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Graphical Abstract 34 

 35 

Abstract  36 

Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access 37 

to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds 38 

the promise of effectively bypassing these boundaries allowing for simplified data accessibility and the 39 

prospect of synthetic control cohorts. We employed two different methodologies of generative artificial 40 

intelligence – CTAB-GAN+ and normalizing flows (NFlow) – to synthesize patient data derived from 41 

1606 patients with acute myeloid leukemia, a heterogeneous hematological malignancy, that were 42 

treated within four multicenter clinical trials. Both generative models accurately captured distributions 43 

of demographic, laboratory, molecular and cytogenetic variables, as well as patient outcomes yielding 44 

high performance scores regarding fidelity and usability of both synthetic cohorts (n=1606 each). 45 

Survival analysis demonstrated close resemblance of survival curves between original and synthetic 46 

cohorts. Inter-variable relationships were preserved in univariable outcome analysis enabling 47 

explorative analysis in our synthetic data.  Additionally, training sample privacy is safeguarded 48 

mitigating possible patient re-identification, which we quantified using Hamming distances. We provide 49 

not only a proof-of-concept for synthetic data generation in multimodal clinical data for rare diseases, 50 

but also full public access to synthetic data sets to foster further research.  51 
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Introduction 52 

In the age of big data, the paucity of publicly available medical data sets is often staggering. Despite 53 

extensive data collection efforts, such as The Cancer Genome Atlas(1), the public availability of 54 

comprehensive entity-specific data sets remains largely unsatisfactory. Data sharing is often hindered 55 

by concerns of patient privacy, regulatory aspects, and proprietary interests.(2) These factors do not only 56 

impede progress in medical research but also establish a gatekeeping mechanism that restricts specific 57 

research inquiries to large institutions with access to extensive datasets. Collecting such data sets is a 58 

costly and time-consuming effort and especially later-phase clinical trials usually take years to complete 59 

and require millions in funding.(3,4) In particular, this is true for rare diseases, such as acute myeloid 60 

leukemia (AML), which is a genetically heterogenous and highly aggressive hematological malignancy 61 

with so far unsatisfactory patient outcomes despite recent advances in therapy.(5) In addition, the 62 

development of targeted therapies for defined subgroups leads to an increased need for control 63 

groups.(6) To gain insights into such burdensome malignant entities with unmet medical needs, a crowd-64 

sourcing of data to refine risk stratification efforts and test treatment-related hypothesis is essential. If 65 

machine learning methods are to be deployed in such data sets, the size of available diverse training data 66 

is paramount for model robustness. Generative models, especially generative adversarial neural 67 

networks (GANs)(7), have exhibited remarkable capabilities in image generation(8), but can also 68 

effectively generate synthetic non-image data. The unique properties of generative artificial intelligence 69 

(AI) yield the prospect of synthesizing data based on real patients, which can be distributed at will since, 70 

ideally, synthetic data only mimics real patient data alleviating concerns of privacy. In this scenario, the 71 

synthetic data itself should preserve the biological characteristics of the disease under investigation to 72 

make inferences to real-world applications possible. At the same time, synthetic data should safeguard 73 

privacy of the underlying training cohort. 74 

In this study, we employ two state-of-the-art technologies of generative modeling on a large training 75 

data set of four pooled multicenter clinical trials including AML patients with comprehensive clinical 76 

and genetic information. We investigate how closely the synthetic data resembles the real trial data 77 

aligning baseline characteristics and patient outcome. Further, we measure privacy conservation in the 78 
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synthetic data. Additionally, we provide both final fully synthetic data sets comprising 1606 AML 79 

patients each in a publicly accessible repository to foster further research into this devastating disease.  80 

 81 

Methods 82 

Patient data  83 

Multimodal clinical, laboratory, and genetic data (Table S1) were obtained from 1606 patients with non-84 

M3 AML that were treated within previously conducted multicentric prospective clinical trials of the 85 

German Study Alliance Leukemia (SAL; AML96 [NCT00180115](9), AML2003 [NCT00180102](10), 86 

AML60+ [NCT00180167](11), and SORAML [NCT00893373](12)). Table S2 shows an overview of 87 

trial protocols. Eligibility was determined upon diagnosis of AML, age ≥18 years, and curative treatment 88 

intent. All patients gave their written informed consent according to the revised Declaration of 89 

Helsinki.(13) All studies were previously approved by the Institutional Review Board of the Technical 90 

University Dresden. Complete remission (CR), event-free survival (EFS), and overall survival (OS) 91 

were defined according to the revised ELN criteria.(14) Biomaterial was obtained from bone marrow 92 

aspirates or peripheral blood prior to treatment initiation. Next-Generation Sequencing (NGS) was 93 

performed using the TruSight Myeloid Sequencing Panel (Illumina, San Diego, CA, USA). Pooled 94 

samples were sequenced paired-end and a 5% variant allele frequency (VAF) mutation calling cut-off 95 

was used with human genome build HG19 as a reference as previously described in detail.(15) 96 

Additionally, high resolution fragment analysis for FLT3-ITD(16), NPM1(17), and CEBPA(18) was 97 

performed as described previously. For cytogenetics, standard techniques for chromosome banding and 98 

fluorescence-in-situ-hybridization (FISH) were used.  99 

 100 

Generative models 101 

In our study, we used two state-of-the-art generative models exhibiting two fundamentally different 102 

concepts of data generation:  103 
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i) CTAB-GAN+(19) builds upon the Generative Adversarial Network (GAN)(20) architecture, 104 

consisting of two interlinked neural networks - the generator and the discriminator. These are jointly 105 

trained in an adversarial manner. The generator’s goal is to produce synthetic data that appears realistic, 106 

starting from random noise. In parallel, the discriminator seeks to differentiate between real and 107 

synthetic samples created by the generator. The training continues until the discriminator is no longer 108 

able to reliably distinguish real data from synthetic, indicating that the generator has successfully 109 

approximated the distribution of the real data.  110 

ii) Normalizing Flows (NFlow)(21) presents an alternative approach for synthesizing data from complex 111 

distributions. This comprises a sequence of invertible transformations, starting from a simple base 112 

distribution. Each transformation, or 'flow', gradually modifies this base distribution into a more 113 

complex one that better mirrors the actual data. Importantly, these transformations are stackable, 114 

meaning they can be applied successively to incrementally increase the complexity of the modeled 115 

distribution. All parameters defining these flows are learned directly from the data, allowing the model 116 

to accurately capture the underlying data distribution. Note, that we used a modification of NFlow for 117 

survival data provided by the Synthcity(22) software framework.  118 

No imputation of missing data was performed in the original data set, thus both final synthetic data sets 119 

also contain missing data to adequately represent real-world conditions. Hyperparameter tuning was 120 

performed using the Optuna framework allowing both generative models to capture the best possible 121 

representation of the original data. Afterwards, we trained each model with five different random seeds 122 

and sampled from it three times, which generated 15 synthetic datasets for each model. Results are 123 

reported for each highest-performing synthetic data set, respectively.   124 

 125 

Evaluation of synthetic data performance 126 

To assess the fidelity und usability of synthetic data, previously proposed evaluation metrics were used 127 

to provide a comprehensive overview of model performance. In particular, Basic Statistical Measure, 128 

Regularized Support Coverage, and Log-transformed Correlation Score were used to evaluate the 129 

fidelity of the data in general via our implementation based on the descriptions by Chundawat et al.(23). 130 
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The second set of metrics – Kaplan-Meier-Divergence, Optimism and Short-Sightedness - was 131 

previously introduced by Norcliffe et al.(24) for synthetic survival data, and implemented in 132 

Synthcity(22). For improved comparability, performance metrics were normalized on a scale from 0 133 

(inadequate representation of original data) to 1 (optimal representation). An overview of the underlying 134 

methodologies of these metrics is provided in Table S3. For detailed information, we refer the interested 135 

reader to the original publications.(23,24) 136 

 137 

Assessment of privacy conservation 138 

To assess potential privacy implications of synthetic data, we customized the method proposed by 139 

Platzer and Reutterer(25) to accommodate for smaller sample sizes. We partitioned the original training 140 

data (80% of total) into four subsets, matching the size of the test dataset (20%) for balanced 141 

comparisons (Fig. S1). Calculations were performed using Hamming distance(26) for categorical 142 

features. Numerical variables were binned (n=10 bins each) and thereby categorized to enable Hamming 143 

distance calculations. Given the nature of the Hamming distance metric, the average minimum distance 144 

effectively denotes the number of variables that would need to be altered for a synthetic patient to match 145 

a real patient. We compared the average distances of the synthetic data to the training (syn → train) and 146 

test sets (syn → test). The relationship between both can be expressed as a coefficient for each synthetic 147 

data set compared to training and test set:  148 

𝑝𝑟𝑖𝑣𝑎𝑐𝑦 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑠𝑦𝑛 → 𝑡𝑒𝑠𝑡

𝑠𝑦𝑛 → 𝑡𝑟𝑎𝑖𝑛
− 1   149 

By analyzing whether the synthetic data is closer to the training set compared to the test set, we can 150 

assess whether the synthetic data is overly representative of the training data, thereby posing potential 151 

privacy concerns. If the average distances from the synthetic data to the training and test data are equally 152 

small, the privacy leakage coefficient will also be small. The lower the privacy leakage coefficient, the 153 

lower the likelihood of re-identification for patients in the training set. We assumed that values above 154 

0.05 signal potential privacy breaches, as they suggest the synthetic data is substantially closer to the 155 

training set than to the test set. Conversely, values below 0.05 denote a favorable privacy safeguard, 156 
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signaling similar distances between the training and test sets. Additionally, the number of exact subject 157 

matches between the synthetic and original cohorts was determined.  158 

 159 

Statistical analysis 160 

Pairwise analyses were conducted between the original and both synthetic data sets. Normality was 161 

assessed using the Shapiro-Wilk test. If the assumption of normality was met, continuous variables 162 

between two samples were analyzed using the two-sided unpaired t-test. If the assumption of normality 163 

was violated, continuous variables between two samples were analyzed using the Wilcoxon rank sum 164 

(syn. Mann-Whitney) test. Fisher’s exact test was used to compare categorical variables. Univariate 165 

analyses for binary outcomes (CR rate) were carried out via logistic regression to obtain odds ratios 166 

(OR) and 95% confidence intervals (95%-CI). Time-to-event analyses (EFS, OS) were carried out using 167 

Cox proportional hazard models to obtain hazard ratios (HR) and 95%-CI. Kaplan-Meier analyses were 168 

performed for time-to-event data (EFS, OS) and corresponding log-rank tests are reported. Median 169 

follow-up time was calculated using the reverse Kaplan-Meier method.(27) All tests were carried out as 170 

two-sided tests. Statistical significance was determined using a significance level α of 0.05. Statistical 171 

analysis was performed using STATA BE 18.0 (Stata Corp, College Station, TX, USA). 172 

 173 

Data availability 174 

The final synthetic data sets generated and analyzed for the purpose of this study are publicly available 175 

at https://zenodo.org/record/8334265 176 

 177 

Code availability 178 

The code generated for the purpose of this study is publicly available at 179 

https://github.com/waldemar93/synthetic_data_pipeline 180 

 181 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298247doi: medRxiv preprint 

https://zenodo.org/record/8334265
https://github.com/waldemar93/synthetic_data_pipeline
https://doi.org/10.1101/2023.11.08.23298247
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Results 182 

Synthetic cohorts generated by CTAB-GAN+ and NFlow score highly in fidelity metrics 183 

We generated equally sized data sets of n=1606 synthetic patients with each generative model to 184 

compare patient variables to the original cohort. The fidelity of synthetic data was assessed with three 185 

previously proposed performance metrics scaled from 0 (inadequate representation) to 1 (optimal 186 

representation). First, the distribution of each individual variable was compared between original and 187 

synthetic data again yielding high scores for both models (Regularized Support Coverage(23) for 188 

CTAB-GAN+: 0.95 and NFlow: 0.97). Second, continuous numerical variables were assessed by 189 

comparing mean, median, and standard deviation between original and synthetic data per variable (Basic 190 

Statistical Measure(23)) showing high scores for both CTAB-GAN+ (0.91) and NFlow (0.92). Third, 191 

regarding accurate representations of inter-variable correlations, CTAB-GAN+ and NFlow achieved a 192 

Log-Transformed Correlation Score(23) of 0.75 and 0.74, respectively. An overview of performance 193 

metrics is provided in Tab. S4 (usability; survival metrics are reported with survival analysis).   194 

 195 

Synthetic clinical and genetic patient characteristics closely mimic those of real patients 196 

Baseline patient characteristics compared between real and synthetic patients are shown in Table 1. It 197 

has to be noted that given the large sample sizes (three groups with n=1606 each), even small effect 198 

sizes yield statistically significant differences. For instance, median age in the original cohort was 56 199 

years, while synthetic patients generated by CTAB-GAN+ had a slightly younger median age of 53 200 

years (p=0.0001), whereas NFlow-generated patients had a slightly older median age of 58 years 201 

(p=0.039). Sex distribution did not differ between NFlow and the original cohort, while CTAB-GAN+ 202 

generated more males than females (NFLOW: 56.2% vs. 43.8%; original: 52.2% vs. 47.8%; p=0.023). 203 

The rates of de novo, secondary, and therapy-associated AML did not differ significantly for CTAB-204 

GAN+ generated patients, while NFlow generated fewer de novo and more therapy-associated AML 205 

patients compared to the original cohort. Hemoglobin levels and platelet count did not differ 206 

significantly between the original and the synthetic cohorts, while synthetic patients generated by 207 

CTAB-GAN+ showed a significantly higher median white blood cell count than the original cohort.  208 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.08.23298247doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.08.23298247
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Fifty molecular and cytogenetic alterations were included in generating synthetic patients. Figure 1 209 

displays the distribution of these alterations across the original and synthetic cohorts (absolute numbers 210 

and p-values are provided in Tab. S5). These alterations encompass genes that code for epigenetic 211 

regulators (Fig. 1A), the cohesin complex (Fig. 1B), transcription factors (Fig. 1C), TP53 and 212 

Nucleophosmin 1 (Fig. 1D), signaling factors (Fig. 1E), components of the spliceosome (Fig. 1F), and 213 

cytogenetic aberrations with established impact on patient outcome (Fig. 1G). Overall, the rates of 214 

alterations in both synthetic cohorts were in a plausible range with a few deviations from the original 215 

cohort of high statistical significance, such as NFlow-generated frequencies of BCORL1, DNMT3A, 216 

PHF6, and ZRSR2, as well as CTAB-GAN+-generated frequencies of CUX1 and GATA2 while the 217 

remainder of alterations showed only negligible differences. Aside from the frequency per individual 218 

alteration, the co-occurrences of alterations play an important role in disease biology, which should be 219 

also captured in high-quality synthetic data. Fig. 2 shows the relative differences between the original 220 

cohort and CTAB-GAN+ (Fig. 2A) and NFlow (Fig. 2B) regarding co-occurring mutations. We found 221 

high congruencies for co-occurrences compared to the original cohort, while deviations were commonly 222 

found in alterations that had a low frequency in the original cohort.  223 

 224 

Synthetic cohorts match real patients in outcome and survival analysis  225 

Median follow-up for the original cohort was 89.5 months (95%-CI: 85.5-95.4). The synthetic cohorts 226 

had a median follow-up of 91.3 months (CTAB-GAN+, 95%-CI: 84.8-98.0) and 74.3 months (NFlow, 227 

95%-CI: 70.9-77.4). Table 2 shows a detailed comparison of patient outcome between the original and 228 

both synthetic cohorts. For CR rates, we found no significant differences between the original (70.7%) 229 

and both synthetic cohorts (CTAB-GAN+: 73.7%; NFlow: 69.1%). Median EFS in the original cohort 230 

was 7.2 months while both CTAB-GAN+ with 12.8 months and NFlow with 9.0 months deviated with 231 

high significance. This effect can arguably be attributed to both CR rate and OS being included in 232 

hyperparameter tuning, while EFS was exempt from hyperparameter tuning. Kaplan-Meier analysis 233 

nevertheless showed a plausible representation of the survival curves for both synthetic cohorts 234 

regarding EFS (Fig. 3A). Median OS for the original cohort was 17.5 months while the CTAB-GAN+ 235 
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cohort had a median OS of 19.5 months (p<0.0001) and NFlow of 16.2 months (p=0.055). Kaplan-Meier 236 

analysis (Fig. 3B) showed similar behavior of survival curves as for EFS. This was also evident with 237 

regard to usability metrics for synthetic survival data introduced by Norcliffe et al.(24): We found both 238 

CTAB-GAN+ and NFlow to score high in our test set with normalized performance results (+1 is 239 

optimal representation, 0 is inadequate representation, Tab. S4). Kaplan-Meier-Divergence, i.e. the 240 

degree to which survival curves of synthetic and real data differ, was low for both synthetic data sets 241 

(CTAB-GAN+: 0.97, NFlow: 0.98). Neither model showed overt optimism or overt pessimism in 242 

representing survival data (CTAB-GAN+: 0.98, NFlow: 0.99). For both EFS and OS, the curve of 243 

CTAB-GAN+ showed no stabilization of survival rates towards the end of the follow-up period in 244 

comparison to the curve of the original cohort while NFlow tends to censor a higher rate of patients after 245 

passing the 2-year follow-up mark. Nonetheless, Short-sightedness, i.e. failure to predict beyond a 246 

certain time point, was also low for both models, however slightly favoring CTAB-GAN+ over NFlow 247 

(CTAB-GAN+: 0.99, NFlow: 0.93) arguably corresponding to the censoring tendency of NFlow.   248 

 249 

Synthetic data captures risk associations of individual variables for explorative analyses 250 

In order to be useful for explorative analyses, synthetic data needs to recapitulate risk associations of 251 

individual variables. The ELN2022 recommendations represent one of the most widely used guidelines 252 

for risk stratification.(14) Hence, previously established markers of favorable (normal karyotype, 253 

t(8;21), inv(16) or t(16;16) mutations of NPM1, CEBPA-bZIP in frame mutations), intermediate risk 254 

(FLT3-ITD, t(9;11)), or adverse risk (complex karyotype, -5, del(5q), -7, -17, mutations of TP53, 255 

RUNX1, ASXL1), and age were evaluated using univariable analyses per cohort for their impact on 256 

achievement of CR, EFS, and OS. All effects for achievement of CR, EFS, and OS showed the same 257 

directionality – favorable affects in the original cohort were also favorable in synthetic cohorts and vice 258 

versa – and significance – effects that were significant in the original cohort were also significant in 259 

synthetic cohorts and vice versa (except for del(5q) being significantly associated with failure to achieve 260 

CR in the original cohort while this effect turned out to be non-significant in the NFlow-generated 261 

cohort). Importantly, no inverse effects – a variable that would be favorable in the original cohort would 262 
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be adverse in a synthetic cohort or vice versa – were observed. Detailed outcomes per variable are 263 

reported for CR (Tab. S6), EFS (Tab. S7), and OS (Tab. S8).  264 

 265 

Synthetically generated cohorts safeguard real patient data and prohibit re-identification 266 

Privacy conservation was measured by: i) number of exact matches between original and synthetic 267 

cohorts, ii) a privacy leakage coefficient based on Hamming distance, and iii) absolute Hamming 268 

distances showing the number of variables to be altered per synthetic patient to match a real patient. 269 

First, for both synthetic data sets the number of exact matches compared to the original cohort was zero. 270 

Second, the average minimum distances compared between datapoints in training and test sets were 271 

similar for the original cohort, as well as synthetic data from both CTAB-GAN+ and NFlow (Tab. 3). 272 

The privacy leakage coefficient – the quotient of Hamming distances between synthetic to test divided 273 

by synthetic to training data where small values (<0.05) indicate a small difference between the distances 274 

of synthetic data to training and test data, and therefore, indicate no privacy breach – was very low for 275 

both CTAB-GAN+ and NFlow (Tab. 3). This signals a low likelihood of re-identification for both 276 

synthetic datasets. Third, the median number of variables that would have to be altered to assign a 277 

synthetic patient to a training set patient was nine for both CTAB-GAN+ and NFlow.  278 

 279 

Discussion 280 

Synthetic data provide an attractive solution to circumvent issues in current standards of data collection 281 

and sharing. These issues encompass first and foremost the time- and cost-intensive data collection 282 

process that usually involves enrollment of patients in prospective clinical trials presenting ever-283 

increasing costs both regarding funding and time until completion, as well as ethical concerns inherent 284 

in clinical research with human subjects.(3,4) The prospect of using synthetic data as a novel kind of 285 

control group in prospective trials while effectively alleviating the need to enroll a larger number of 286 

patients and cutting costs bears the question of how closely such synthetic control arms match real-287 

world cohorts. We used two generative AI technologies, a state-of-the-art GAN, CTAB-GAN+, and 288 

NFlow, to mimic the distribution of patient variables from four different previously conducted 289 
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prospective multicenter trials including a total of 1606 patients with AML. Both models demonstrated 290 

high performance in previously established evaluation metrics that assess fidelity and usability of 291 

synthetic tabular data.(23,24) The comparison of distributions per variable between original and real 292 

data further showed close resemblances. Notably, even for statistically significant deviations from the 293 

original cohort, differences in effect sizes (e.g. age difference, difference in rates of occurrence for 294 

genetic alterations etc.) were often small. Inherent to hypothesis testing with such large sample sizes, 295 

even clinically irrelevant deviations can yield statistically significant differences. Importantly, inter-296 

variable relationships were conserved in synthetic data: In univariable analyses both effect direction and 297 

statistical significance was well captured by both generative models effectively enabling explorative 298 

investigations in such data sets.  299 

Once real data is obtained, privacy concerns often inhibit public access and thus impede data sharing 300 

and third-party hypothesis testing. Frequently used practices range from de-identifying or anonymizing 301 

data to more advanced computational approaches. De-identification or anonymization (e.g. removing 302 

names and birth dates), as well as adding artificial noise to the original data have recently been proven 303 

to be unsafe in terms of guarding privacy as reidentification attacks can successfully unveil patients’ 304 

identity.(28–30) Computational advances in both federated(31) and swarm learning(32) where machine 305 

learning models are trained across multiple locations and only either models or weights are shared rather 306 

than the data itself provide a viable alternative. Nevertheless, these technologies are vulnerable to data 307 

reconstructions, e.g. via data leakage from model gradients.(33–35) Inherent to synthetic data generation 308 

in terms of privacy safeguards is a trade-off between usability and privacy where an increase in each 309 

negatively affects the other.(36) Ideally, synthetic data should not be re-identifiable but at the same time 310 

closely match the original distributions. Zero exact matches were observed in our synthetic cohorts. 311 

Additionally, Hamming distances showed that reconstruction of original training samples is highly 312 

unlikely given the number of variables per synthetic patient that would have to be altered in order to 313 

match a training cohort patient.  314 

The generation of synthetic data is, as all machine learning models are, fundamentally limited by the 315 

data that the model is trained on. This implies that external users should be aware of the properties of 316 
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the training data that went into the generation of a synthetic data set in order to either select the right 317 

data set for their research question or vice versa, adapt the research question to the available data. It is 318 

therefore important to note, that patients in our trials have all been treated with intensive anthracycline-319 

based therapy and largely stem from a Middle-European ethnic background. Hence, our generated 320 

synthetic AML data sets may not fully capture features of other populations let alone other treatment 321 

modalities, such as less intensive therapy or targeted agents. The incorporation of these modalities will 322 

be addressed in future works. Since ML models thrive on large and diverse data sets, synthetic data 323 

generation from medical records is caught in a paradoxical loop: Available data is sparse, synthetic data 324 

can potentially accommodate for sparse available real data, synthetic data requires large and diverse sets 325 

of real data to meaningfully represent the population.(37) Therefore, the generation of synthetic data is 326 

likely more robust, if training data from large multicenter cohorts is used. Nonetheless, the availability 327 

of synthetic data promises a democratization of clinical research. In similar efforts, Azizi et al.(38) and 328 

D’Amico et al.(39) explored synthetic data generation in cancer. Azizi et al.(38) used data from a 329 

previously conducted clinical trial in colorectal cancer to generate synthetic data using conditional 330 

decision trees. Focusing on myelodysplastic neoplasms (MDS), D’Amico et al.(39) used a conditional 331 

Wasserstein tabular GAN to generate synthetic MDS patients from the GenoMed4All database. Both 332 

groups conclude the feasibility of either method to generate synthetic data that closely resemble the 333 

original data distributions and provide access to their synthetic data. Such studies may alleviate a 334 

common gatekeeping mechanism of costly data collection efforts that are often restricted to large well-335 

funded medical centers. Further, this also extends to cross-domain applications involving medical data, 336 

e.g. the training of a ML model by a third party that requires large sets of training data.  337 

In summary, we demonstrate the feasibility of two different technologies of generative AI to create 338 

synthetic clinical trial data that both closely mimic disease biology and clinical behavior, as well as 339 

conserve the privacy of patients in the training cohort. Generating such large synthetic data sets based 340 

on multicenter clinical trial training data holds the promise of enabling a new kind of clinical research 341 

improving upon data accessibility, while ameliorating current hindrances in data sharing.  342 

 343 
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 461 

Tables 462 

clinical data original cohort CTAB-GAN+ p NFlow p 

number of patients  1606 1606  1606  

age, median (IQR) 56 (44 - 65) 53 (42 - 64) 0.0001 58 (47 – 66) 0.039 

sex, n (%)   0.023  0.672 

   female 768 (47.8) 703 (43.8)  781 (48.6)  

   male 838 (52.2) 903 (56.2)  825 (51.4)  

AML status, n (%)      

   de novo 1339 (83.4) 1339 (83.4) 1.000 1250 (77.8) 0.041 

   secondary 195 (12.1) 193 (12.0) 0.914 200 (12.5) 0.554 

   therapy-associated 54 (3.4) 57 (3.5) 0.847 83 (5.2) 0.007 

extramedullary 

disease, n (%) 
224 (13.9) 228 (14.2) 0.409 279 (17.4) 0.003 

laboratory values      

WBC, median (IQR) 

in GPt/l 
19.5 (4.5 - 53.4) 27.0 (8.3 - 69.6) <0.0001 14.4 (5.8 – 55.3) 0.832 

Hb, median (IQR)  

in mmol/l 
5.9 (5.0 - 8.6) 5.8 (5.0 - 7.0) 0.949 5.9 (5.2 – 6.8) 0.988 

Plt, median (IQR)  

in GPt/l 
50.0 (27.0 – 94.0) 49.7 (31.0 - 93.4) 0.073 48.0 (26.2 – 94.5) 0.405 
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Table 1 Distribution of baseline characteristics between the original and synthetic cohort. Boldface 463 

indicates statistical significance (p < 0.05). p-values are calculated using two-sample comparisons 464 

between each of the synthetic cohorts and the baseline cohort for reference. Abbreviations: Hb: 465 

hemoglobin; IQR: interquartile range; n: number; Plt: platelet count; WBC: white blood cell count.  466 

 467 

 original cohort CTAB-GAN+ NFlow 

CR after induction therapy, n (%) 1135 (70.7) 1184 (73.7) 1110 (69.1) 

OR 2.41 2.81 2.24 

[95%-CI] [2.16 – 2.68] [2.51 – 3.14] [2.01 – 2.49] 

p-value   0.059 0.356 
    

median EFS, months (IQR) 7.2 (6.5 – 8.0) 12.8 (11.8 – 14.1) 9.0 (8.3 – 9.7) 

HR 1.36 0.74 0.87 

[95%-CI] [1.25 – 1.47] [0.68 – 0.80] [0.80 – 0.94] 

p-value   <0.0001 <0.0001 
    

median OS, months (IQR) 17.5 (15.7 – 19.2) 19.5 (15.7 – 19.2) 16.2 (15.7 – 19.2) 

HR 1.14 0.88 1.00 

[95%-CI] [1.04 – 1.24]  [0.81- 0.96] [0.92 – 1.09] 

p-value  <0.0001 0.055 

Table 2 Comparison of patient outcomes between the original and synthetic cohort. Logistic 468 

regression and Cox proportional hazard models were used to obtain odds ratios (OR) for achievement 469 

of complete remission (CR) and hazard ratio (HR) with corresponding 95%-confidence intervals (95%-470 

CI). Boldface indicates statistical significance (p < 0.05). p-values are calculated using two-sample 471 

comparisons between each of the synthetic cohorts and the original cohort for reference. Other 472 

abbreviations: n: number.  473 

 474 

 475 

 476 

 477 

 478 
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 CTAB-GAN+ NFlow original cohort 

absolute Hamming distances    

 average min. distance train 8.7034 9.3474 8.2524 

 average min. distance test 8.8587 9.4117 8.2224 

 median distance train 9 9 8 

 median distance test 9 9 8 

relative Hamming distances    

 privacy leakage coefficient 0.0178 0.0069  

Table 3 Hamming distances for privacy conservation. Hamming distances were used to measure the 479 

distance between two points within and between equally sized subsets of training (four sets of 20%) and 480 

test data (20%). The median distance represents the number of variables that have to be altered (and 481 

matched exactly) to fit a real patient. A threshold for the privacy leakage coefficient of 0.05 for relative 482 

distances was set where values above 0.05 signal potential privacy breaches. Both synthetic data sets 483 

fell well below the 0.05 threshold signaling larger distances between synthetic and training data, which 484 

make a re-identification of training set patients unlikely.  485 

 486 

 487 
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Figures and Figure Legends 488 

 489 

 490 

Figure 1 Distribution of molecular and cytogenetic alterations between real and synthetic patients. 491 

50 molecular genetic and cytogenetic alterations were included in generative modeling. Molecular 492 

genetics were originally assessed by next-generation sequencing using a targeted myeloid panel 493 

including genes that encode for epigenetic regulators (A, dark blue), the cohesion complex (B, orange), 494 

transcription factors (C, red), NPM1 and TP53 (D, light blue), signaling factors (E, purple), and the 495 

spliceosome (F, green). Cytogenetic aberrations (G, black) were selected based on previously 496 

demonstrated impact on patient outcomes. Distributions for all variables are denoted as percentages of 497 

each respective cohort. Overall, both synthetic cohorts well represented the distribution of alterations in 498 

the original cohort with only slight deviations denoted by highly statistically significant (p<0.001) 499 

differences in BCORL1, DNMT3A, PHF6, and ZRSR2 for NFlow, as well as CUX1 and GATA2 for 500 

CTAB-GAN+.  501 
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 502 

Figure 2 Heatmaps for relative differences of genetic associations. The difference in co-occurrences 503 

of genetic alterations are plotted. Relative increases (red) or decreases (blue) are displayed on a scale 504 

from -100% to + 100%. The overlap between the original cohort and CTAB-GAN+ (A), as well as 505 

original and NFlow (B) showed high congruency. Increases or decreases in co-occurring genetic 506 

alterations were commonly found to affect alterations with low frequency in the original cohort.  507 

 508 
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Figure 3 Comparison of survival curves between original and synthetic cohorts. Event-free survival 510 

(EFS) deviated significantly from the original cohort for both synthetic cohorts (A). For the NFlow-511 

generated cohort, there was no significant deviation from the original distribution for overall survival 512 

(OS), while the CTAB-GAN+-generated cohort again differed significantly (B). Interestingly, while the 513 

survival curve for CTAB-GAN+ displays a plausible curve up until ten years of follow-up, the curve 514 

shows no stabilization of survival rates in the end as the original cohort does. Contrastingly, the survival 515 

curve for NFlow shows an overall plausible course, however, NFlow tends to overtly censor patients 516 

after two years of follow-up.  517 
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