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Abstract 

Background: Although rotation atherectomy (RA) is a useful technique for severely 

calcified lesions, patients undergoing RA show a greater incidence of catastrophic 

complications, such as coronary perforation. Therefore, prior to the RA procedure, it is 

important to predict which regions of the coronary plaque will be debulked by RA. 

Objectives: We develop and evaluate an artificial intelligence–based algorithm that 

uses pre-RA intravascular ultrasound (IVUS) images to automatically predict regions 

debulked by RA 

Methods: A total of 2106 IVUS cross-sections from 60 patients with de novo severely 

calcified coronary lesions who underwent IVUS-guided RA were consecutively 

collected. The two identical IVUS images of pre- and post-RA were merged, and the 

orientations of the debulked segments identified in the merged images are marked on 

the outer circle of each IVUS image. The artificial intelligence model was developed 

based on ResNet (deep residual learning for image recognition). The architecture 

connected 36 fully connected layers, each corresponding to one of the 36 orientations 

segmented every 10°, to a single feature extractor. 

Results: In each cross-sectional analysis, our artificial intelligence model achieved an 

average sensitivity, specificity, positive predictive value, negative predictive value, and 
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accuracy of 81%, 72%, 46%, 90%, and 75%, respectively. 

Conclusions: The artificial intelligence–based algorithm can use information from 

pre-RA IVUS images to accurately predict regions debulked by RA. The proposed 

method will assist interventional cardiologists in determining the treatment strategies 

for severely calcified coronary lesions. 

 

Key words: artificial intelligence, deep learning, coronary artery disease, calcification, 

coronary intervention 

 

Abbreviations 

IVUS: intravascular ultrasound 

LAD: left anterior descending coronary artery 

MLA: minimum lumen area 

NPV: negative predictive value 

PCI: percutaneous coronary intervention 

PPV: positive predictive value 

RA: rotational atherectomy 
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Introduction 

 Percutaneous coronary intervention (PCI) in patients with severe coronary 

artery calcification poses technical challenges due to impaired device crossing(1), 

delamination of drugs and polymers from stents(2), altered elution kinetics and drug 

delivery(3), and impaired stent apposition and expansion(4). Rotational atherectomy 

(RA) is used to modify lesions to allow optimal stent deployment and expansion and to 

improve clinical outcomes in patients with severely calcified coronary lesions(5). 

Recently published North American and European expert reviews and the Japanese 

expert consensus on RA showcase its utility and provide a clinical standard for RA 

operators(6-8).  

Although RA is a useful technique for severely calcified lesions, patients 

undergoing RA show a significantly greater incidence of catastrophic complications 

(e.g., slow flow, complex dissection, and coronary perforation) than that in patients 

undergoing balloon-based procedures(9,10). Therefore, one expert consensus document 

recommends using intravascular imaging devices prior to RA to predict the site of RA 

debulking using a guidewire and catheter bias(8). However, the agreement rate between 

the guidewire position and the debulked region on intravascular imaging, such as 

intravascular ultrasound (IVUS), is not high(11,12); therefore, predicting the debulking 
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site with intravascular imaging devices remains a challenge, especially for less 

experienced interventional cardiologists. 

Deep learning techniques that implement deep neural networks can extract 

features from target data without preconceptions and are, therefore, particularly useful 

for detecting and classifying objects with complicated or unknown features(13). 

Consequently, deep learning has recently been applied in medicine, diagnostic imaging, 

and identifying and diagnosing abnormal regions(14,15). This study aimed to develop 

and evaluate an artificial intelligence–based algorithm that uses pre-RA IVUS images to 

automatically predict regions debulked by RA. 

 

Methods 

Study population 

IVUS data from patients with de novo severely calcified coronary lesions who 

underwent IVUS-guided RA at five centers were consecutively collected from July 

2016 to October 2021. IVUS imaging data were acquired using a VISICUBE IVUS 

imaging system with a 60-MHz mechanically rotating IVUS catheter (AltaView
TM

, 

Terumo, Tokyo, Japan). The criteria for lesion selection were as follows: (i) lesions 

located in the left anterior descending coronary artery (LAD), (ii) lesions with severe 
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calcifications that were defined as radiopacities when observed without cardiac motion 

before contrast injection(12), (iii) IVUS examination performed before any intervention 

and immediately after RA, and (iv) the RA burr size was selected as 1.5 or 1.75 mm. 

The exclusion criteria were a diagnosis of acute coronary syndrome, in-stent restenosis, 

a branch lesion, left main narrowing >50%, and any balloon dilation before post-RA 

IVUS. The protocol for the retrospective data analysis was approved by our Institutional 

Review Board (2021252). The need for informed consent was waived because IVUS 

images were acquired during daily clinical practice from patients who consented to the 

comprehensive research use of their data. All the patients were guaranteed the 

opportunity to opt out of the study. 

RA and IVUS procedures 

 RA was performed under local anesthesia via the radial or femoral approach 

using a 6 or 7-Fr guiding catheter. After crossing the lesion with a 0.014-inch 

conventional guidewire, an IVUS image was obtained before any coronary intervention. 

The IVUS catheter was inserted into each coronary artery as distally as possible, and an 

imaging run was performed back to the aorto-ostial junction using an automated 

transducer pullback system. The decision to perform RA at each center was based on a 

clinical expert consensus document(8). Following the IVUS examination, the 
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0.014-inch conventional guidewire was exchanged with a 0.009-inch RotaWire floppy 

or RotaWire extra support guidewire (Boston Scientific, Marlborough, MA, USA) using 

a microcatheter. Each operator chose the guidewire and burr size for RA based on same 

document above(8). After the burr passed the lesion, it was removed using the 

Dynaglide mode. IVUS examinations were repeated immediately after RA in a manner 

similar to the pre-RA IVUS in all cases. 

IVUS segmentation 

Preprocedural IVUS images were reviewed carefully to identify the 

cross-section with the minimum lumen area (MLA). IVUS analyses were conducted at 

the MLA at 0.5-mm intervals from sites 10 mm proximal to 10 mm distal to the MLA 

site. Cross-sections with poor-quality IVUS images were excluded from the study. The 

lumen contour was manually traced in every image frame, following a previously 

reported standard protocol(16,17) (Figure 1).  

Serial IVUS images taken before and immediately after RA were reviewed in 

parallel on the screen. The analyzed cross-sections were co-registered frame-by-frame 

based on the distance from landmarks, such as side branches or the site of calcification, 

following the same method of previous IVUS studies(12,18). The spatial axes of the 

two matched IVUS cross-sectional images were aligned and merged using dedicated 
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software (ImageJ, NIH, Bethesda, MD, USA). The cross-section was considered to have 

a debulked region when the lumen area increased by >5% after RA, and the region with 

an enlarged lumen contained sharp traces of burr debulking on the post-RA IVUS 

image(12).  

Ground truth labelling 

The orientations of the debulked segments identified in the merged images are 

marked on the outer circle of each IVUS image. Ground truth images were created by 

merging the same marks into the pre-IVUS images (Figure 1). Image creation was 

performed by a cardiologist using the software mentioned above. 

Model development 

In our quest to further the capabilities of coronary artery imaging, we aimed to 

develop a deep-learning model capable of using IVUS images of coronary arteries to 

predict regions of excavation by the RA. The unique circular structure of the coronary 

arteries was utilized in our design. To achieve this, we partitioned the structure into 36 

orientations, segmented every 10°. For each orientation, our model predicted whether a 

specific site would be debulked.  

 Another key feature of our model design is the continuity of the coronary arteries. 

Toward this end, the prediction for any slice n was obtained by incorporating images 
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from slice n, one slice before (slice n−1), and one slice after (slice n+1), spaced 5 mm 

apart. We used three images to predict the excavation site for slice n more accurately. 

From an implementation perspective, our architecture connects 36 fully connected 

layers, each corresponding to one of the 36 orientations segmented every 10°, to a 

single feature extractor. 

The model was trained such that the sum of the 36 individual loss values 

minimized the total loss. For our feature extractor, two architectures, ResNet [Deep 

Residual Learning for Image Recognition] and ConVNeXt [A ConvNet for the 2020s], 

were explored. Both employed pre-trained models from ImageNet and underwent 

fine-tuning. The Adam loss function was chosen for its optimization properties; data 

augmentation was implemented using RandAugment [Randaugment: Practical 

automated data augmentation with a reduced search space]. The model that achieved the 

smallest loss function value on the validation dataset (within 100 epochs) was selected 

as the best-performing model. The entire model was trained using the PyTorch 

framework [PyTorch: An Imperative Style, High-Performance Deep Learning Library]. 

Although our model was built from the ground up, it was inspired by and modified from 

the original source code available online (https://github.com/Medical-AI-Lab/Nervus) 

[Nervus: A Comprehensive DL Classification, Regression, and Prognostication Tool for 
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both Medical Image and Clinical Data Analysis]. Specifically, the classifier from this 

codebase was adapted to accommodate the 36 orientations, which formed the 

foundation for our current model. A detailed model is shown in Figure 2; the source 

code is available online. 

Model test 

The performance of the best-performing model was assessed on the validation 

and test datasets. Sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and accuracy were used as primary metrics for evaluation. 

These metrics were presented as averages for each degree and image. 

Statistical analysis  

All statistical analyses of the model tests were performed using R version 4.0.0. 

For statistical inferences, we adopted a two-sided significance level of 5% and relied on 

the Clopper–Pearson method. 

 

Results 

Data 

 The study analyzed 2460 cross-sections from 60 LAD lesions in 60 patients. 

Because the cross-sectional images were of low quality or cross-sectional images from 
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slice n+1 (5 mm distal from the MLA site) and/or slice n-1 (5 mm proximal from the 

MLA site) were missing, 354 images were excluded. Consequently, 2106 cross-sections 

were segmented and labeled as the ground truth. Among these cross-sections, 1416 

(67%) contained debulked regions; the remaining 690 (33%) did not. The images were 

divided into training (1649), validation (226), and test (231) datasets. 

Model development 

 Upon evaluating the performances of various architectures, we found that 

ResNet had superior accuracy and efficiency. Its sophisticated design and deep layers 

demonstrate a distinct advantage, making it the leading choice for our artificial 

intelligence model for predicting debulked regions from pre-RA IVUS images of the 

coronary arteries. During this period, the model with the lowest loss in the validation 

data was considered the best-performing model. The model was developed using the 

training and validation datasets. 

Diagnostic performance of our artificial intelligence model 

The best-performing model was evaluated using test datasets. In each 

cross-sectional analysis, our artificial intelligence model achieved an average sensitivity, 

specificity, PPV, NPV, and accuracy of 81%, 72%, 46%, 90%, and 75%, respectively. 

Table 1 shows the 10°-wise performances for predicting the region debulked by RA. In 
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the 10°-wise analysis, no significant difference was found in diagnostic accuracy among 

the individual 10° regions. A representative image of the proposed model is shown in 

Figure 3. 

 

Discussion 

 The artificial intelligence–based algorithm developed in this study shows 

promise for using pre-RA IVUS images to predict which regions of the coronary plaque 

would be debulked by RA. The main results of this study were 1) we developed a 

deep-learning algorithm capable of automatically predicting the orientation of the 

regions debulked by RA based on pre-RA IVUS images, and 2) the diagnostic accuracy 

of the developed artificial intelligence model was approximately 80%. 

 Because of an aging population with an increasing burden of cardiovascular 

risk factors, complex calcified coronary lesions are increasingly encountered in daily 

clinical practice. Intravascular imaging is currently recommended as an auxiliary device 

for safely performing RA in the guidelines(8). Previous studies on predicting RA 

debulking regions using intravascular imaging have shown that the location of the 

guidewire and imaging catheter can predict coronary plaque debulking regions; the 

vessel wall closer to the guidewire tends to be more debulked than the vessel wall closer 
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to the imaging catheter(11,12). However, the diagnostic accuracy was low at 67% in 

studies using IVUS(12) and 48% in studies using optical coherence tomography(11). 

These rates are insufficient to prevent catastrophic events such as coronary perforation 

in routine daily clinical practice. Furthermore, these diagnostic accuracies were 

calculated based on the analysis of cross-sectional images with debulked regions only, 

not on analyzing all cross-sections imaged by IVUS, as in this study. When all 

cross-sectional images obtained by IVUS were included in the analysis of a previous 

study, the concordance rate between the guidewire position and the debulked region was 

only 42%(12). From this perspective, the 80% diagnostic accuracy for predicting the 

debulked region with RA from pre-RA IVUS achieved by the artificial intelligence 

model developed in this study significantly exceeded that of human predictions. To our 

knowledge, this study is the first to demonstrate that an artificial intelligence model can 

use pre-RA IVUS images to accurately predict which parts of a plaque would be 

debulked by RA. 

  Recent technological advances have facilitated the application of artificial 

intelligence models for medical image analysis. In cardiovascular disease, the 

application of artificial intelligence to electrocardiography(19,20) and chest 

X-rays(15,21) has enhanced the interpretation of images and decision-making in 
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treatment strategies. Only a few studies have applied artificial intelligence to clinical 

practice for intracoronary imaging, particularly intravascular ultrasound imaging. Cho et 

al.(22) reported an artificial intelligence model that could automatically classify IVUS 

frames (with or without calcification and ultrasound attenuation) with a high overall 

accuracy of 90%. The extent of ultrasound attenuation and calcification in the ROI 

segment can be quantified accurately within a few seconds of inputting the IVUS image 

into the model. In addition, another study reported the high-accuracy detection of stent 

underexpansion sites from IVUS images after stent implantation using an artificial 

intelligence model(23). Unlike transthoracic echocardiographic images, the quality of 

the acquired IVUS images is independent of the operator’s skill and experience. The 

ability to predict the region debulked by the RA independent of experience is 

advantageous for less experienced PCI operators. This finding is particularly relevant 

because both the number of RA cases per operator and per year are inversely associated 

with the incidence of RA-related complications(9,24). In addition, the model can be 

utilized by PCI operators at any time, which is especially valuable in areas where 

experienced PCI operators are unavailable or during nighttime emergencies when the 

medical staff is limited. From this perspective, the artificial intelligence model is 

advantaged over an intuitive evaluation based on the experience of the PCI operator 
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performing the RA procedure. 

 

Limitation 

This study had some limitations. First, our artificial intelligence model was 

developed and validated only for the LAD and did not support the right coronary and 

left circumflex arteries. Second, observing lesions using IVUS before RA is essential 

for applying our results in routine clinical practice. However, the IVUS imaging 

catheter may not be advanced beyond severely calcified lesions that require RA. Third, 

the model was developed from IVUS images of cases using RA-burr sizes of 1.5 and 

1.75 mm; the diagnostic accuracy when using other burr sizes is unknown. Fourth, the 

wire used during IVUS differed from that used during RA. 

 

Conclusions 

 The artificial intelligence–based algorithm can use information from pre-RA 

IVUS images to accurately predict regions debulked by RA. These results are highly 

promising. The proposed method will assist interventional cardiologists in determining 

the treatment strategies for severely calcified coronary lesions. 
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Clinical Perspectives 

Clinical Competencies: Although rotational atherectomy is a useful technique for 

severely calcified lesions, patients undergoing RA show a greater incidence of 

catastrophic complications, such as coronary perforation. Therefore, we have 

empirically predicted the segment where the atherectomy burr debulked from 

intravascular ultrasound images, but the diagnostic accuracy of human experience-based 

prediction is low. 

Translational Outlook: Although the diagnostic accuracy was high, the positive 

predictive value was insufficient. This model needs to be tested prospectively in real 

clinical cases to investigate its impact on clinical practice in the field of coronary 

intervention. 
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Figure legend 

Figure 1. Analysis of IVUS images and creating ground truth labelling 

(A) A pre-RA IVUS image. (B) Lumen contour on image A drawn by dedicated 

software. (C) A post-RA IVUS image matched with image A. (D) Lumen contour on 

image C. (E) A merged image of pre-RA IVUS image B and post-RA IVUS image D by 

the software. A debulked segment is identified by calculating the post-RA lumen area 

minus the pre-RA lumen area (green area). (F) The orientation of the debulked segments 

on the merged images. (G) The ground truth image shows the debulked segments’ 

orientation on the IVUS image’s outer circle. 

IVUS: intravascular ultrasound; RA: rotational atherectomy 

 

Figure 2. Overview of model development 

In our model, the image of slice n and the images before (slice n−1) and after (slice 

n+1) are incorporated at 5-mm intervals. Using three input images, image information 

in the long-axis direction of the blood vessel is obtained, expecting to improve the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298239doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298239
http://creativecommons.org/licenses/by-nc/4.0/


 

 

24 

prediction accuracy. ResNet is the base architecture for the proposed model because of 

its successful performance. Our architecture connects one feature extractor to 36 fully 

connected parallel layers (each layer corresponding to one of the 36 directions divided 

by 10°), which serve as classifiers. The 36 results and images of slice n are combined, 

and the deep-learning algorithm is coded so that they can be outputted. 

 

Figure 3. Representative image of model test 

The diagnostic performance of our model is evaluated based on the agreement rate 

between the debulking angle predicted by the model and the debulking angle of the 

ground truth. It is evaluated using 457 datasets allocated as validation and testing 

datasets. Here, we present a representative case with acceptable test results. 
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Table 1. The cross-sectional and the 10°-wise performances for predicting the region 

debulked by RA. 

 Sensitivity Specificity Accuracy PPV NPV 

Cross-sectional 

level 
81 72 75 46 90 

10°-wise level      

0 - 10° 58 84 79 47 89 

10 - 20° 80 85 80 52 89 

20 - 30° 62 84 79 53 88 

30 - 40° 80 68 71 46 91 

40 - 50° 90 63 70 46 95 

50 - 60° 88 68 73 51 93 

60 - 70° 89 54 65 47 91 

70 - 80° 83 59 67 51 87 

80 - 90° 86 58 67 50 89 

90 - 100° 85 65 72 58 88 

100 - 110° 89 49 64 50 89 

110 - 120° 86 56 67 53 87 

120 - 130° 87 55 66 51 88 
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130 - 140° 82 60 68 53 86 

140 - 150° 85 64 72 59 88 

150 - 160° 88 68 75 62 91 

160 - 170° 92 61 72 57 93 

170 - 180° 93 66 75 58 95 

180 - 190° 95 72 80 64 96 

190 - 200° 87 77 80 63 93 

200 - 210° 66 82 77 62 85 

210 - 220° 68 77 74 55 85 

220 - 230° 62 77 73 50 84 

230 - 240° 72 80 78 56 89 

240 - 250° 83 83 83 59 94 

250 - 260° 86 84 84 60 96 

260 - 270° 86 88 86 60 96 

270 - 280° 88 80 81 50 97 

280 - 290° 83 87 87 59 96 

290 - 300° 79 84 83 49 95 

300 - 310° 77 81 81 45 95 
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310 - 320° 79 80 80 45 95 

320 - 330° 63 79 77 38 92 

330 - 340° 85 78 79 45 96 

340 - 350° 83 81 79 47 93 

350 - 360° 58 84 79 47 89 

RA: rotational atherectomy; PPV: positive predictive value; NPV: negative predictive 

value. 
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