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WHAT YOU NEED TO KNOW 
  
BACKGROUND AND CONTEXT 
Patients with Crohn’s disease likely harbor different underlying susceptibilities to different 
treatments. Yet, clinical practice today is guided by cohort-averaging studies that ignore patient-
level variation. Personalized treatment strategies are needed. 
  
NEW FINDINGS 
We re-analyzed data from 15 trials to model individual outcomes to different treatments. We 
found 6 subgroups, including women over 50 whose superior responses to anti-IL-12/23s 
deviate from the majority trend. 
  
LIMITATIONS 
This was a meta-analysis of trial data; confirmatory prospective studies are needed. Our models 
need to be updated to include recently approved treatments. 
 
CLINICAL RESEACH RELEVANCE 
Our findings confirm that heterogeneity of treatment effect does exist in Crohn’s disease. A 
future trial with 250 patients per arm is 97% powered to show that anti-IL-12/23s are more 
efficacious than anti-TNFs in women over 50. Incidentally, we also found evidence of possible 
selection bias into Crohn’s trials. Future work is needed to study and rectify this. 
 
BASIC RESEARCH RELEVANCE 
We found that patients do in fact harbor different underlying susceptibilities to different treatment 
mechanisms of action. But the biological basis of this is unknown. Future studies designed to 
elucidate this may reveal new therapeutic targets in Crohn’s disease. 
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ABSTRACT 
  
BACKGROUND  
Meta-analyses have found anti-TNF drugs to be the best treatment, on average, for Crohn’s 
disease. We performed a subgroup analysis to determine if it is possible to achieve more 
efficacious outcomes by individualizing treatment selection. 
  
METHODS 
We obtained participant-level data from 15 trials of FDA-approved treatments (N=5703). We 
used sequential regression and simulation to model week six disease activity as a function of 
drug class, demographics, and disease-related features. We performed hypothesis testing to 
define subgroups based on rank-ordered preferences for treatments. We queried health records 
from University of California Health (UCH) to estimate the impacts these models could have on 
practice. We computed the sample size needed to prospectively test a prediction of our models. 
  
RESULTS 
45% of the participants (N=2561) showed greater efficacy with at least one drug class (anti-
TNF, anti-IL-12/23, anti-integrin) over another. They were classifiable into 6 subgroups, two 
showing greatest efficacy with anti-TNFs (36%, N=2064). Women over 50 showed superior 
responses with anti-IL-12/23s. Although they represented only 2% of the trial-based cohort, 25% 
of Crohn’s patients at UCH are women over 50 (N=5,647), consistent with potential selection 
bias in trials. Moreover, 75% of biologic-exposed women over 50 did not receive an anti-IL12/23 
first-line, supporting the potential value of these models. A future trial with 250 patients per arm 
will have 97% power to confirm the superiority of anti-IL-12/23s over anti-TNFs in these 
patients. A treatment recommendation tool is available at https://crohnsrx.org. 
 
CONCLUSIONS 
Personalizing treatment can improve outcomes in Crohn’s disease. Future work is needed to 
confirm these findings, and improve representativeness in Crohn’s trials. 
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INTRODUCTION 
 
Multiple therapies are now available for Crohn’s disease (CD), an immune disorder of the 
gastrointestinal tract. What remains unclear is how to select the best treatment for each patient. 
To date, network meta-analyses (NMAs) have been a major source of evidence on comparative 
efficacy and safety in CD. These studies utilize summary statistics from multiple trials to infer 
relative effectiveness. A recent NMA assessing three major drug classes for CD found anti-
tumor necrosis factor alpha (anti-TNF) drugs to be most effective at inducing remission, followed 
by anti-interleukin-12/23s (anti-IL-12/23s) and anti-integrins1.  
 
While NMAs have provided important information about relative effects, they have many 
limitations. They assume that the included trials are homogenous across multiple dimensions 
(e.g. cohort risk profiles, study procedures, placebo effects). They assume that the included 
trials are a random sample of the potential comparisons of interest (e.g. an equal chance that 
trials will compare drug A to B rather than A to placebo). They assume that pooled cohorts are 
an unbiased sample of real-world populations with active CD, justifying the application of these 
results to practice. Lastly, they ignore the role of patient-level variation in explaining treatment 
outcomes. Thus, these methods are less useful for identifying patient subgroups whose 
responses deviate from the majority.  
 
Individual participant data meta-analyses (IPDMAs) are the gold-standard for meta-analyses 
and an alternative to NMAs2,3. These studies offer greater opportunities to mitigate 
heterogeneity across trials and to identify subgroups with different treatment responses. In a 
recent IPDMA performed by our group, we developed a method for normalizing the data from 
potentially heterogeneous clinical trials even in the absence of a consistent control group across 
studies4. We demonstrated this method, called sequential regression and simulation (SRS), in 
the context of nine randomized trials in CD and validated it by using those data to successfully 
reproduce a major secondary outcome from the recently published SEAVUE trial5. That trial 
found no average differences in effectiveness between adalimumab (anti-TNF) and 
ustekinumab (anti-IL-12/23). 
 
Here we tested the hypothesis that distinct disease subgroups with different treatment 
responses do exist, and assessed if we can achieve more efficacious outcomes by 
personalizing treatment selection rather than applying general rules (e.g. recommending anti-
TNF as first line for all patients without contraindications). Here, we used SRS to normalize the 
data from 15 trials (N=5703) corresponding to three major classes of FDA-approved drugs for 
Crohn’s disease (anti-TNF, anti-integrin, anti-IL-12/23). We then modeled the response to each 
drug class as a function of patient-level characteristics, and classified patients based on their 
treatment responses.  
 
METHODS 
  
DATA ACCESS 
  
In June 2019 we queried clinicaltrials.gov to identify candidate studies (Figure 1a, Supplemental 
data). We confirmed 16 trials as being completed, phase 2-4, randomized, double-blinded, 
interventional trials of FDA-approved treatments for CD. These studies had similar cohort 
selection criteria and measured the Crohn’s Disease Activity Index (CDAI) at week six after 
treatment initiation. We successfully obtained access to the IPD for 15 studies (N=5703). These 
studies were conducted between 1999 and 2015 and corresponded to all six FDA-approved 
biologics as of 2019.  
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DATA CURATION 
  
We identified nine variables that were available across all trials and thus could be used for 
modeling: Age, Sex, BMI, baseline CDAI, c-reactive protein (CRP), history of TNFi use, oral 
steroid use, immunomodulator use, and ileal involvement. Other important variables such as 
race and smoking were not uniformly collected across studies. We included both randomized 
and unblinded/open-label cohorts (Supplemental methods).  
  
DRUG CLASS MODELING, SUBGROUP IDENTIFICATION 
  
We used SRS4 to 1) normalize all trials to a common placebo background, and 2) isolate the 
portion of the patient response that could specifically be attributed to a given treatment, as 
separate from the placebo effect (Figure 1b). For each drug class, we fit a linear mixed effects 
model of the drug-attributable reduction in CDAI. This outcome was modeled as a function of 
the above nine primary variables as fixed effects, with trial as a random effect. We compared 
these models to intercept-only models using the likelihood ratio test. Intercept-only models 
ignore the role of patient-level characteristics in determining treatment responses and reflect the 
assumptions of NMAs.  
  
We applied the three fitted models to each of the 5703 participants to simulate their response 
under each of three counterfactual scenarios: treatment with an anti-TNF vs anti-integrin vs anti-
IL-12/23 (Figure 1c). The inferred normal distributions of the conditional mean responses were 
pairwise compared using the medians and standard errors of the bootstrapped predictions 
(Supplemental Methods). We used a p=0.05 threshold to identify patients belonging to a 
subgroup, defined as a distinct pattern of ordinal preferences across all three drug classes.  
  
WEB APPLICATION 
  
We prototyped a decision support tool (https://crohnsrx.org). This application utilizes manually-
inputted data to produce recommendations. For users seeking to deploy this dashboard locally, 
an additional mode that directly sources inputs from OMOP-formatted databases is available 
(Figure 1d). 
 
RESULTS 
 
COHORT CHARACTERISTICS 
  
Our cohort consisted of 5703 participants, drawn from fifteen trials of all FDA-approved biologics 
as of 2019. These biologics corresponded to three drug classes: anti-TNFs, anti-IL-12/23s, and 
anti-integrins. The members of our cohort were generally similar by their univariate 
characteristics across trials (Table 1).  
  
PLACEBO MODEL 
  
To address the potential bias that could result from a naive pooling of subjects across trials, we 
used sequential regression and simulation to normalize the data and analytically separate the 
drug-attributable component of the patient response from the placebo effect4.  
  
Using the subset of participants assigned to placebo (N=1621), we modeled their week 6 
response as a function of all captured covariates and study year (fixed effects) as well as trial of 
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origin (random effect). This model was significant (p<0.001; Table 2). We identified six 
predictors of the placebo effect. The coefficient for study year was negative, suggesting a 
reduction in measured placebo effects over time. Male sex was associated with 27 points less of 
a placebo effect. Baseline CDAI was also a significant predictor: every 100 points of a higher 
baseline CDAI (restricted by trial eligibility criteria to fall between 220-450) was associated with 
33 points more of spontaneous improvement after 6 weeks. This was consistent with regression 
to the mean. Age and CRP were also significant albeit with small estimated effects. Most of the 
explainable variation in the placebo effect was accounted for by these explicitly captured clinical 
factors and study year; only 1% of the total variation was attributable to other non-specific 
heterogeneity across the included trials. 
  
DRUG CLASS MODELS 
  
We used the placebo model to calculate the mean placebo-attributable response for each 
participant assigned to receive active treatment (N=4082) and subtract this from their observed 
response, leaving behind the drug-attributable reduction in CDAI. We then used the residuals to 
fit three additional mixed effects models, one per drug class.  
  
The drug class models were significant (p<0.01 for all; Table 2). We identified 10 predictors 
across drug classes. Efficacious responses to IL12/23s were positively associated with male 
sex (28 additional points of CDAI reduction) and steroid use (20 additional points). Elevated 
CRP was associated with a positive response to IL12/23s, whereas elevated BMI was 
associated with a negative response. For the anti-integrin class, each decade of life was 
associated with 5 points less of a response on the CDAI. Lastly, for the anti-TNF class we 
identified 3 additional predictors of efficacy beyond the intercept term. Elevations in baseline 
CDAI and CRP were associated with increased efficacy, whereas age was inversely associated 
(12 points less of CDAI reduction for each decade).  
  
To improve the efficiency of future trials, we compared significant coefficients identified in the 
placebo and active treatment models. Five coefficients had opposite effects: age, BMI, CRP, 
male gender, and ileal involvement (Table 2). These results implied that young males with lower 
BMIs, elevated CRP and colonic disease would be expected to have the widest margin of 
difference between placebo and treatment arms, and thus the greatest power to detect evidence 
of efficacy. This finding also underscored the importance of separating placebo- and drug-
attributable effects using separate regression models; a regression model lacking these implied 
interaction terms would miss these findings. 
  
SUBGROUPS  
  
We simulated potential outcomes for all participants under each drug class and performed 
pairwise t-tests to rank-order treatment preferences and define subgroups. We identified six 
subgroups (Table 3) in our primary analysis, and three more when using a less stringent p-value 
(Supplemental Table 2). Most participants (55%, N=3142) did not show strong evidence for 
superior efficacy with any one class over another. Most of the others showed evidence for an 
anti-TNF being best or tied-for-best (42%, N=2418). These results explain prior findings favoring 
anti-TNFs as being the result of using ‘majority vote’ statistical methods in a situation where 
most participants ‘abstain.’  
  
However, 139 participants showed evidence of superior efficacy with an anti-IL-12/23, achieving 
40 points greater reduction on the CDAI compared to the other drug classes (Figure 2; 
Supplementary Table 3). 50% of these patients were predicted as achieving clinical response 
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(CDAI reduction of 100 points or more) at week 6, compared to only 3% with an anti-TNF. This 
subgroup was predominantly female, over the age of 50, had a history of anti-TNF exposure, 
had relatively lower CDAIs at baseline, and were receiving steroids.  This subgroup 
corresponded to only 2% of the trial population.  
  
Given this, we wondered if a decision support tool might have any measurable value in clinical 
practice, compared to an easier-to-remember strategy of recommending an anti-TNF to any 
patient lacking a contraindication. We queried the University of California Health Data 
Warehouse, a multicenter database of health records data, to identify potential patients who 
might belong to this subgroup and thus could benefit from a personalized treatment 
recommendation tool. We found that 25% of the patients seen for Crohn’s disease were women 
over the age of 50 (N=5,647; 2012-2022) (Supplementary Figure 5). This striking difference in 
cohort prevalence (25% at the University of California vs 2% in the trials) suggested the 
possibility of implicit selection bias in these trials. Supporting this view, we found Black 
participants to be significantly underrepresented (2% in the trials; Supplementary Table 4). 
  
When limiting our queries to the timeframe when all drug classes were FDA-approved, we noted 
that 75% of biologic-exposed women over 50 did not receive an anti-IL12/23 first-line. This 
suggested a potential future role for software-aided treatment optimization. 
  
Since the existence of this anti-IL-12/23-preferring subgroup was a new and potentially testable 
hypothesis raised by this analysis, we performed a sample size calculation to determine the 
feasibility of verifying this in a prospective study (Supplementary Table 5). We calculated that a 
trial with 250 participants in each arm would have 87% power to show superiority of anti-IL-
12/23s over anti-TNFs in all patients over the age of 50. If further restricted to just women over 
50, this potential trial was calculated as having 97% power. 
  
DECISION SUPPORT  
  
To bridge these findings to the clinic we have prototyped a decision support tool 
(https://crohnsrx.org). It uses manual inputs on patient-level features to produce treatment 
recommendations (Figure 3). We have provided additional guidance to help clinicians interpret 
the output and avoid incorrectly using the tool on patients who do not resemble the subjects 
used to train the model. 
  
DISCUSSION 
  
We performed a subgroup analysis of individual participant data from 15 trials of treatments for 
Crohn’s disease (CD). Our primary findings can be summarized as follows: 1) patients with CD 
likely harbor different underlying preferences towards different treatments, and these 
preferences are partially predictable using clinical features, 2) most trial participants do not 
appear to have superior efficacy with anti-TNFs drugs, a potentially unexpected finding given 
prior literature, 3) there appears to be evidence of significant implicit selection bias into 
registrational trials, and 4) the use of statistically-based decision support tools may improve 
patient outcomes in clinical practice. Secondary results include 1) newly-identified features that 
predict patient-level responses to different drugs as well as placebo, and insights as to how they 
could be used to design more efficient clinical trials, and 2) sample size calculations supporting 
the feasibility of testing this model’s predictions prospectively. These findings add to a growing 
body of evidence that shifts away from a ‘one-size-fits-all’ treatment paradigm and towards 
precision medicine. 
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Our work builds on previous evidence synthesis efforts in CD, particularly NMAs1,6. The most 
recent of these found that anti-TNF drugs appear to be the most efficacious drug for inducing 
clinical remission1. Although we used a similar set of trials as that study, we came to a slightly 
different conclusion: most of the subjects in these trials do not appear to preferentially benefit 
from any of three currently approved drug classes. Instead, we found that patients favoring anti-
TNFs were actually in the minority, albeit a large one (42%). This apparent contradiction can be 
understood as the result of an “ecological fallacy”, where one incorrectly deduces that a cohort-
averaged effect also applies to each member of the cohort. An apt analogy would be of an 
election where the majority abstains, and the next largest constituency ‘votes’ for an anti-TNF.  
  
Thus, our findings are in fact consistent with prior NMAs that instead rely on aggregate statistics 
from trials. However, these findings more generally suggest that the field of evidence synthesis 
must increasingly embrace IPD to generate results that are more precise and less susceptible to 
misinterpretation. Methods such as SRS can add additional credibility and reduce the 
dependence on strong homogeneity assumptions implicit in traditional pooled analyses of IPD. 
This method also enables deeper insights into the overall patient response as the result of two 
distinguishable effects: placebo-attributable and drug-attributable. The predictors of the placebo 
effect that we identified here were consistent with the prior literature7. Yet we identified more 
predictors than have previously been reported, likely because our method implicitly accounts for 
drug-by-effect interactions that are often unmodeled in one-step IPD meta-analyses2,3. The 
value of these findings, beyond that of scientific interest into how clinical features reflect 
treatment susceptibility, is also practical. Our results suggest ways to design clinical trials with 
greater power. 
 
Another important but unexpected finding is evidence of significant selection bias in Crohn’s 
RCTs. Some degree of selection bias is to be expected of all trials insofar as they contain 
additional inclusion and exclusion criteria that are not a requirement for receiving clinical care. 
Indeed, we and others have observed this in the context of comparing RCT- and real-world 
cohorts8–10. What has been unclear, however, is the extent to which these biases may distort 
treatment outcomes. We identified a subgroup of anti-IL-12/23-preferring patients, mostly 
women over 50, that represented a miniscule fraction of trial subjects (2%). Yet, the typical 
prevalence of these patients as seen across 6 medical centers at the University of California 
suggests that as many as 25% patients fall into this demographic. Of course, gender, older age, 
and race are not explicit exclusionary criteria in these registrational trials. Thus, it appears that 
these patients are systematically being under-enrolled. Future studies are needed to determine 
if this is the result of patient preferences, provider biases, or other factors. 
 
Artificial intelligence is playing a growing role in healthcare, with a proliferation of data-informed 
software tools that can help clinicians make better decisions. Yet, many uncertainties remain as 
to how these models should be tested before they can be trusted and deployed in practice11. 
Prospectively testing our model in its entirety is generally a challenge because it makes 
predictions across the continuum of patient features. Many patients did not appear to have a 
strong treatment preference, making it challenging to envision a study that ‘confirms’ this null 
hypothesis. By contrast, the aforementioned subgroup of older women is ideal from a 
prospective standpoint: 1) it is a scientifically new finding, 2) it demonstrates a treatment effect 
that can be evaluated via null hypothesis testing, and 3) its members are sufficiently prevalent in 
real-world settings, increasing the potential feasibility of subject recruitment.  
  
Separate from testing the statistical model is testing the decision support prototype itself. We 
have released an early version (https://crohnsrx.org) to facilitate early user feedback and 
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enhancement. Future work is needed to develop this into an EHR-embedded tool that supports 
seamless, timely, and trustworthy recommendations at the point of care. 
  
Strengths of this work include the strength and quality of the underlying data, the use of the 
SRS method to address bias and reveal new insights, as well as several important findings 
impacting the science, study, and care of patients with Crohn’s disease. 
  
We acknowledge several limitations. This was a post-hoc analysis of randomized trials, and we 
cannot completely exclude residual biases. Prospective studies are needed to test these 
findings, particularly given apparent selection biases that could degrade the application of trial-
based insights to clinical practice. There were several variables that we wanted to include in our 
models such as race/ethnicity and smoking. Unfortunately, these data were not well-captured 
across the trials. We found a large amount of unexplained variability in patient outcomes, 
roughly 90%. This in and of itself is not a weakness of our study, but rather reflects the large 
scope of future work that is needed to explain patient outcomes in Crohn’s disease. Some of 
this work will require discovering new biomarkers (e.g., metagenomic, metabolomic), none of 
which were available to us. Other work will be needed to increase the objectivity of disease 
activity measures in Crohn’s disease and reduce unwanted variation.  
  
In conclusion, we performed an IPD meta-analysis of RCTs in Crohn’s disease. We identified 
multiple subgroups with different preferential responses to different drug classes, including one 
subgroup of women over 50 who may respond favorably to anti-IL-12/23s. We uncovered 
potential evidence of selection bias into clinical trials and suggest ways to improve the efficiency 
and equity of these gold-standard studies. Lastly, we developed a prototype decision support 
tool that implements these findings, in the hopes that it will help improve treatment selection and 
patient outcomes in Crohn’s disease. 
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Figure 1: Overview. A. Clinical trials were found using clinicaltrials.gov and sought for retrieval 
on the YODA and Vivli platforms. Individual participant data (IPD) from trials that collected CDAI 
scores at week 6 visits were then aggregated and harmonised. B. Using sequential regression 
and simulation, a method for normalising clinical trial data against a common placebo rate, a 
placebo-attributable model and three drug-attributable models - anti-integrin, anti-interleukin-
12/23 and anti-TNF - were developed. Disease activity reduction was partitioned into placebo 
attributable (square) and drug-attributable (circle) effects based on baseline covariates (age, 
sex, BMI, etc.). IPD (solid lines) were used to predict or simulate data (dashed lines). C. The 
drug-attributable models were utilised to simulate patient-level outcomes post-treatment 
(counterfactuals). Pairwise t-tests (p < 0.05) were conducted to compare and rank the mean 
responses for all drug classes - anti-integrin vs anti-interleukin-12/23, anti-integrin vs anti-TNF, 
and anti-interleukin-12/23 vs anti-TNF - and assign patients into one of seven subgroup 
memberships (see Table 3). D. Lastly, the models were re-packaged into a prototype decision 
support tool that uses manual inputs and optionally, OMOP-formatted data, to recommend 
treatments for individual patients. 
 
Figure 2: Subgroup analysis. Detailed comparison of three major subgroup cohorts found in 
the trial-based cohort (N=5703): prefer anti-TNF only (N = 2061, red), prefer anti-TNF or anti-IL-
12/23 (N = 355, blue), and prefer anti-IL-12/23 only (N = 139, green). A. The bar plots on the left 
show the average placebo (P) and drug-class (D) attributable effects for each subgroup. 
Superior drug classes (left of bolded vertical line) reduce disease activity (CDAI reduction) by 
30-40 points more on average compared to non-superior drug-classes (right of bolded vertical 
line). B. The plots on the right compare the proportions and distributions of covariates for each 
subgroup.  
 
Figure 3: Treatment recommendation dashboard. Example user interface and output of R 
Shiny treatment recommendation dashboard.  
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Table 1: Baseline characteristics of the meta-analyzed study cohort, stratified by trial. Characterization of baseline covariates of included studies. Placebo arms from 
ACCENT, CLASSIC, EXTEND, NCT02499783, PRECISE2, and SONIC studies were not included due to the absence of a 6-week parallel arm placebo group (see Supplementary 
Figure 1). Continuous variables are reported as mean (standard deviation) and binary variables are reported as count (proportion). CRP = c-reactive protein, TNF = tumor necrosis 
factor. 

Drug Class 
Trial Alias 

Anti-Il-12/23 Anti-Integrin Anti-TNF 
CERTIF

I 
UNITI1 

 
UNITI2 ENACT GEMIN

I2 
GEMIN

I3 
ACCENT CLASSI

C 
EXTEN

D 
 

 
 

 
 PRECIS

E1 
PRECIS

E2 
SONIC 

Trial NCT 
identifier 

NCT007
71667 

NCT013
69329 

NCT013
69342 

NCT000
32786 

NCT007
83692 

NCT012
24171 

NCT0020
7662 

NCT000
55523 

NCT000
55497 

NCT003
48283 

NCT002
91668 

NCT005
52058 

NCT0249
9783 

NCT001
52490 

NCT0015
2490 

NCT0015
2425 

Year 2008 2011 2011 2001 2008 2010 1999 2002 2006 2006 2008 2015 2003 2003 2005 

Included cohort 
size 

252 502 416 875 1,050 407 190 73 64 60 409 102 593 559 151 

Treatment 
Group 

               

   Active 126 (50%) 252 (50%) 209 (50%) 698 (80%) 915 (87%) 205 (50%) 190 (100%) 73 (100%) 64 (100%) 30 (50%) 210 (51%) 102 (100%) 298 (50%) 559 (10 %) 151 (100%) 

   Placebo 126 (50%) 250 (50%) 207 (50%) 177 (20%) 135 (13%) 202 (50%) ·· ·· ·· 30 (50%) 199 (49%) ·· 295 (50%) ·· ·· 

Age 39 (±13) 37 (±12) 39 (±13) 38 (±13) 36 (± 12) 38 (±13) 37 (±12) 38 (±11) 37 (±11) 33 (±12) 37 (±12) 33 (±10) 37 (±12) 39 (±13) 36 (±13) 

Female Sex 107 (42%) 224 (45%) 189 (45%) 372 (43%) 492 (47%) 176 (43%) 79 (42%) 35 (48%) 24 (38%) 47 (78%) 181 (44%) 67 (66%) 259 (44%) 271 (48%) 77 (51%) 

BMI 26 (±7.3) 22 (±0.58) 25 (±6.2) 25 (±5.6) 24 (±6.0) 24 (±5.7) 24 (±4.7) 26 (±6.0) 25 (±4.6) 20 (±2.7) 24 (±4.9) 19 (±2.7) 24 (±5.3) 24 (±5.1) 25 (±5.5) 

Baseline CDAI 320 (±67) 320 (±60) 300 (±56) 300 (±61) 320 (±69) 310 (±53) 310 (±54) 290 (±52) 320 (±69) 290 (±58) 290 (±60) 270 (±48) 300 (±61) 300 (±59) 290 (±62) 

CRP (mg/L) 21 (±28) 18 (±23) 16 (±20) 19 (±25) 21 (±26) 18 (±22) 20 (±23) 13 (±18) 20 (±21) 31 (±21) 19 (±26) 24 (±25) 18 (±25) 20 (±28) 25 (±28) 

History of Anti-
TNF Use 

252 
(100%) 

479 (95%) 135 (32%) 348 (40%) 649 (62%) 306 (75%) 0 (0%) 2 (3%) 31 (48%) 1 (2%) 0 (0%) 0 (0%) 161 (27%) 156 (28%) 0 (0%) 

Steroid Use 134 (53%) 232 (46%) 172 (41%) 356 (41%) 532 (51%) 213 (52%) 94 (49%) 21 (29%) 6 (9%) 14 (23%) 179 (44%) 31 (30%) 235 (40%) 205 (37%) 58 (38%) 

Imm. use 64 (25%) 166 (33%) 143 (34%) 330 (38%) 341 (32%) 137 (34%) 44 (23%) 19 (26%) 26 (41%) 17 (28%) 139 (34%) 61 (60%) 235 (40%) 230 (41%) 0 (0%) 

Ileal Disease 182 (72%) 407 (81%) 335 (81%) 675 (77%) 752 (72%) 310 (76%) 155 (82%) 47 (64%) 48 (75%) 42 (70%) 286 (70%) 82 (80%) 425 (72%) 378 (68%) 104 (69%) 
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Table 2: Linear mixed effect regression models of the reduction in CDAI at week 6. We fit a total of four linear mixed effects 
regression models: one placebo model and three nested models of the drug class-attributable response. Rows correspond to the fixed 
effect parameters of each model, and columns correspond to the estimated coefficients, standard errors, and Wald test p-values with 
bolding corresponding to significance at the 0·05 level. Year was not used for the drug class models due to insufficient variation (few 
trials per drug class, clustered together in calendar time).   
 

 Placebo Anti-IL-12/23 Anti-Integrin Anti-TNF 

Predictors Estimate 
Std. 

Error 
p Estimate 

Std. 
Error 

p Estimate 
Std. 

Error 
p Estimate 

Std. 
Error 

p 

Intercept 74·69 9·48 <0·001 22·19 22·01 0·314 36·82 7·34 <0·001 54·96 9·80 <0·001 

Year (Centered) -1·96 0·99 0·048 ·· ·· ·· ·· ·· ·· ·· ·· ·· 

Baseline CDAI 
(Centered) 

0·33 0·04 <0·001 -0·03 0·06 0·640 0·02 0·04 0·590 0·11 0·04 0·002 

Age (Centered) 0·41 0·18 0·025 0·30 0·30 0·313 -0·54 0·19 0·004 -1·23 0·18 <0·001 

BMI (Centered) 0·72 0·43 0·098 -1·69 0·75 0·024 -0·35 0·39 0·380 -0·19 0·44 0·660 

CRP (mg/L) 
(Centered) 

-0·22 0·10 0·022 0·48 0·16 0·002 0·12 0·09 0·196 0·35 0·08 <0·001 

Sex: Male -27·31 5·24 <0·001 28·00 12·06 0·021 1·66 4·49 0·712 7·03 6·09 0·249 

History of Anti-
TNF Use 

2·22 4·42 0·616 -6·41 7·74 0·408 -4·03 4·32 0·351 0·68 4·16 0·871 

Steroid Use 0·32 4·44 0·943 19·82 7·60 0·009 4·97 4·32 0·251 -1·69 4·30 0·694 

Immunomod. Use -1·74 4·69 0·711 0·54 8·28 0·948 -4·35 4·54 0·338 -1·70 4·55 0·708 

Ileal Disease 4·88 5·05 0·333 -9·14 9·64 0·344 -8·15 4·97 0·102 -7·29 4·58 0·111 
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Table 3: Treatment subgroups. The finalized mixed effects models were used to simulate counterfactual outcomes under all possible 
treatment scenarios. The modeled outcomes and the associated uncertainties in these outcomes were used to perform pairwise t-testing 
to assess evidence for rank-ordered preferences across drug classes. Distinct patterns of rank-orderings were used to establish 
membership in one of 6 subgroups. Subjects without sufficient statistical evidence (alpha = .05) of a more efficacious response to any 
one drug classes were placed into a 7th category (no preference). TNF = anti-tumor necrosis factor, IL = anti-interleukin-12/23, INT = 
anti-integrin.  

Drug Class Preference Subgroup N (%) 

 

Anti-TNF 

TNF > IL > INT 43 (0·8) 

TNF > (IL = INT) 2,021 (35) 

Anti-TNF, Anti-Interleukin-12/23 (IL = TNF) > INT 354 (6) 

 

Anti-Interleukin-12/23 

IL > TNF > INT 1 (0·02) 

IL > (TNF = INT) 138 (2·5) 

Other (TNF = INT) > IL  4 (0·07) 

No Preference (TNF = IL = INT) 3,142 (55) 
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