies using several approaches to assess the function and integrity of 

mitochondria in muscle lend support to our finding that muscle mitochondrial energetics is 

strongly associated with the time needed to walk 400m. Thus, ongoing development of 

treatments that preserve or enhance mitochondrial energetics may improve mobility and reduce 

the risk of disability. 
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The influence of mitochondrial energetics (Max OXPHOS) on 400-meter walk time was 

explained by leg power, the ratio of energy cost-to-capacity, and VO2peak along with weight. 

This is consistent with our previous findings that mitochondrial energetics in leg skeletal muscle 

is associated with VO2peak, and with leg power.25 Our results confirm that, as the energy 

required to walk slowly approaches the capacity to generate energy, the time required to walk 

400m increases.  

Several other factors also influenced walk time. Weaker leg power, which partly reflects lower 

mitochondrial energetics, also substantially increased the time required for the 400m walk. 

Greater weight was associated with greater leg power, but this was countered by the greater 

energy required to move a heavier body, suggesting that weight loss may reduce 400m walk 

time. Hip and knee stiffness added nearly one minute to the time required to walk 400m. 

Depending on the underlying cause, these symptoms might be improved by non-steroidal anti-

inflammatory drugs or physical therapy. We discovered that reduced touch sensation—

measured by monofilament testing, prolonged average walking speed by about 20 seconds, 

suggesting that sensation is important for walking. As expected, a reduced capacity to generate 

energy and greater energy cost of walking resulted in a greater sense of exertion from walking 

slowly, as measured by the Borg Scale of perceived exertion during walking. The association of 

higher levels of physical fatigability during usual activity by the Pittsburgh scale indicates greater 

whole-body vulnerability to fatigability during standardized activities and might also reflect lower 

mitochondrial energetics during usual activities. It has also been shown that greater fatigability 

predicts greater risk of functional decline and mortality.49,50  

The association between habitual moderate-to-vigorous physical activities and 400m walk time 

supports promotion of regular moderate an vigorous physical activity to reduce the risk of 

mobility and maintain independence with aging.49 This result is consistent with the results of 

LIFE Study randomized trial that found that a structured, moderate-intensity physical activity 
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program reduced the risk of major mobility disability defined as an inability to walk 400m within 

15 minutes.12 The association between less sedentary time and longer walk time was 

counterintuitive with no apparent reason why more sedentary time in usual activities would have 

a beneficial effect on time to walk 400m.  

Anemia was associated with about 15 seconds longer time, presumably by limiting the supply of 

oxygen to muscle indicating that treatment of anemia might improve mobility. This suggests that 

screening for and treating anemia might reduce the time required to walk 400m and forestall the 

development of mobility disability.44  

 It appeared that needing more time to walk 400m with aging may be at least partly attributable 

to decreasing leg power, a greater energy cost-to-capacity ratio, spending less time spent in at 

least moderate physical activity. This suggests that decline in walking speed with aging might be 

at least partly ameliorated by increasing physical activity and forms of exercise that improve leg 

power. On average, women required more time to walk 400m and this was partly attributable to 

lower leg power. We found that an association between lower muscle mass and longer 400-

meter walk time was explained by weaker leg power and lower VO2peak. This suggests that 

increasing muscle mass might reduce the time required to walk 400m and reduce the risk of 

mobility disability.27 Peripheral artery disease also reduces blood and oxygen supply to the legs, 

and we found that it was associated with longer 400-meter walk time that was accounted for by 

its effects on reduced VO2peak and by weaker leg power.  

This study has limitations.  It is cross-sectional, based on baseline data from SOMMA. 

Longitudinal data would enable associations of change in some factors with change in time to 

walk 400m, and follow-up to identify predictors of mobility disability. However, this cross-

sectional study has the advantage of associating the immediate concomitant influence of 

energetics and clinical factors with the present time to walk 400-meters.  
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SOMMA did not assess the central nervous system control of walking, the influence of impaired 

balance, nor the mechanics of walking.16,52  A small proportion of the population walked slowly, 

0.6-0.8 m/s and individuals with very slow gait, <0.6 m/s, were not included. The prevalence of 

some conditions, such as stroke, heart disease, and severe peripheral artery disease, may have 

been too low to detect their impacts. While the racial composition of the study reflects that of the 

communities surrounding the field centers, there was insufficient power to study potential racial 

differences in correlates of walk time.  

This study has several strengths. It is the first to use direct measurement of skeletal muscle 

mitochondrial energetics from biopsies and energetics of walking by cardiopulmonary exercise 

testing to show that the effects of mitochondrial energetics are substantially mediated by the 

energetics of walking and leg power. Our endpoint, the time to walk 400-meters, is important to 

many activities of daily living whereas previous studies assessed gait speed over shorter 

distances. Furthermore, SOMMA assesses a wide array of potential causes of a long 400-meter 

walk time in a large population that enabled this analysis to identify several independent and 

modifiable predictors of walk time.  

Conclusion 

The time older individuals require to walk 400m is associated with muscle mitochondrial 

energetics. Aerobic exercise improves mitochondrial energetics and the ongoing development 

of novel therapies that target mitochondria might yield treatments that improve mitochondrial 

energetics and delay mobility disability.53 In addition, other factors that may be amenable to 

interventions also influence 400m walk time. Our results suggest that, for older patients, 

maintaining habitual moderate-to-vigorous exercise and promoting exercise that improves leg 

power, reducing weight, treatment of lower hip and knee stiffness, and screening for and 

treatment of anemia may reduce the time they require to walk 400m and might thereby reduce 

their risk of developing mobility disability.  
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Table 1. Selected characteristics of the SOMMA cohort 

Characteristic* 

Sex N (%) 

 Men (%) 359 (40.8) 

 Women (%) 520 (59.2) 

Race N (%) 

 White (%) 745 (84.8) 

 Black (%) 116 (13.2) 

 American Indian/Alaskan native (%) 2 (0.2) 

 Asian (%) 6 (0.7) 

 Multiracial/Unknown (%) 10 (1.0) 

Hispanic/Latino 9 (1.1) 

Age, years (SD) 76.3 (5.0) 

Age groups N (%) 

 70-74 402 (45.7) 

 75-79 273 (31.1) 

 80-84 134 (15.2) 

 85+ 70 (8.0) 

400m walk time (min); mean (SD) 6.6 (1.2) 

400m walk time groups (min) N (%) 

 <6  308 (35.0) 

 6 –< 8  473 (53.8) 

 8 – 15 98 (11.2) 

Weight (kg) Mean (SD) 

 Men 

 Women 

84.8 (13.8) 

70.1 (13.0) 

Body mass index (kg/m2;); mean (SD) 27.6 (4.6) 

Peak leg power (Watts) Mean (SD) 

 Men 

 Women 

479.8 (161.4) 

271.0 (84.8) 

Time in moderate to vigorous activity (min/d); mean (SD) 186.5 (86.1) 

Sedentary time excluding in-bed time (min/d); mean (SD) 619.1 (113.1) 

MoCA Total score; mean (SD) 24.8 (2.9) 

Anemia, N (%) 142 (16.4) 

History of chronic obstructive pulmonary disease, N (%) 115 (13.1) 

History of heart failure, N (%) 6 (0.7) 

History of stroke, N (%) 21 (2.4) 

History of diabetes, N (%) 131 (15.0) 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.10.23298299doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298299


  

History of a diagnosis of depression, N (%)  161 (18.4) 

Current smoker, N (%) 25 (2.9) 

Number of drinks in the past 12-month, N (%) 2.8 (4.5) 

Ankle-arm blood pressure index (Lowest of Left and Right) < 

1.0, N (%)  

97 (12.0) 

Peripheral neuropathy by monofilament test, N (%)  46 (5.3) 

Often/always hip or knee stiffness, N (%) 14 (1.6) 

Pittsburgh Fatigability Scale Physical score, mean (SD) 15.8 (8.7) 

Rating of Perceived Exertion Fatigability at end of the steady 

speed test, mean (SD) 

8.4 (1.9) 

VO2peak (volume of oxygen consumption) (mL/min) 

 Men 

 Women 

mean (SD) 

1865.6 

(410.7) 

1287.0 

(248.9) 

Energy cost-capacity ratio, mean (SD) 48.8 (12.6) 

Maximal mitochondrial oxidative phosphorylation (pmol/(s*mg),  

mean (SD) 

59.7 (18.5) 

*N (%) for categorical variables and mean (SD) for continuous variable 
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Table 2. List of candidate factors and their bivariate associations with 400m walk 
time. The domain category is in bold. 

 

Domain and measurement 

Age-adjusted 
beta coefficient 
(95% CI) per SD 

Age-
adjusted  
p-value 

Age* (years) -- -- 

Sex* 
23.0 

(13.8, 32.2) <0.0001 

Race* (non-Hispanic White) 
43.3 

(30.5, 56.0) <0.0001 

Education (College graduate or post college) 
17.2 

(7.8, 26.7) 0.0004 

Leg muscle energetics  

Complex I and II supported Maximal OXPHOS (pmol/(s*mg)) 
22.1 

(17.5, 26.8) <0.0001 

ATPmax (mM/sec) 
12.4 

(7.7, 17.2) <0.0001 

Cardiorespiratory fitness and energetics of walking  

VO2peak (volume of oxygen consumption) (mL/min) 
19.1 

(14.4, 23.8) <0.0001 

Energy Cost-Capacity Ratio (%) 
37.7 

(33.5, 41.9) <0.0001 

Body stature and composition  

Height (m) 
10.8 

(6.3, 15.4) <0.0001 

Weight (kg) 
14.6 

(2.3, 10.1) <0.0001 

Body mass index (kg/m2) 
25.8 

(21.5, 30.1) <0.0001 

Mean Quadriceps Muscle Fat Infiltration (%) 
27.3 

(22.9, 31.6) <0.0001 

Total Adipose Tissue (vol, L) 
24.5 

(20.1, 28.9) <0.0001 

Muscle mass and strength  

D3Cr Muscle mass (kg) 
6.9 

(2.0, 11.7) 0.0055 

Total Thigh Fat Free Muscle (volume, L) 
10.0 

(5.2, 14.7) <0.0001 

Leg Power Test 1RM (kg) 
17.3 

(12.7, 21.9) <0.0001 

Peak Leg Power (Watts) from 40-70% of 1RM 
18.9 

(14.2, 23.7) <0.0001 

Blood flow, oxygen delivery, cardiopulmonary disease  

Ankle-Arm Blood Pressure (Lowest of Left and Right) < 1.0 
34.3 

(19.7, 48.9) <0.0001 

Anemia, (Hemoglobin (g/dL) <13.5 M, <12.0 F) 
29.1 

(16.7, 41.5) <0.0001 

Heart Failure 
3.9 

(-51.6, 59.4) 0.8903 
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Systolic Blood Pressure (mmHg) 
2.9 

(-1.7, 7.4) 0.2201 

Diastolic Blood Pressure (mmHg) 
4.5 

(-0.1, 9.1) 0.0547 

Chronic Obstructive Pulmonary Disease*  
15.1 

(1.6, 28.6) 0.0291 

Perceived fatigability and exertion  

Pittsburgh Fatigability Scale Physical score, 0-50 
(higher=greater fatigability) 

24.3 
(20.0, 28.7) <0.0001 

Pittsburgh Fatigability Scale Mental score, 0-50 (higher=greater 
fatigability) 

16.1 
(11.7, 20.6) <0.0001 

Ratings of Perceived Exertion (RPE) Fatigability at end of slow 
walking speed test, (6-20; higher=greater exertion) 

27.3 
(23.0, 31.6) <0.0001 

Ratings of Perceived Exertion (RPE) Fatigability at end of 400M 
walking test, (6-20 (higher=greater exertion) 

21.9 
(17.5, 26.2) <0.0001 

Depressive symptoms  

Center of Epidemiologic Studies Depression Scale (CESD-10) 
(0-30) 

3.5 
(2.2, 4.8) <0.0001 

Depression, self-report*  
22.5 

(10.8, 34.3)  0.0002 

Cognitive performance  

Digit Symbol Substitution Test (number of correct boxes) 
19.0 

(14.4, 23.6) <0.0001 

Montreal Cognitive Assessment (MoCA) Total score (0-30) 
7.5 

(2.8, 12.2) 0.0017 

Trails B: Total time (0-300 sec) 
16.2 

(11.5, 20.8) <0.0001 

Neurologic conditions  

Monofilament test result - normal 
17.7 

(-2.9, 38.2) 0.0924 

Experienced numbness, loss of sensation - Intensity 
27.4 

(1.5, 53.2) 0.0385 

History of stroke* 
1.8 

(-2.8, 6.4) 0.4447 

Joint symptoms*  

Any pain in left or right hip or knee 
21.6 

(11.7, 31.5) <0.0001 

Any back pain after 400m walk (Pain level 1-10=yes, 0=no) 
39.0 

(23.1, 55.0) <0.0001 

Moderate/Severe/Extreme hip or knee stiffness today 
46.4 

(31.1, 61.7) <0.0001 

In the past 7 days, often/always joints stiffness 
86.4 

(50.4, 122.4) <0.0001 

Usual physical activity  

activPAL:  Mean of Total sedentary time, excluding in-bed time 
(min/day) 

5.4 
(0.3, 10.5) 0.0376 

activPAL: Mean of Total daily step count 
23.0 

(18.1, 27.9) <0.0001 
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ActiGraph: Mean of Sum of total activity counts/min over 24hrs 
14.6 

(10.0, 19.2) <0.0001 

ActiGraph: Mean of Time spent in Moderate-to-vigorous 
physical activities (min/day) 

16.2 
(11.6, 20.8) <0.0001 

Vision  

Pelli Robson Vision: Log contrast sensitivity  
5.4 

(0.8, 10.1) 0.0229 

Bailey Lovie Vision: Acuity 20/50 or worse  
6.7 

(-3.8, 17.2) 0.2136 

General health and medical conditions  

Good/Very Good/Excellent*  
39.3 

(18.5, 60.1) 0.0002 

Diabetes* 
22.3 

(9.6, 35.1) 0.0006 

HbA1c ≥6.5% 
30.6 

(15.8, 45.4) 0.0001 

Red cell distribution width (%) 
12.1 

(7.5, 16.7) <0.0001 

Health habits  

Cigarette smoking status* 
45.7 

(18.4, 73.0) 0.0011 

Average drinks per week in past 12 months* 
9.6 

(5.1, 14.2) <0.0001 

Number of prescription medications in the past 30 days* 
15.0 

(10.6, 19.5) <0.0001 

Socioeconomic status  

Financial Accounts/Wealth* (0-8)  
16.5 

(12.0, 21.0) 
<0.0001 

 
Beta coefficients represent seconds of walk time. 
Notes. *self-reported history.  
Abbreviations: D3Cr: d3-creatine dilution; 1RM, 1-repetition max; ATPmax, maximal adenosine 
triphosphate; OXPHOS, oxidative phosphorylation; HbA1c, hemoglobin A1C. 
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Table 4. Multivariable model of measurements associated with a slower time to complete a 
400m walk 

Measurement Unit or S.D. 
Slower time (s) 

(95% CI) per unit 
or per SD* 

p-value 

Higher energy cost-capacity ratio 13.1% 
19.9 

(13.8, 26.0) 
<.001 

Lower VO2peak 445.1 mL/min 
9.3 

(2.2, 16.4) 
0.011 

Weaker peak leg power 161.0 watts 
17.2 

(11.9, 22.6) 
<.001 

Greater weight 15 kg 
21.5 

(16.0, 27.0) 
<.001 

Frequent or constant hip or knee joint 
stiffness 

1 (yes) 
53.7 

(24.6, 82.8) 
<.001 

Peripheral neuropathy by monofilaments 1 (abnormal) 
20.2 

(3.9, 36.4) 
0.015 

Greater perceived exertion at end of steady 
state walking test† 

2 units 
10.0 

(5.3, 14.8) 
<.001 

Higher Pittsburgh Fatigability Scale Physical 
score 

8.7 units 
6.0 

(1.9, 10.1) 
0.004 

Less time in moderate-to-vigorous activity 
min/d 

88.5 minutes 
8.7 

(4.2, 13.2) 
<.001 

Less sedentary time minutes/d 127.3 min 
9.2 

(3.8, 14.5) 
<.001 

Anemia 1 (anemia) 
15.6 

(5.9, 25.3) 
0.002 

* Equivalent to the beta coefficient 
† On the 6- to 20-point Borg scale 
 

 
 

Supplements 
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Supplemental Figure S1. Flow chart of the enrollment process for SOMMA. 
 
 
 
 
 
 

  
 
 
 
 
 

 
 

 
  
 

 
 
 
 

 
 
 
 
 
  

4225 subjects with phone interview screening 

1397 eligible for a screening visit 
 

Excluded 
2719 not eligible 
31 recruitment goals already 
met 

Excluded 
156 not eligible 
141 chose not give consent 
recruitment goals arleady met 

1100 eligible for the baseline visit 
 

Excluded 
114 did not attend Day 1 
82 did not consent or not eligible 

904 completed all Day 1 assessments 

879 completed all Day 1 + 1 more assessment 
(CPET, MR, muscle biopsy) 
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Supplemental Figure S2 
 

 
*All bivariate correlations assessed here use variables expressed continuously, even if they 

were treated as ordinal variables in other analyses within this report. 
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Supplemental Table. Abbreviations and definitions for the heat map 

Abbreviation Variable description 

Time_400M 400m walk time, s 

Age Age, yrs 

Height Height, m 

Weight Weight, kg 

BMI Body mass index, kg/m2 

QuadMuscle Quadriceps muscle Fat Infiltration, % 

Adiposity Total Abdominal Adipose Tissue volume, L 

MuscleMass D3Cr Muscle mass, kg 

FFM Total thigh fat free muscle volume, L 

Strength_1RM Leg power test 1RM, kg 

LegPower Leg power peak, Watts 

ATPmax ATPmax, mM/sec 

OXPHOS Max OXPHOSCI+CII, pmol/(s*mg) 

VO2peak VO2peak, mL/min 

EnergyRatio Energy Cost-Capacity Ratio, % 

ABI Ankle-Arm Blood Index 

Hgb Hemoglobin, g/dL 

SBP Systolic blood pressure, mmHg 

DBP Diastolic blood pressure, mmHg 

PhyFatig Pittsburgh Fatigability Scale Physical score 

MentalFatig Pittsburgh Fatigability Scale Mental score 

Borg_SS Rating of Perceived Exertion at end of steady (I.5 mi/h) speed test 

Borg_400M Rating of Perceived Exertion at end of 400M walking test 

DSST Digit symbol substitution test 

MoCA Montreal Cognitive Assessment 

TrailsB Trails B test 

CESD Center for Epidemiologic Studies Depression Scale, 10-item 

BackPN Any back pain after 400M walk 

LCS Pelli Robson Vision: Log contrast sensitivity 

SedenTime Total sedentary time, minute/day 

StepCount Total daily step count 

TotActivity Total activity counts/minute  

MVPATime Time spent in moderate to vigorous physical activity, minute/day 

HbA1C HbA1C 

RDW Red cell distribution width, % 

DrinkWeek Alcohol, drinks/week 

NumMed Prescription medications (count) 

Wealth Financial accounts/wealth 

Abbreviations. D3Cr, d3-creatine dilution; 1RM, 1-repetition max; ATPmax, maximal adenosine 

triphosphate; OXPHOS, oxidative phosphorylation; HbA1c, Hemoglobin A1c 
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Supplement: Assessment methods 

Digit symbol substitution test (DSST) is a cognitive function measure of processing speed: in this pencil and paper 

test, the participant associates a series of symbols with corresponding numbers.  Global cognitive function was by 

the Montreal Cognitive Assessment (MoCA) tool,1 and executive function by the Trails B test.2 Perceived physical 

and mental fatigability was captured using the validated 10-item Pittsburgh Fatigability Scale (PFS, 0-50, higher 

score equals greater fatigability).3,4 Body stature and composition were assessed stadiometers (height), digital scales 

(weight), whole body MRI analyzed by AMRA (total thigh muscle volume; muscle fat infiltration; abdominal 

adiposity as the sum of abdominal subcutaneous and visceral fat volume),5 D3Cr muscle mass (by d3-creatine 

dilution),6,7 and body mass index was calculated as weight (kg) divided by height (m2).  Reduced touch sensation by 

the ability to feel fine filaments pressed against the great toe was used to assess peripheral neuropathy.8 Contrast 

sensitivity and visual acuity were also assessed.9,10 General health was measured by self-reported health and 

analyzed as good/very good/excellent vs. lower rating. Self-reported health habits included smoking and alcohol use. 

Participants were instructed to bring in all prescription medications used in the past 30 days; clinic staff recoded the 

number brought into clinic. Participants reported the number of financial accounts they had as a marker of wealth. 

Ankle-arm blood pressure was measured to assess peripheral atrial disease.11  Diastolic and systolic blood pressures 

were measured. Numbness was considered present if intensity of “numbness, loss of sensation, or a ‘dead’ feeling 

like an anesthetic, without prickling, in your feet or leg below the knees” in the past twenty-four hours was moderate 

or severe. Pain in the hip and knee was assessed using the Brief Pain Inventory administered on the day of (and 

before) the 400m walk assessment. A complete blood count was used to determine HbA1c and red cell distribution 

width.  
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Supplemental Table S1. Selected characteristics of the SOMMA cohort with number of missing 

Characteristic Number of missing 

Sex 0 

Race 0 

Hispanic/Latino 0 

Age 0 

400m walk time (sec) 0 

Weight (kgs) 0 

Body mass index (kg/m2) 0 

Peak leg power (Watts) 

 Men 

 Women 

 

13 

23 

Time in moderate to vigorous activity (min/d)  56 

Sedentary time excluding in-bed time (min/d) 194 

MoCA Total score 14 

Anemia 15 

History of chronic obstructive pulmonary disease 3 

History of heart failure 3 

History of stroke 3 

History of diabetes  3 

History of a diagnosis of depression  4 

Current smoker  5 

Number of drinks in the past 12 month 14 

Ankle-arm blood pressure index (Lowest of Left and Right) < 1.0  69 

Peripheral neuropathy by monofilament test  18 

Often/always hip or knee stiffness  3 

Pittsburgh Fatigability Scale Physical score 6 

Ratings of Perceived Exertion Fatigability at end of the steady speed test 37 

VO2peak (volume of oxygen consumption) (mL/min) 

 Men 

 Women 

 

17 

42 

Energy cost-capacity Ratio  66 

Maximal mitochondrial oxidative phosphorylation (pmol/(s*mg)) 134 
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